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Background: The increase in the use of ultrasound-guided interventional therapy for cardiovascular 
diseases has increased the importance of intraoperative real-time cardiac ultrasound image interpretation. 
We thus aimed to develop a deep learning–based model to accurately identify, localize, and track the critical 
cardiac structures and lesions (9 kinds in total) and to validate the algorithm’s performance using independent 
data sets.
Methods: This diagnostic study developed a deep learning-based model using data collected from Fuwai 
Hospital between January 2018 and June 2019. The model was validated with independent French and 
American data sets. In total, 17,114 cardiac structures and lesions were used to develop the algorithm. The 
model findings were compared with those of 15 specialized physicians in multiple centers. For external 
validation, 516,805 tags and 27,938 tags were used from 2 different data sets. 
Results: Regarding structure identification, the area under the receiver operating characteristic curve (AUC) 
of each structure in the training data set, optimal performance in the test data set, and median AUC of each 
structure identification were 1 (95% CI: 1–1), 1 (95% CI: 1–1), and 1 (95% CI: 1–1), respectively. Regarding 
structure localization, the optimal average accuracy was 0.83. As for structure identification, the accuracy 
of the model significantly outperformed the median performance of the experts (P<0.01). The optimal 
identification accuracies of the model in 2 independent external data sets were 89.5% and 90%, respectively 
(P=0.626).
Conclusions: The model outperformed most human experts and was comparable to the optimal 
performance of all human experts in cardiac structure identification and localization, and could be used in 
the external data sets.
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Introduction

With the development of cardiac interventional therapy, 
the risk of radiation exposure faced by patients and medical 
workers, as well as the accompanying adverse effects on 
health, such as cataracts (1,2), arteriosclerosis (3), and 
tumor formation (4), during traditional radiation-guided 
interventional therapy has attracted increasing attention (5). 
In contrast, ultrasound-guided cardiac interventional therapy 
avoids radiation-associated risks. The reliability of this 
method was proven in our previous studies of the ultrasound-
guided interventional treatment of congenital heart disease 
(6,7) and valvular heart disease (8,9). It is now possible to 
perform percutaneous balloon mitral valvuloplasty under 
pure ultrasound guidance without radiation exposure and 
contrast agents. These include pregnant patients, patients 

with chronic renal failure, and patients with contrast 
allergies. These patients are difficult to treat by conventional 
means (8). Similarly, a technique for percutaneous closure of 
unclosed foramen ovale under echocardiographic guidance 
only has been achieved (6). The success rate was 90.4%, 
and the median length of stay was 3.0 days, with no severe 
complications such as peripheral vascular injury or cardiac 
perforation at the time of discharge. And no complications 
such as death, stroke, transient ischemic attack, and residual 
shunt occurred at more than one year of follow-up. And as 
technology advances and innovates, more diseases will be 
treated with ultrasound guidance. Cardiac ultrasound plays 
an important role not only in the diagnosis of cardiovascular 
diseases but also in guiding interventional surgery. However, 
real-time and accurate echocardiographic interpretation 
remains challenging and requires ample experience, 
expertise, and long-term training. The following challenges 
render ultrasound interpretation prone to errors: relevant 
information may be needed at any time during the operation 
in accordance with the operation conditions, various 
physiological and pathological changes may appear similar, 
and a single pathology may exhibit various features (10,11). 
Compounding this difficulty is the discrepancy between the 
increased rate of various examinations and surgeries and the 
number of qualified sonographers (12), which has led to an 
increased workload for sonographers and hindered the rapid 
generalization of ultrasound-guided interventional surgery.

Deep learning techniques have led to several promising 
achievements in medical imaging analysis, such as the use of 
skin photographs to diagnose skin cancer (13) and the use 
of echocardiography videos to evaluate ejection fraction (14).  
However, to our knowledge, no study has reported on 
the use of artificial intelligence methods to localize and 
track cardiac structures, especially in the disease state. 
The localization and tracking of cardiac structures are the 
basis of artificial intelligence-assisted ultrasound-guided 
interventional surgery. Therefore, we aimed to develop a 
deep learning-based model to accurately identify, localize, 
and track important cardiac structures and lesions to 
enable streamlining of the clinical workflow and promote 
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the generalization of ultrasound-guided interventional 
techniques.

The performance of physicians with different levels 
of experience from the departments of cardiology and 
ultrasound in the China National Center for Cardiovascular 
Diseases was compared with that of the model to validate 
the performance of artificial intelligence interpretation 
of the ultrasound images. To ensure that the model was 
applicable to other data, we used 2 data sets of populations 
from different countries for independent validation. This 
model will be of great significance for the generalization 
of single ultrasound-guided cardiac interventional 
therapy and for improving the level of echocardiographic 
interpretation in medical units at all levels. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-470/rc).

Methods

Data sets

The Ethics Committee of Fuwai Hospital, Chinese 
Academy of Medical Sciences, approved this study (Approval 
No. 2022-1672) and waived the requirement for patient 
consent. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

We used the surgical videos of 79 patients who had 
undergone single ultrasound-guided or ultrasound-assisted 
interventional cardiac surgeries for structural heart disease 
at Fuwai hospital. We cut the videos into 3,856 ultrasound 
views (static ultrasound views) categorized as transthoracic 
and transesophageal ultrasound views (including parasternal 
long-axis, parasternal short-axis, subcostal 4-chamber, and 
apical 4-chamber views) and midesophageal aortic short-axis 
views (including nonstandard views). The disease categories 
were atrial septal defect (n=25), ventricular septal defect 
(n=8), patent ductus arteriosus (n=11), mitral stenosis (n=5), 
mitral insufficiency (n=6), coarctation of the aorta (n=2), 
aortic valve stenosis (n=7), pulmonary valve stenosis (n=8), 
and left auricular occlusion (n=7).

The data sets were labeled by 3 physicians (2 cardiologists 
1 one sonographer) with more than 5 years of specialized 
experience, and confirmation of each label required the 
agreement of at least 2 of the physicians. Forty views were 
randomly selected from the data sets to form the test data 
set, which was not involved in model training and was used 
for subsequent comparison with the findings of human 

experts. In total, 17,114 labels were used in the modeling, 
including 1,929 for interventricular septum (IVS), 2,126 for 
interatrial septum (IAS), 3,114 for mitral valve (MV), 1,411 
for tricuspid valve (TV), 439 for atrial and ventricular septal 
defects (nidus), 4,108 for sealing installation (SI), 2,214 for 
the aorta (AO), 1,151 for the aortic valve (AV), and 622 
for the pulmonary artery (PA). The sealing installation 
here refers to the sealer and delivery system visible under 
ultrasound. 

The independent validation data set comprised the 
EchoNet-Dynamic data set (15) and Cardiac Acquisitions 
for Multi-structure Ultrasound Segmentation (CAMUS) 
data set, (14) both of which are publicly available online 
and were approved by the relevant ethics committees. 
The EchoNet-Dynamic dataset contains 10,030 videos of 
apical four-chamber echocardiograms. These individuals 
underwent imaging examinations at Stanford University 
Hospital between 2016 and 2018 as part of routine clinical 
care. The CAMUS dataset was composed of imaging 
data from clinical tests of 500 patients, and was included 
in this study after complete anonymization according to 
the University Hospital of Saint-Etienne (France) ethics 
committee. This study used 450 of these cases, which is the 
officially published training set data.

Cardiac structure identification (multiple classifications)

We used the ResNet18 model pretrained using the modified 
ImageNet as the backbone network (16) for feature 
extraction and removed the last layer of the 1000-category 
fully connected layer, containing 1 convolutional layer and 
4 residual blocks. After 40 images were extracted as the 
test set, the remaining images were randomly divided into 
a training data set and a validation data set in the ratio of 
8:2. All images were preprocessed by random cropping 
(227×227), image flipping, and image normalization, and 
then input into the network. After training, we applied the 
model to the test data set of 40 views and evaluated the 
performance. For ultrasonography, which tends to detect 
a small proportion of the whole frame, we added a spatial 
attention module for calculating the spatial attention 
map and a channel attention module for calculating the 
channel attention (17). Global maximum pooling, average 
pooling, and random pooling of space were used to obtain 
three 1×1×C channel descriptions that were then summed. 
That is, spatial attention represented the significance of 
spatial location, while channel attention represented the 
significance of feature channels; these were then multiplied 
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by the original features separately to obtain 2 attention 
features. The spatial attention, channel attention, and 
original features were then fused additively to obtain the 

optimal features for classification. Figure 1 shows the 
fusion process. The fusion features were globally pooled on 
average and then sent to the fully connected layer. Finally, 

Global average poolMax pool

Relu

Reduce maxReduce mean

Concat

Sigmoid

Sigmoid

Mul

Mul

Add

Add

Add

Add

Relu

Relu ReluPad

Pad

Concat

Add

Mul

Reshape

Gemm

Conv

ConvConv

Conv

Conv Conv

Conv

Max pool

Global average pool

Average pool

W (32×512×1×1)

W (32×512×1×1)W (1×3×7×7)

W (32×512×1×1)

W (512×32×1×1) W (512×32×1×1)

W (512×32×1×1)

B=0.5

Shape (2)

B (218×512)

C (218)

False positive rate

AUC of IVS: 1.00
AUC of IAS: 1.00
AUC of MV: 1.00
AUC of TV: 1.00
AUC of nidus: 1.00
AUC of SI: 1.00
AUC of AO: 1.00
AUC of AV: 1.00
AUC of PA: 1.00

AUC of IVS: 0.99
AUC of IAS: 0.99
AUC of MV: 0.98
AUC of TV: 0.97
AUC of nidus: 0.95
AUC of SI: 0.93
AUC of AO: 0.98
AUC of AV: 0.97
AUC of PA: 0.99

AUC of IVS: 1.00
AUC of IAS: 0.99
AUC of MV: 1.00
AUC of TV: 0.93
AUC of nidus: 0.96
AUC of SI: 0.99
AUC of AO: 1.00
AUC of AV: 1.00
AUC of PA: 1.00

False positive rate

False positive rate

Receiver operating characteristic curve

Receiver operating characteristic curve

Receiver operating characteristic curve

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Tr
ue

 p
os

iti
ve

 r
at

e
Tr

ue
 p

os
iti

ve
 r

at
e

Tr
ue

 p
os

iti
ve

 r
at

e

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

A

B

C

D

Figure 1 Performance of the model in cardiac structure identification in the training, validation, and test data sets, and the structural 
diagram of the feature fusion neural network. (A) Performance of the model in cardiac structure identification in the training data sets. (B) 
Performance of the model in cardiac structure identification in the validation data sets. (C) Performance of the model in cardiac structure 
identification in the test data sets (D) Structural diagram of the feature fusion neural network. IVS, interventricular septum; IAS, interatrial 
septum; MV, mitral valve; TV, tricuspid valve; SI, sealing installation; AO, aorta; AV, aortic valve; PA, pulmonary artery; AUC, area under 
curve.
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the judgment of the 9 labels was outputted by the softmax 
activation function. The complete model structure is 
presented in Figure S1.

Performance of the model versus specialized physicians

A total of 15 specialized physicians participated in the study, 
all of whom were specialized cardiologists and sonographers 
from the China National Cardiovascular Center (Beijing) and 
its subcenters (Zhengzhou and Kunming). The physicians 
were divided into 6 groups. There were 3 sonographers 
with work experience of less than 1 year, 3 with 1–3 years 
of experience, and 3 with more than 3 years of experience. 
There were 2 cardiologists with 2 years, 2 with 3 years, and 2 
with 1 year of experience, respectively.

The test  data set was independently judged by 
each participant and the neural network model. The 
interpretation results of the participants and of the neural 
network model were compared. The evaluation index was 
accuracy (ACC).

Cardiac structure localization and tracking

To enhance the robustness of the model, the background of 
the detected objects was enriched and adapted to the task of 
small target detection, the data were enhanced with mosaic 
data augmentation (18) (assembled with random scaling, 
random cropping, and random arrangement) and randomly 
flipped up and down and left and right, and 300 views were 
randomly selected to form the validation data set. The 
Yolov5 model and DeepSORT algorithm were used for 
target identification and tracking (19) (Figure 2). The area 

under the precision-recall curve (AP value) was used as the 
evaluation index, and the average AP value for all categories 
was mapped (mean average precision) (19). After training, 
we applied the model to the test data set of 40 views and 
evaluated the performance.

Validation of external data sets

The neural network model was used to dynamically identify 
10,030 videos in the EchoNet-Dynamic data set (15) 
in a frame-by-frame manner, and 5,168,055 labels were 
detected in total, including 1,970,266 for IVS, 1,101,465 
for IAS, 1,711,586 for MV, and 384,738 for TV. From 
200 randomly selected videos, 200 frames of images were 
randomly selected for the human experts to validate and 
judge the performance of the model. For the CAMUS data 
set (14), 450 videos were first divided into 8,705 images, and 
then 10 images were randomly selected in a ratio of 20:1 
with the EchoNet-Dynamic data set for human experts to 
validate and judge the model performance. This eliminated 
the possible bias caused by the sampling method. In total, 
27,938 labels were detected in the CAMUS data set, 
including 3,740 for IVS, 11,413 for IAS, 10,075 for MV, and 
2,710 for TV. The randomly selected views in both the data 
sets after application of the model were judged individually 
by 3 physicians with more than 5 years of specialized work 
experience to determine whether the artificial intelligence 
annotation results were accurate; each label was confirmed 
with the agreement of at least 2 physicians. Views were 
drawn in equal proportions according to the sample size 
for validation, and the ratio of drawn views was 20:1 for 
both data sets. In addition, as both data sets had 4-chamber 
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views, there were only 4 validation labels, namely IVS, IAS, 
MV, and TV. The generalization performance of the model 
was evaluated using the results for each label in the 2 data 
sets. The evaluation index was ACC.

Statistical methods

The deep learning neural network model was built 
using Python software (Python Foundation Software). 
Comparisons between consecutive values were performed 
using the t test or Mann-Whitney test. All comparisons 
were bidirectional, with statistical significance defined as 
P<0.05. Random sampling of the EchoNet-Dynamic data 
set was implemented using the random function of the 
NumPy package in Python, while random sampling of 
the CAMUS data set was implemented using the RAND 
function of Excel software (Microsoft Corp.). ACC= (TP 
+ TN)/(TP + FP + FN + TN) where TP (true positive) is 
the number of samples correctly classified as positive, TN 
(true negative) is the number of samples correctly classified 
as negative, FP (false positive) is the number of samples 
incorrectly classified as positive, FN (false negative) is the 
number of samples misclassified as negative samples.

Results

Cardiac structure identification (multiple classifications)

The performance of the neural network model in the 
training data set revealed an area under the receiver 
operating characteristic (ROC) curve (AUC) of 1 (95% 
CI: 1–1) for all labels. In the validation set, the AUC of 
each label was 0.99 (95% CI: 0.98554228–0.99657772) 
for IVS, 0.99 (95% CI: 0.98073132–0.99390029) for 
IAS, 0.98 (95% CI: 0.97096391–0.98816888) for MV, 
0.97 (95% CI: 0.96262785–0.98319048) for TV, 0.95 
(95% CI: 0.92245692–0.97870795) for nidus, 0.93 
(95% CI: 0.90918763–0.95377301) for SI, 0.98 (95% 
CI: 0.97280951–0.99030731) for AO, 0.97 (95% CI: 
0.94874406–0.98268206) for AV, and 0.99 (95% CI: 
0.99766502–1) for PA. In the test data set, the AUC of 
each label was 1 (95% CI: 1–1) for IVS, 0.99 (95% CI: 
0.98148637–1) for IAS, 1 (95% CI: 1–1) for MV, 0.93 (95% 
CI: 0.84205691–1) for TV, 0.96 (95% CI: 0.87179627–1) 
for nidus, 0.99 (95% CI: 0.96973719–1) for SI, 1 (95% CI: 
1–1) for AO, 1 (95% CI: 1–1) for AV, and 1 (95% CI: 1–1) 
for PA. The ROC curves are shown in Figure 1A-1C.

Comparison with the performance of multicenter 
physicians

In the test data set, the highest ACC of each label of the  
15 physicians was 0.769 for AO, 0.923 for AV, 0.974 for 
IAS, 0.949 for IVS, 0.974 for MV, 0.923 for nidus, 0.923 
for PA, 0.923 for SI, and 0.974 for TV. The median ACC 
of each label of the 15 physicians was 0.744 for AO, 0.795 
for AV, 0.846 for IAS, 0.846 for IVS, 0.923 for MV, 0.692 
for nidus, 0.872 for PA, 0.872 for SI, and 0.744 for TV. 
In comparison, the ACC of each label of the artificial 
intelligence model was 1.000 for AO, 1.000 for AV, 0.925 
for IAS, 0.975 for IVS, 1.000 for MV, 0.925 for nidus, 1.000 
for PA, 0.950 for SI, and 0.850 for TV. According to the 
t test, the identification ACC of each label in the artificial 
intelligence group was comparable to the highest ACC 
(P=0.204) but significantly higher than the median ACC 
(P<0.001) in the physician group (Table 1). The ROC curves 
for each label and the distribution of the interpretation 
results of the 15 physicians are separately shown in Figure 3.

Cardiac structure localization and tracking

The Yolov5 model and DeepSORT algorithm were used 
for target identification and tracking (19) (Figure 2). To 
comprehensively evaluate the performance of the model, 
the AP values were used to compare the ability of the 
model to localize each structure. In the validation data set, 
the AP values of each structure were 0.83 for IVS, 0.57 for 
IAS, 0.69 for MV, 0.52 for TV, 0.09 for nidus, 0.75 for SI, 
0.76 for AO, 0.64 for AV, and 0.73 for PA (Figure 4). The 
performance of the model in the test data set is shown in 
Figure 5. Figure 5A shows an apical 4-chamber view of 
an atrial septal defect occluded under single ultrasound 
guidance, allowing easy tracing of the moving path of 
the occluder. Figure 5B,5C show the parasternal long-
axis views of a ventricular septal defect occluded under 
single ultrasound guidance, allowing more structures 
to be seen and for the moving path of the occluder to 
be traced. Figure 5D shows the apical 4-chamber view 
of the atrial septal defect, suggesting the presence of 
the defect site where the echo is interrupted. Figure 5E 
shows midesophageal aortic short-axis views used for the 
evaluation of aortic valve stenosis with transesophageal 
ultrasound. Figure 5F,5G show the application performance 
in the apical 4-chamber views in the EchoNet-Dynamic 
and CAMUS data sets.
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Validation in external data sets

The localization ACC of each label in the 200 views drawn 
from the EchoNet-Dynamic data set was 77% for IVS, 79% 
for IAS, 88% for MV, and 89.5% for TV. The localization 
ACC of each label in the 10 views drawn from the CAMUS 
data set was 70% for IVS, 70% for IAS, 90% for MV, 
and 90% for TV. t tests showed no significant difference 
between the 2 groups in the performance of the model in 
different external data sets (P=0.63).

Discussion

Because of the health hazards associated with radiation 
exposure (1-5), there is an urgent need for a surgical option 
to reduce radiation exposure to both patients and physicians 
in cardiac interventional procedures. Moreover, the high 
cost of conventional radiation-guided interventional 
operating rooms prevents such therapy from being widely 
applied in most primary hospitals (20). This increases 
the cost of patient care and the pressure of diagnosis and 

treatment in regional medical centers and may even lead to 
missed opportunities for surgical intervention. However, 
ultrasound-guided interventions can solve these problems. 
The use of ultrasound-guided interventions avoids 
intraoperative exposure to large amounts of radiation; 
furthermore, ultrasound equipment is relatively portable 
and inexpensive and does not require a special application 
environment such as a dedicated lead-lined operating room, 
which makes it easy to implement in a greater number 
of medical institutions. However, ultrasound-guided 
interventions place higher demands on the operator‘s 
interpretation of echocardiography, and the medical team 
needs to process image information quickly in complex 
pathological states and real-time changing operating 
environments, which often requires a long training period. 
The artificial intelligence-assisted ultrasound image 
interpretation and subsequent positioning and tracking 
will improve the ability of surgeons in ultrasound-guided 
surgery to obtain relevant information on time according 
to the surgical operation, which will help promote this 

Table 1 Accuracy of experts versus the AI model in identifying multiple cardiac structures and interventional devices

AO (ACC) AV (ACC) IAS (ACC) IVS (ACC) MV (ACC) Nidus (ACC) PA (ACC) SI (ACC) TV (ACC)

H1_1 0.744 0.744 0.821 0.923 0.897 0.769 0.872 0.487 0.795

H1_2 0.718 0.641 0.718 0.769 0.769 0.744 0.821 0.641 0.590

H1-3_1 0.641 0.923 0.949 0.846 0.923 0.923 0.692 0.513 0.795

H1-3_2 0.769 0.897 0.744 0.821 0.846 0.564 0.769 0.718 0.692

H1-3_3 0.744 0.821 0.974 0.769 0.872 0.692 0.872 0.641 0.947

H3+_1 0.718 0.744 0.846 0.897 0.974 0.615 0.872 0.923 0.744

U1_1 0.744 0.795 0.846 0.821 0.974 0.462 0.923 0.872 0.718

U1_2 0.718 0.769 0.846 0.949 0.974 0.846 0.923 0.821 0.692

U1_3 0.744 0.846 0.769 0.949 0.923 0.538 0.923 0.897 0.718

U1-3_1 0.769 0.718 0.846 0.949 0.974 0.692 0.872 0.897 0.692

U1-3_2 0.769 0.795 0.872 0.846 0.923 0.385 0.897 0.923 0.821

U1-3_3 0.744 0.795 0.846 0.795 0.949 0.718 0.895 0.923 0.744

U3+_1 0.769 0.744 0.872 0.923 0.872 0.513 0.897 0.769 0.795

U3+_2 0.769 0.795 0.872 0.897 0.923 0.359 0.872 0.923 0.821

U3+_3 0.769 0.821 0.872 0.821 0.974 0.821 0.897 0.897 0.769

AI 1.000 1.000 0.925 0.975 1.000 0.925 1.000 0.950 0.850

“1”, “1-3”, and “3+” represent up to 1 year, 1–3 years, and more than 3 years of experience in the specialty, respectively. H, cardiologist; 
U, ultrasonographer; AI, artificial intelligence model; AO, aorta; AV, aortic valve; IAS, interatrial septum; IVS: interventricular septum; MV, 
mitral valve; PA, pulmonary artery; SI, sealing installation; TV, tricuspid valve; ACC, accuracy.
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technology. It will also shorten the learning cycle of 
surgeons and ultrasonographers for this technology and 
help alleviate the pressure of insufficient medical resources.

To resolve these issues, we developed a new deep 
learning-based model integrating spatial attention, channel 
attention, and original features for cardiac ultrasound 
images (17), which enables the identification, localization, 
and tracking of all major cardiac structures, pathological 
defects,  and interventional devices in normal and 
disease states. Our algorithm consistently demonstrated 
high performance across independent data sets, even 
outperforming senior cardiologists and sonographers in 
hospitals specializing in cardiovascular diseases.

Our study has 5 main strengths. First, to our knowledge, 
this is the first ultrasound-based artificial intelligence study 
to identify, localize, and track key structures and devices 
during cardiac interventions and is thus unlike the classical 
models that focus mainly on cardiac function (14,15). Our 
model improves surgical safety by localizing and tracking 
devices (sealing installation) and key structures to prevent 
iatrogenic intraoperative injuries and improve the response 
capacity of the surgical team. This will facilitate the 
generalization of new techniques, reduce learning costs, 
and provide a reference for subsequent study and device 
development.

Second, to our knowledge, this is the first artificial 
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Figure 3 Ability of the model and 15 physicians with different levels of experience to identify different structures. (A-I) Plots showing the 
performance of the model and human experts in identifying AO, AV, IAS, IVS, MV, nidus, PA, SI, and TV, respectively. AO, aorta; AV, aortic 
valve; IAS, interatrial septum; IVS, interventricular septum; MV, mitral valve; PA, pulmonary artery; SI, sealing installation; TV, tricuspid 
valve; AUC, area under curve; H, cardiologist; U, ultrasonographer; “1”, “1-3”, and “3+” represent up to 1 year, 1–3 years, and more than  
3 years of experience in the specialty, respectively.
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Figure 4 Performance of the model in localization and tracking cardiac structures and lesions in the validation data set. (A) PR curves and 
AP values of each label. (B) Confusion matrix of the localization results. PR, precision-recall; AP, area under the precision-recall curve; AO, 
aorta; AV, aortic valve; IAS, interatrial septum; IVS, interventricular septum; MV, mitral valve; PA, pulmonary artery; SI, sealing installation; 
TV, tricuspid valve.

intelligence model trained based on the data of pathological 
states during cardiac interventions; in contrast, the recently 
reported ultrasound artificial intelligence models have 
been trained on the data of normal individuals or physical 
examination screening (14,15,21-23). Our research is 
conducive to the implementation of intelligent ultrasound 
models in clinical practice.

Third, the performance of deep learning–based 
algorithms has been shown to depend not only on the 
quantity of the training data set but also on the quality of 
the data labels (24). The data sets used in our study were 
jointly labeled by cardiologists and sonographers with more 
than 5 years of specialized experience working in the China 
National Cardiovascular Center. All the physicians involved 
in the data labeling were from the surgical teams that 
performed single ultrasound-guided cardiac interventions. 
The abundant experience of the labeling team guarantees 
the high accuracy of the data labels.

Fourth, the data used in our study were obtained from 
real-world surgical videos obtained during clinical diagnosis 
and treatment. The use of real-world data is conducive to 
improving the robustness of the model and better meeting 
the practical needs of clinical application.

Fifth, our 2 independent external validation data sets 
were from different countries (the EchoNet-Dynamic data 
set is from the United States, while the CAMUS data set 

is from France), and both are recognized as high-quality 
data sets. The excellent performance of the model in these 
data sets ensures the excellent generalization of the model 
performance, which is beneficial for the generalization to a 
wider range of data sets and practical situations.

The present study has several limitations. First, the 
retrospective collection of ultrasound video data resulted in 
the missing of basic data for some patients, such as height, 
weight, and ethnicity, which prevented a more detailed 
presentation of information of the included cases. However, 
high-quality data annotation ensured the high quality of the 
data used, and the excellent, nondifferential performance in 
the validation data set proved that the missing information 
was not critical for this study.

Second, our study covered only 9 disease categories, and 
thus the findings may not be applicable to some rare or less 
clinically relevant abnormalities. However, as ultrasound-
guided interventions for more diseases are still in the 
research stage, we believe that our model can be applied 
to a substantial proportion of clinically relevant diseases 
in actual clinical practice. Third, the ultrasound views 
are freely designed by the operator during the operation 
according to actual needs (including nonstandard angles 
and nonstandard cuts). Therefore, although our data sets 
contained some nonstandard views, the model may not 
be applicable to images obtained from some rare probing 
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Figure 5 Performance of the model in the test data set. (A) Apical 4-chamber view of an atrial septal defect occluded by simple ultrasound 
guidance. (B and C) Parasternal long-axis views of ventricular septal defects occluded by simple ultrasound guidance. (D) Apical 4-chamber 
view of an examination for an atrial septal defect. (E) Midesophageal aortic short-axis view of a transesophageal ultrasound assessment for 
aortic stenosis. (F and G) Apical 4-chamber views indicating the performances of the model in the EchoNet-Dynamic and CAMUS data 
sets, respectively. AO, aorta; AV, aortic valve; IAS, interatrial septum; IVS, interventricular septum; MV, mitral valve; PA, pulmonary artery; 
SI, sealing installation; TV, tricuspid valve.
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angles. However, the excellent performance of the model in 
the training and multiple validation data sets demonstrated 
that it was applicable to the most commonly used views. 
Fourth, our model will benefit from application in larger 
training data sets covering a wider range of populations 
and diseases. Because ultrasound-guided intervention 
for structural heart disease is a very new technology, we 
could not collect enough data to construct an independent 
external validation dataset. However, this model performs 
equally well on public datasets, which demonstrates 
the excellent performance of this model. Fifth, as with 
various AI-assisted medical research and applications, AI 
can assist people but not replace them, which is ethically 
impermissible. Ultimately, the quality of medical care still 
needs to be controlled by human experts. Sixth, blinding 
was not used in the external validation process; the 
interpretation of a human expert panel was used as the gold 
standard. Therefore, this study would benefit from further 
prospective, blinded, multicenter studies in the future.

Conclusions

We developed a deep learning-based model that can 
identify, localize, and track the key structures and devices 
in ultrasound-guided cardiac interventions in pathological 
states. This model outperformed most human experts and 
was comparable to the optimal performance of all human 
experts in cardiac structure identification and localization. 
This model was applicable in external data sets and will thus 
help to promote the generalization of ultrasound-guided 
techniques and improve the quality and efficiency of the 
clinical workflow of ultrasound diagnosis.
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Supplementary

Figure S1 Structural diagram of the heart structure recognition model.


