
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(4):1770-1784 | https://dx.doi.org/10.21037/jtd-23-312

Introduction

Sepsis is a disease caused by a dysregulated host response 
to infection that leads to severe organ dysfunction (1). Due 
to the high morbidity and mortality of sepsis, it is of great 
value to improve the prevention, recognition, and treatment 

of sepsis (2). In 2017, there were an estimated 48.9 million 
sepsis cases and 11 million sepsis-related deaths worldwide 
according to a study by the Institute for Health Metrics 
and Evaluation (IHME) on the global burden of sepsis (3). 
The pathogenic mechanism of the development of sepsis 
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is immune dysfunction, including early immune system 
overactivation and late immune suppression (4). In the early 
stage of sepsis, immune cells such as macrophages secrete a 
large number of pro-inflammatory factors and chemokines, 
which aggravate the inflammatory reaction (5). In the late 
stage of sepsis, immune cell inactivation and endotoxin 
tolerance mediated by changes in immune cell phenotype, 
decreased antigen presentation and increased release of 
anti-inflammatory factors cause immunosuppression, 
which makes the host susceptible to secondary infection 
and increases mortality (6). Therefore, recognition and 
appropriate management of sepsis in its early stages are 
critical for improving outcomes (7). Sepsis sometimes 
exhibits a high inflammatory response pattern, followed 
by an immunosuppressive period during which multiple 
organ dysfunction may occur. Therefore, biomarkers that 
can reflect the immune status of sepsis patients may be a 
new way to predict, identify, or provide new methods for 
treating sepsis (8).

Autophagy is a homeostatic process by which damaged 
or denatured proteins, damaged organelles, or pathogens 
are engulfed by autophagosomes in cells and then fused 
with lysosomes and degraded (9). Autophagy is a key host 
defense mechanism against pathogens, plays a vital part 
in the induction and regulation of innate immune cell 
inflammatory responses, and influences the development of 
sepsis (10). Autophagy may play a protective role in sepsis 
through the direct clearance of pathogens, the neutralization 
of microbial toxins, the modulation of cytokine release, and 
the promotion of antigen presentation (11,12). In addition, 

activation of autophagy in sepsis patients can induce the 
formation of neutrophil extracellular traps (NETs) (13), 
thereby alleviating damage to host organs. Apoptosis of 
CD4+ T cells is an important cause for the suppression of 
immune function in the pathogenesis of sepsis. Increased 
expression of the autophagy-negative regulator Mitofusin 
2 (Mfn2) suppresses immune function during sepsis by 
inhibiting autophagy through increasing the apoptosis of 
CD4+ T cells (14). Thus, autophagy plays an important 
role in immune regulation in patients with sepsis. However, 
compared with apoptosis, the autophagy-related genes 
(ARGs) of sepsis and their regulatory relationships with the 
immune regulation remain largely unknown and require 
further exploration. Autophagy does not always play a 
protective role in the development of sepsis. In acute lung 
injury caused by sepsis, moderate autophagy induced by 
oxidative stress reduces epithelial cell death, and excessive 
autophagy leads to increased programmed cell death (15,16). 
Previous studies have shown that autophagy-related genes 
have a significant impact on the immune cell infiltration 
of diseases, and can be used as potential biomarkers for 
diagnosis (17,18). Therefore, it is of great significance to 
study the potential ARGs related to the immune regulation 
of sepsis.

To gain insight into the regulatory function of autophagy 
in the immune system of patients with sepsis, this study 
used weighted gene co-expression network analysis 
machine learning to identify molecular diagnostic markers 
related to autophagy and determine the relationship 
between diagnostic markers and differential immune cells 
with diagnostic value in sepsis. In addition, a competing 
endogenous (ceRNA) network was used to clarify the 
underlying molecular regulatory mechanisms in sepsis. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-23-312/rc).

Methods

ARGs and sepsis patient data sets

We downloaded the messenger RNA (mRNA) expression 
profile data sets of GSE28750 and GSE95233 from the 
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). GSE95233 
data were derived from the GPL570 platform (Affymetrix 
Human Genome U133 Plus 2.0 Array). The GSE28650 
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data set included 10 sepsis and 20 control whole blood 
samples. The GSE95233 data set included 102 sepsis and 22 
control whole blood samples. Sepsis patients met the 1992 
Consensus Statement criteria and had clinical evidence 
of systemic infection based on microbiology diagnoses. 
Moreover, 328 ARGs were obtained from the Human 
Autophagy Database (HADb; http://www.autophagy.lu) and 
the Molecular Signatures Database v. 7.1 (MSigDB; https://
www.gsea-msigdb.org/gsea/msigdb/index.jsp). 

Differentially expressed analysis of the ARGs

We downloaded the expression matrix GSE28750 and 
GSE95233 data sets from the GEO database. After 
annotating the expression matrix, differentially expressed 
ARGs were screened out with the “limma” package in 
R software (The Foundation for Statistical Computing). 
Absolute log2 (fold change) >0.5 was set as the cutoff 
standard, and a P value <0.05 was considered statistically 
significant. A heatmap and volcano plot were used to 
present the results with the “heatmap” and “ggplot2” 
packages in R.

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses of ARGs and hub 
ARGs were conducted using the “clusterProfiler” package 
in R to predict their underlying molecular functions. A P 
value <0.05 was considered statistically significant.

Weighted Gene Coexpression Network Analysis (WGCNA)

A coexpression network for ARGs was constructed with 
the “WGCNA” package in R. Hierarchical clustering 
analysis was used to detect the outliers. To identify the 
critical modules related to sepsis, the soft-thresholding 
power was set to β=18 (scale-free R2=0.82). The modules 
were divided by the dynamic cutting tree algorithm, and 
the minModuleSize parameter in “WCGNA” was set to 10; 
correlations between clinical traits and sample expression 
were determined using the “cor” function, while the 
“corPvalueStudent” function was used to calculate the P 
value. Modules that had the highest correlation with traits 
and a P value <0.05 were selected. The biological function 
of the selected module was examined with GO and KEGG 
pathway analysis.

Protein-protein interaction (PPI) network construction

The Search Tool for the Retrieval of Interacting Genes 
online database (STRING; https://string-db.org) was used 
to construct a PPI network. A medium confidence score of 
≥0.4 was considered statistically significant. Cytoscape was 
used to visualize the molecular interaction networks of the 
STRING analysis.

Identification of hub genes

The scores of 5 ranking methods of the cytoHubba plugin 
of Cytoscape, including degree, maximum neighborhood 
component, radiality centrality, stress centrality, and 
closeness centrality, were computed to screen out the top 
10 genes of each method. Then, by overlapping the top 10 
genes of each method, the hub genes were identified. Next, 
the biological function of hub genes was analyzed using GO 
and KEGG pathway analysis.

Diagnostic value of the diagnostic biomarkers

The Wilcoxon test was conducted to verify the expression levels 
of hub ARGs in the 2 data sets, GSE28750 and GSE95322, 
with P value <0.05 being considered statistically significant. To 
test the predictive value of the identified biomarkers, a receiver 
operating characteristic (ROC) curve was generated using the 
mRNA expression data from GSE28750 and GSE95322 with 
R language packages “pROC”. The criterion for a gene to be 
considered a diagnostic biomarker was an area under the ROC 
curve (AUC) value ≥0.7.

Evaluation of immune cell subtype distribution

Immune cell subtype distribution in the blood between a sepsis 
and control group was evaluated by applying the CIBERSORT 
algorithm to LM22, a reference set with 22 immune cell 
subtypes. Differential immune cells were then identified with 
the Wilcoxon test. Least absolute shrinkage and selection 
operator (LASSO) regression was further performed, and the 
differential immune cells were identified via the overlapping 
results of the 2 methods. A P value <0.05 was considered to 
indicate statistical significance. The results were visualized 
using the R packages “vioplot”, “ggplot2”, and “glment”.

Correlation analysis between biomarkers and immune cells

Spearman rank correlation analysis in R software was used 
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to determine the correlations of the identified biomarkers 
with the distribution of immune cells. Correlations with P 
values <0.05 & |cor| >0.5 were screened out and visualized 
using the R package “ggplot2”.

Prediction of related long noncoding RNAs (lncRNAs)

The ARGs, considered as biomarkers, were input into the 
miRWalk (http://mirwalk.umm.uni-heidelberg.de/) and 
miRDB database to predict their targeted microRNAs 
(miRNAs). The target gene binding region was set as the 
3' untranslated region (UTR), and a P value <0.05 was 
considered statistically significant. Following this, miRNet 
(https://www.mirnet.ca/miRNet/home.xhtml) and starBase 
were used to predict the upstream lncRNAs by uploading 
the selected miRNAs. The results obtained from the 
intersection were further visualized with Cytoscape.

Statistical analysis

Statistical analyses were performed using R software (version 
3.6.2). Gene expression levels of our clinical samples were 

compared using the Student’s t-test. A P value <0.05 was 
considered statistically significant.

Results

Identification of differentially expressed ARGs (DEARGs) 
in sepsis

We identified 328 ARGs from the MSigDB database and 
the HADb database, and 317 of these were present in the 
GSE28750 data set. Next, we analyzed the expression of 
317 ARGs of the samples in the GSE28750 data set and 
identified 80 DEARGs, including 47 upregulated ARGs 
and 33 downregulated ARGs (Table S1). Finally, the 80 
DEARGs between the sepsis and control groups were 
visualized in a heatmap and volcano plot (Figure 1A,1B).

Function enrichment for the DEARGs

We performed GO and KEGG pathway analysis to identify 
the potential biological functions of the 80 DEARGs, 
and a total of 564 biological processes (BPs), 60 cellular 
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Figure 1 Differentially expressed autophagy-related genes in sepsis and healthy samples. (A) Volcano plot of differentially expressed 
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components (CC), 41 molecular functions (MFs), and 55 
KEGG signaling pathways were obtained. We used the 
R language package “ggplot2” to visualize the results, 
and subsequently identified the top 10 enriched GO 
terms and the top 30 enriched KEGG signaling pathways  
(Figure 2A,2B).  The results showed that the most 
significantly enriched GO terms involved macroautophagy, 
autophagy regulation, and autophagosome organization. 
Meanwhile, the KEGG pathway enrichment analysis 
indicated that the DEARGs were mostly involved in 
autophagy, shigellosis, mitophagy, apoptosis, and NOD-like 
receptor signaling pathway.

Coexpression module construction

The expression matrix of the 80 DEARGs was used as 
input data and was assessed with the “WGCNA” package 
to construct a coexpression network. Clustering analyses 
were performed and detected no outlier (Figure 3A). 
The DEARGs were incorporated into the modules, and 
4 modules were constructed (Figure 3B). The genes that 
did not belong to any module were collected in the gray 
module and were not used in any subsequent analyses. The 

other 3 modules are shown in blue, turquoise, and brown, 
respectively (Figure 3C). Among the 3 modules, the brown 
module containing 17 DEARGs had significant positive 
relevance for sepsis (correlation =0.82 and P<2e–8).

Identification of hub genes

PPI networks were constructed to analyze the 17 DEARG 
interactions in the brown module. The results revealed that 
the 17 DEARGs interacted with each other (Figure 4A).  
Then, the scores of 5 ranking methods were computed 
separately using the cytoHubba plugin of Cytoscape to 
select the hub genes. The top 10 genes of each method 
were extracted and identified as hub genes. By overlapping 
the top 10 genes of each method, 7 hub DEARGs were 
obtained: γ-aminobutyric acid (GABA) receptor-associated 
protein-like 2 (GABARAPL2), WD repeat domain, 
phosphoinositide-interacting 1 (WIPI1), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), (WD repeat and 
FYVE domain containing 3 (WDFY3), DNA damage–
regulated autophagy modulator 1 (DRAM1), microtubule-
associated protein 1 light chain 3 β (MAP1LC3B), and Unc-
51-like kinase 3 (ULK3) (Figure 4B).
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Identification and analysis of biomarkers

The R package “corrr” was used to determine the correlation 
of the 7 DEARGs. The results revealed that GABARAPL2, 
GAPDH, WDFY3, MAP1LC3B, DRAM1, and WIPI1 had 
positive correlations and negative correlations with ULK3 
(Figure 4C). GO analysis was the performed, and 38 BPs, 13 
CCs, and 25 MFs were obtained. The top 10 GO results are 
displayed in Figure 4D and showed that the hub DEARGs 
mostly involved in macroautophagy, autophagosome 
organization, and autophagy of mitochondrion.

Validation of biomarkers

The Wilcoxon test was conducted to verify the expression 
levels of the 7 hub DEARGs of the samples in the 
GSE28750 and GSE95322 data sets. The results indicated 
that the samples’ mRNA expression of the 7 hub DEARGs 
between the sepsis and the control groups in the 2 data sets 
had significant differences (Figure 5A,5B). The diagnostic 
ability of the 7 hub DEARGs was then validated with a ROC 
curve using the mRNA expression data from the GSE28750 
data set. This yielded AUCs of 0.885 (95% CI: 0.722–1) 

in GABARAPL2, 0.88 (95% CI: 0.716–1) in ULK3, 0.93 
(95% CI: 0.791–1) in GAPDH, 0.985 (95% CI: 0.952–1)  
in WDFY3, 0.825 (95% CI: 0.606–1) in MAP1LC3B, 0.95 
(95% CI: 0.849–1) in DRAM1, and 0.885 (95% CI: 0.726–1) 
in WIPI1. The diagnostic ability of the 7 hub DEARGs was 
validated in the GSE95322 data set. This yielded AUCs of 
0.979 (95% CI: 0.958–0.999) in GABARAPL2, 0.864 (95% 
CI: 0.772–0.955) in ULK3, 0.936 (95% CI: 0.894–0.978) in 
GAPDH, 0.992 (95% CI: 0.922–0.988) in WDFY3, 0.956 
(95% CI: 0.918–0.995) in MAP1LC3B, 0.992 (95% CI: 
0.98–1) in DRAM1, and 0.991 (95% CI: 0.977–1) in WIPI1 
(Figure 5C,5D). The AUC values of these ARGs were all 
above 0.85, indicating that the 7 hub ARGs had diagnostic 
values with excellent specificity and sensitivity and were 
determined to be diagnostic markers.

Immune infiltration analysis

The distribution of the 22 types of infiltrated immune cells 
in sepsis and control groups samples of the GSE28750 
data set and GSE95233 data set were examined with 
CIBERSORT algorithm and is presented in Figure 6A-6D. 
The results of the Wilcoxon test conducted in GSE28750 
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data set are shown in a violin diagram in Figure 7A. The 
proportions of resting natural killer (NK) cells, CD8 T 
cells, naïve CD4 T cells, and activated CD4 memory T 
cells in the sepsis group p were significantly decreased 
compared with those in the control group. However, the 
proportions of plasma cells, monocytes, M0 macrophages, 
M2 macrophages, activated dendritic cells, eosinophils, 
and neutrophils in the sepsis group were significantly 
increased compared with those in the control group. The 
Wilcoxon test was also used to verify the composition 
of infiltrated immune cells of samples in the GSE95233 
data set. The Wilcoxon test was also used to verify the 
composition of infiltrated immune cells of samples in 
the GSE95233 data set. As shown in Figure 7B, the 
proportions of naïve B cells, CD8 T cells, naïve CD4 
T cells, resting NK cells, follicular helper T cells, M1 
macrophages, and M2 macrophages in the sepsis group 
were significantly lower than those in the control group. 
The proportions of B cells memory, gamma-delta T cells, 
plasma cells, monocytes, M0 macrophages, activated 
dendritic cells, eosinophils, and neutrophils in the sepsis 
group were significantly increased compared with those in 
the control group.

We subsequently performed LASSO regression in 

GSE28750 data set, and 12 significantly different types of 
immune cells were obtained (Figure 7C). The 2 methods 
extracted 7 intersecting immune cells, which were plasma 
cells, CD8 T cells, naïve CD4 T cells, activated CD4 
memory T cells, M0 macrophages, resting NK cells, and 
eosinophils (Figure 7D). ROC curve analysis further verified 
the diagnostic value of differential immune cells. This 
yielded AUCs of 0.753 (95% CI: 0.54–0.965) in plasma cells, 
0.865 (95% CI: 0.683–1) in T cells CD8, 0.785 (95% CI: 
0.616–0.954) in T cells CD4 naive, 0.87 (95% CI: 0.74–1) in 
T cells CD4 memory activated, 0.935 (95% CI: 0.845–1) in 
NK cells resting, 0.925 (95% CI: 0.834–1) in macrophages 
M0, and 0.835 (95% CI: 0.681–0.989) in eosinophils. The 
result showed that the 7 differential immune cells had 
diagnostic values with AUCs >0.75 (Figure 7E).

Relationship between diagnostic biomarkers and immune 
cell infiltration

As shown in Table S2, GABARAPL2, GAPDH, WDFY3, 
MAP1LC3B, DRAM1, and WIPI1 were positively correlated 
with plasma cells, M0 macrophages, and eosinophils and 
negatively correlated with CD8 T cells, naïve CD4 T 
cells, activated CD4 memory T cells, and resting NK cells. 
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However, ULK3 was positively correlated with CD8 T 
cells, naïve CD4 T cells, activated CD4 memory T cells, 
and resting NK cells and negatively correlated with plasma 
cells, M0 macrophages, and eosinophils. Correlations of 
biomarkers and immune cells with R>0.50 and P<0.05 were 
considered to be significant and were screened, with the 
results being presented in Figure 8.

Prediction of related lncRNAs

As shown in Figure 9, 72 upstream miRNAs targeting 5 
hub ARGs were predicted with miRWalk and miRDB. In 

addition, 122 lncRNAs potentially related to the selected 
miRNAs were predicted.

Discussion

Immune dysfunctions, such as early immune system 
hyperactivation and late immunosuppression, are central 
pathogenic mechanisms in the development of sepsis (4). 
In addition, studies have shown that autophagy negatively 
regulates inflammatory responses and reduces inflammatory 
damage to various tissues and organs in sepsis (19-21). 

In this study, we used the bioinformatics analysis to 
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screen out ARGs and identified hub genes using WGCNA 
analysis. In all, 80 DEARGs were identified, including 47 
upregulated and 33 downregulated genes, and 7 hub ARGs 
were identified as diagnostic biomarkers. Macroautophagy, 
autophagosome organization, and autophagy were the 
main biological functions of the hub ARGs, which were 
confirmed by functional enrichment analysis. MAP1LC3B 
is the most studied Atg8/LC3 family protein associated 
with autophagosome development and maturation and is 
used to monitor autophagic activity (22). A previous study 
revealed that MAP1LC3B can regulate NALP3-dependent 
inflammation by preserving mitochondrial integrity (11). 
Furthermore, in sepsis mice, overexpression of MAP1LC3 
increased autophagosome clearance to alleviate lung injury 
and improve survival (23). GABARAPL2 also belongs to 
the Atg8/LC3 family, which is essential for autophagy (24).  
Studies indicate that GABARAPL2 plays a critical function 
in suppressing guanylate binding protein-dependent 
caspase-11–induced inflammation and septic shock 
(25,26). Meanwhile, WDFY3 takes part in the clearance 
of aggregated proteins through autophagy by interacting 

with the ubiquitin-binding autophagy receptors p62/
SQSTM1 and NBR1 (27,28). WIPI1 contributes to 
autophagosome assembly and binds phosphoinositides, 
which are essential components of any membrane (29). 
One study reported that autophagosome formation can be 
monitored by detecting WIPI1 mRNA in a variety of cells 
in a wide range of cell types (30). DRAM1 is a TP53 target 
gene, which is involved in encoding lysosomal membrane 
protein. DRAM1 plays a key role in autophagy activation 
and apoptosis (31). Although there is no report on the role 
of DRAM1 in sepsis, it has been previously reported that 
DRAM1 activates selective autophagy in zebrafish and in 
human macrophage models of mycobacterial infection and 
plays a role in recognizing pathogens through an innate 
immune sensing pathway (32). Other research suggests 
that DRAM1 regulates autophagy via lysosomal membrane 
permeabilization of HIV-infected CD4 T cells, indicating 
the self-defense function of DRAM1 in host–pathogen 
interactions (33). GAPDH is a crucial cytosolic enzyme 
in glycolysis and the most frequently used housekeeping 
gene due to its stable and constitutively high expression 
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levels in most cells (34). However, evidence indicates that 
increased oxidative stress might lead to increased GAPDH 
expression in sepsis whole blood samples (35). Meanwhile, 
one study reported that phosphorylation of GAPDH by 
activated AMPK caused GAPDH to redistribute into the 
nucleus and increased Sirt1 activation and autophagy upon 
glucose starvation (36). Another study found that GAPDH 
preinjection had an anti-inflammatory effect and prolonged 
survival in a liposaccharide-induced ALI mouse model (37). 
In a sepsis mouse model, GAPDH was found to regulate 
the immunomodulation on macrophage functions and 
polarization (38). However, no literature on ULK3 and 
its functions in sepsis yet exists. ULK3 is considered to be 
part of noncanonical upstream regulatory complex FP200/
ATG13/ULK, which is required for LC3C autophagic 
programming in clear cell renal cell carcinoma (39). Studies 
have indicated that increased ULK3 can induce autophagy 

in human diploid fibroblasts and squamous cell carcinoma 
(40,41). However, our study found that the expression 
of ULK3 decreased while the other autophagy markers 
increased and that ULK3 was negatively correlated with 
the other hub ARGs. Clarifying the role of ULK3 in sepsis 
requires further study.

ceRNA is an element that can compete for binding 
mRNA. miRNAs and lncRNAs are 2 kinds of ceRNAs. 
miRNAs are a class of RNA molecules that can bind to 
target mRNAs, while some lncRNAs can competitively 
bind to miRNAs, reducing the binding effect of miRNAs. 
Binding of miRNAs to target mRNAs can lead to mRNA 
degradation or translation to regulate gene expression (42). 
An increasing amount of research suggests that ceRNAs 
occupy an essential role in the development and the 
autophagy process of sepsis. Wang et al. found that miR-
20a can activate autophagy and promote the progression 

Figure 9 The mRNA-miRNA-lncRNA ceRNA regulatory network.
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of kidney injury in septic rats (43). Gui et al. found that 
increased circulating lnc-ANRIL-miR-125a axis level could 
indicate a worse prognosis of sepsis (44). We constructed 
an mRNA-miRNA-lncRNA ceRNA network to predict 
the interactions of a potential ceRNA network targeting 
hub ARGs that may influence the autophagy of sepsis. The 
network may provide novel biomarkers and promising 
therapeutic targets, but further research is needed to 
confirm its value.

Multiple immune cells play an essential role in sepsis: 
neutrophils migrate to the site of infection to exert 
phagocytosis and bactericidal action (45); dendritic cells 
are the most functionally proficient antigen-presenting 
cells (APCs) which can efficiently take up, process, and 
present antigens (46); T cells participate in adaptive immune 
response (47,48); and NK cells perform nonspecific direct 
killing of the pathogen (49). This study used 2 machine 
learning methods to assess the type of immune cell 
infiltration in the sepsis and control samples, and multiple 
differential immune cell subtypes were found. The result 
showed that the proportions of CD8 T cells, naïve CD4 T 
cells, activated CD4 memory T cells, and resting NK cells 
in the sepsis group were significantly lower than those in 
the control group, while the proportions of plasma cells, 
M0 macrophages and eosinophils in the sepsis group were 
significantly higher than those in the control group. We also 
conducted a Wilcoxon test to explore the distribution of 
immune cells in the GSE95233 data set. The results showed 
that the proportion of resting NK cells in the sepsis group 
was significantly decreased compared with that in the control 
group. The proportions of M0 Macrophages and eosinophils 
in the sepsis group were significantly increased compared 
with those in the control group, consistent with previous 
analysis. However, the other differential immune cells were 
different from the previous analysis. This discrepancy may 
be due to the different immune statuses in the development 
of sepsis in the different data sets. In the late stage of sepsis, 
a mass death of immune cells, especially macrophages, may 
cause immunosuppression and deterioration of the infectious 
states (50). In this study, correlation analysis indicated 
that all hub ARGs except ULK3 were positively correlated 
to the differential immune cells, including plasma cells, 
M0 macrophages, and eosinophils, indicating that these 
ARGs may exert protective effects on some immune cells 
through autophagy activation. Eosinophilia may indicate 
an immune imbalance due to type 2 inflammation that 
activates eosinophils. Moreover, eosinophil consumption 
may be responsible for eosinophilia, which can contribute to 

dysregulated host responses in infection and acute respiratory 
distress syndrome. Persistent peripheral eosinopenia was 
found to be independently associated with poor outcomes 
in sepsis (51). Therefore, the high expression of ARGs may 
cause some immune cells to activate in the early stage of 
sepsis, leading to the immune-activated microenvironment. 
Regulating the expression of ARGs may become a treatment 
for organ function damage caused by cytokine storm 
in early stage of sepsis, which may help guide immune 
modulators to achieve immune homeostasis. A previous 
study indicated that autophagy could prevent monocytes 
from undergoing apoptosis and promote their differentiation 
into macrophages (52). Induction of autophagy can alleviate 
the damage of excessive inflammatory injury by inducing 
the transition of macrophages from the M1 phenotype to 
the M2 phenotype (53). Moreover, some immune cells, 
including CD8 T cells, naïve CD4 T cells, activated CD4 
memory T cells, and resting NK cells, have been reported 
to be negatively correlated with hub ARGs. In contrast to 
our findings, one study found that autophagy deficiency 
in T cells was associated with increased apoptosis of CD4+ 
and CD8+ (54). The effect of autophagy on the immune 
regulation of sepsis still needs further study. The above 
studies and our current findings suggest that autophagy plays 
an essential role in sepsis immune regulation and should be 
the focus of future research.

Our study still has some limitations. First, to ensure 
the homogeneity of the samples in the data set, we used a 
single data set for analysis, while the GSE28750 data set 
has a small number of cases. Second, we only used database 
data without clinical sample experimental validation, which 
is a limitation. Third, for the analysis of the immune 
microenvironment in sepsis, we do not have data to support 
the analysis of the patients with different immune statuses. 
Therefore, more studies should be performed to validate 
our conclusions.

Conclusions

We identified 80 potential DEARGs of sepsis through the 
bioinformatics analysis. GABARAPL2, GAPDH, WDFY3, 
MAP1LC3B, DRAM1, and WIPI1 were identified as 
biomarkers and may influence the development of sepsis 
by regulating autophagy. We also constructed a ceRNA 
network targeting biomarkers and predicted 23 miRNAs 
and 122 lncRNAs regulating 5 biomarkers. Plasma cells, 
CD8 T cells, CD4 naïve T cells, CD4 memory activated T 
cells, resting NK cells, M0 Macrophages, and eosinophils 

https://pubmed.ncbi.nlm.nih.gov/?term=Gui+F&cauthor_id=31115097
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may have diagnostic value for sepsis and correlate with 
autophagy. Regulating the expression of ARGs may help 
guide immune modulators to achieve immune homeostasis.
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Supplementary

Table S1 The 80 differentially expressed autophagy-related genes

Gene logFC Change P.Value adj.P.Val

CHMP7 −0.98977 Down 3.88E-11 1.23E-08

PRKCQ −1.59391 Down 3.12E-10 3.78E-08

ATIC −1.53864 Down 3.57E-10 3.78E-08

EEF2 −1.26555 Down 6.97E-10 5.52E-08

PARP1 −0.9945 Down 1.07E-08 4.29E-07

EEF2K −0.82286 Down 3.60E-08 1.04E-06

FUNDC1 −1.29376 Down 4.04E-08 1.07E-06

TP53 −0.92158 Down 8.23E-08 1.86E-06

GNB2L1 −0.76068 Down 1.01E-07 2.14E-06

FOXO1 −0.59277 Down 3.10E-07 6.14E-06

MYC −1.47835 Down 4.45E-07 8.30E-06

EEF1A1 −0.5537 Down 4.79E-07 8.43E-06

ATG2A −0.87151 Down 1.77E-06 2.54E-05

PEX3 −0.80383 Down 2.28E-06 3.10E-05

HSPA8 −1.0868 Down 2.44E-06 3.10E-05

ULK3 −0.53033 Down 3.30E-06 3.97E-05

CSNK2B −0.58472 Down 3.38E-06 3.97E-05

ITGA6 −0.9151 Down 3.54E-06 4.01E-05

BAG3 −1.10656 Down 8.00E-06 7.93E-05

TOMM20 −0.8533 Down 8.73E-06 8.39E-05

HDAC1 −0.56265 Down 1.68E-05 0.000133

ATM −0.57821 Down 2.70E-05 0.000199

ATG16L1 −0.50975 Down 2.73E-05 0.000199

CAPN2 −0.54642 Down 5.23E-05 0.000307

TOMM70A −0.76473 Down 5.44E-05 0.000314

UVRAG −0.63244 Down 6.50E-05 0.000362

IKBKB −0.50453 Down 7.63E-05 0.000409

ATG16L2 −0.82171 Down 8.13E-05 0.000416

PEA15 −0.76135 Down 0.000131 0.000619

CXCR4 −0.84209 Down 0.000352 0.001468

NAF1 −0.65114 Down 0.000375 0.001542

HSP90AB1 −1.1619 Down 0.000432 0.001734

MTERF3 −0.52777 Down 0.017962 0.039541

WDFY3 1.302258 Up 1.04E-09 6.59E-08

CTSD 1.073091 Up 2.73E-09 1.44E-07

NLRC4 1.529779 Up 1.08E-08 4.29E-07

LAMTOR5 1.14758 Up 1.51E-08 5.31E-07

DRAM1 1.519365 Up 2.65E-08 8.41E-07

WIPI1 1.561021 Up 7.18E-08 1.75E-06

GAPDH 0.880502 Up 6.76E-07 1.13E-05

SH3GLB1 1.154543 Up 8.57E-07 1.36E-05

GABARAPL2 0.900086 Up 1.09E-06 1.64E-05

LAMTOR1 0.590287 Up 2.39E-06 3.10E-05

BIRC5 0.591209 Up 4.21E-06 4.60E-05

EPAS1 0.78368 Up 4.37E-06 4.62E-05

RB1 0.715925 Up 6.09E-06 6.22E-05

DLC1 0.517307 Up 1.00E-05 9.33E-05

GNAI3 1.036794 Up 1.10E-05 9.94E-05

CAMKK2 0.546483 Up 1.18E-05 0.000104

BNIP3L 1.043181 Up 1.34E-05 0.000115

UBAP1 0.568982 Up 1.49E-05 0.000124

VIM 1.057397 Up 1.80E-05 0.00014

ATG3 0.650557 Up 2.96E-05 0.000208

RAB24 0.69984 Up 3.15E-05 0.000216

RRAGD 0.933815 Up 4.15E-05 0.000271

VAMP7 0.842278 Up 4.27E-05 0.000271

KIF5B 0.816962 Up 4.55E-05 0.000278

PTEN 0.680315 Up 4.94E-05 0.000295

MAP1LC3B 0.78259 Up 7.35E-05 0.000402

PLIN3 0.751991 Up 8.61E-05 0.000433

RAB33B 1.286234 Up 0.000243 0.001085

PRKAA1 0.620418 Up 0.000256 0.001126

ERO1L 0.845268 Up 0.000479 0.001897

RAB11A 0.642973 Up 0.000546 0.002061

HIF1A 0.913129 Up 0.001202 0.004233

NAMPT 0.86985 Up 0.001654 0.005639

LAMTOR3 0.718388 Up 0.00208 0.006728

CASP3 0.733249 Up 0.002235 0.007016

TNFSF10 0.593743 Up 0.002493 0.007672

RAB1A 0.516626 Up 0.003056 0.008888

CASP4 0.509236 Up 0.003318 0.009392

CHMP4C 0.777642 Up 0.003518 0.009853

RB1CC1 0.626841 Up 0.003543 0.009853

CHMP2B 0.583019 Up 0.004029 0.010764

SESN2 0.575343 Up 0.004041 0.010764

TBK1 0.640812 Up 0.004335 0.011357

FKBP1B 0.553929 Up 0.006004 0.015473

PRKAR1A 0.547892 Up 0.006077 0.015536

VPS37A 0.524276 Up 0.014702 0.033054

PRKCD 0.509916 Up 0.037552 0.075343
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Table S2 The relationship between the hub genes and immune infiltration

Gene immune_cells Cor P value

GABARAPL2 Plasma cells 0.412949 0.023329

GABARAPL2 T cells CD8 −0.55684 0.001657

GABARAPL2 T cells CD4 naive −0.42736 0.019304

GABARAPL2 T cells CD4 memory activated −0.21558 0.252583

GABARAPL2 NK cells resting −0.54616 0.002101

GABARAPL2 Macrophages M0 0.324394 0.080303

GABARAPL2 Eosinophils 0.660512 0.000105

ULK3 Plasma cells −0.24519 0.191577

ULK3 T cells CD8 0.693437 3.48E-05

ULK3 T cells CD4 naive 0.315684 0.089579

ULK3 T cells CD4 memory activated 0.416323 0.022114

ULK3 NK cells resting 0.482981 0.007464

ULK3 Macrophages M0 −0.36118 0.049883

ULK3 Eosinophils −0.58131 0.000935

GAPDH Plasma cells 0.284125 0.128097

GAPDH T cells CD8 −0.25295 0.176895

GAPDH T cells CD4 naive −0.55239 0.001831

GAPDH T cells CD4 memory activated −0.51031 0.003962

GAPDH NK cells resting −0.43982 0.015791

GAPDH Macrophages M0 0.482108 0.006979

GAPDH Eosinophils 0.370412 0.044674

WDFY3 Plasma cells 0.37023 0.044023

WDFY3 T cells CD8 −0.47186 0.00913

WDFY3 T cells CD4 naive −0.41268 0.024259

WDFY3 T cells CD4 memory activated −0.49115 0.00585

WDFY3 NK cells resting −0.5257 0.003247

WDFY3 Macrophages M0 0.551309 0.00159

WDFY3 Eosinophils 0.541713 0.002315

MAP1LC3B Plasma cells 0.381355 0.037587

MAP1LC3B T cells CD8 −0.48031 0.007838

MAP1LC3B T cells CD4 naive −0.38554 0.036184

MAP1LC3B T cells CD4 memory activated −0.25299 0.177384

MAP1LC3B NK cells resting −0.42247 0.020852

MAP1LC3B Macrophages M0 0.360259 0.050512

MAP1LC3B Eosinophils 0.531034 0.002906

DRAM1 Plasma cells 0.482812 0.006884

DRAM1 T cells CD8 −0.59867 0.000606

DRAM1 T cells CD4 naive −0.3535 0.055994

DRAM1 T cells CD4 memory activated −0.20691 0.272622

DRAM1 NK cells resting −0.74594 4.97E-06

DRAM1 Macrophages M0 0.533836 0.00238

DRAM1 Eosinophils 0.728142 9.67E-06

WIPI1 Plasma cells 0.29347 0.115491

WIPI1 T cells CD8 −0.48254 0.007525

WIPI1 T cells CD4 naive −0.44783 0.013829

WIPI1 T cells CD4 memory activated −0.38804 0.034101

WIPI1 NK cells resting −0.39577 0.031224

WIPI1 Macrophages M0 0.508087 0.00415

WIPI1 Eosinophils 0.539933 0.002405


