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Background: Several studies have reported the role of polycomb group (PcG) genes in human cancers; 
however, their role in lung adenocarcinoma (LUAD) is unknown. 
Methods: Firstly, consensus clustering analysis was used to identify PcG patterns among the 633 LUAD 
samples in the training dataset. The PcG patterns were then compared in terms of the overall survival (OS), 
signaling pathway activation, and immune cell infiltration. The PcG-related gene score (PcGScore) was 
developed using Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) 
algorithm to estimate the prognostic value and treatment sensitivity of LUAD. Finally, the prognostic ability 
of the model was validated using a validation dataset.
Results: Two PcG patterns were obtained by consensus clustering analysis, and the two patterns showed 
significant differences in prognosis, immune cell infiltration, and signaling pathways. Both the univariate and 
multivariate Cox regression analyses confirmed that the PcGScore was a reliable and independent predictor 
of LUAD (P<0.001). The high- and low-PCGScore groups showed significant differences in the prognosis, 
clinical outcomes, genetic variation, immune cell infiltration, and immunotherapeutic and chemotherapeutic 
effects. Lastly, the PcGScore demonstrated exceptional accuracy in predicting the OS of the LUAD patients 
in a validation dataset (P<0.001).
Conclusions: The study indicated that the PcGScore could serve as a novel biomarker to predict 
prognosis, clinical outcomes, and treatment sensitivity for LUAD patients.
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Introduction

Lung cancer (LC) kills an estimated 1.6 million people 
per year, making it the leading cause of cancer-related 
deaths worldwide (1). LC can be divided into small cell 
lung carcinoma (SCLC) and non-small cell lung carcinoma 
(NSCLC), with NSCLC causing approximately 85% 
of the LC cases (2,3). Lung adenocarcinoma (LUAD) is 
the most common NSCLC, followed by lung squamous 
cell carcinoma (LUSC) (4). Since early symptoms of LC 
are frequently being missed, majority of the LC patients 
are in the advanced stages at the time of diagnosis (5). In 
clinical practice, patients with early-stage LC do not receive 
treatment, which makes it difficult to find prognostic 
markers through early screening. Furthermore, LC patients 
have a poor prognosis, with the 5-year relative survival rate 
of approximately 18% (6). Recently, immune checkpoint 
blockade (ICB) treatment has gained popularity for LC. 
Currently, immune checkpoint inhibitors (ICIs), such as 
programmed cell death-1/programmed death-ligand 1 
(PD-1/PD-L1), are recommended for NSCLC treatment 
and have demonstrated significant benefits and improved 
the prognosis of advanced NCSLC patients (7). However, 
despite impressive advances, only a small percentage of 
cancer patients have benefited from immunotherapy, owing 
to immunotherapy resistance, limited response rates, and 
unpredictable clinical outcomes (8). Moreover, tumor 

heterogeneity impedes efficacy and immunotherapies 
are prohibitive expense and not being given as first-line 
treatments. Therefore, a novel biomarker is in urgent need 
to predict the prognosis and response of treatment for 
LUAD.

Polycomb group (PcG) proteins are transcriptional 
repressor that silences genes via histone post-translational 
modifications. The PcG proteins are involved in cell 
proliferation, differentiation, DNA damage and repair, and 
the progression of fatal diseases, such as cancer (9). The 
polycomb repressive complexes 1 and 2 (PRC1 and PRC2) (10)  
are the two major PRCs involved in tumorigenesis. Ring 
finger protein 1 (RING1) is a fundamental component of the 
PRC1, and its expression varies in different cancers, resulting 
in a wide range of outcomes (11). RING1 overexpression in 
liver cancer and NSCLC promotes tumor growth, while its 
downexpression in breast cancer causes adverse outcomes 
(12-14). In contrast, enhancer of zeste homolog 2 (EZH2) 
is an integral component of the PRC2, and its inhibition 
significantly slows tumor growth. For instance, EZH2 knock 
down in LC cell lines results in a significant reduction 
in tumor migration and invasive ability (15). Similarly, 
inhibition of EZH2 expression in prostate cancer significantly 
slows tumor growth and improves prognosis (16). In addition, 
EZH2 is involved in cancer immunity (17,18), metabolism 
(19,20), and resistance to treatments (21). Therefore, EZH2 
has been studied extensively and several types of EZH2 
inhibitors have been developed for cancer treatment (15,22).

In this study, PcG-related genes were integrated and 
two PcG-related patterns in LUAD were identified. 
The differentially expressed genes (DEGs) in the two 
groups was identified and the least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis was 
used to develop a new scoring system called the PcGScore. 
Thereafter, the relationship between the PcGScore and 
prognosis, tumor mutational burden (TMB), immune cell 
infiltration, and treatment sensitivity was explored in the 
training and validation datasets. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-22-
1324/rc).

Methods

Preparation of the LC datasets

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The Cancer Genome 
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Atlas (TCGA) database was used to collect transcriptome 
expression data of 598 samples (59 normal and 539 LUAD 
samples) and match clinical information of 522 samples. 
The transcripts per kilobase million (TPM) method was 
used to normalize the fragments per kilobase of transcript 
per million fragments sequenced (FPKM) values, which 
were then log2 transformed. The GSE13213, GSE30219, 
and GSE31210 datasets in the Gene Expression Omnibus 
(GEO) database were used to obtain the microarray 
expression profiles and clinical information of 117, 85, and 
226 LUAD samples, respectively (https://www.ncbi.nlm.
nih.gov/geo/). The “limma” and “sva” packages (23) were 
used for correction to reduce the possibility of batch effects 
due to non-biotechnical bias between different datasets.

Copy number variation (CNV) frequency of the  
PcG-related genes in LUAD samples

The UCSC Xena database (http://xena.ucsc.edu/) was used 
to obtain the CNV information for the LUAD samples. The 
variation frequencies of 28 PcG-related genes were then 
computed, and the results were presented as lollipop plots. 
The Rcircos package (24) was used to map the locations of 
these PcG-related genes on human chromosomes.

Consensus clustering analysis of the PcG-related genes in 
LUAD samples

Twenty-eight PcG-related genes were obtained for consensus 
clustering analysis, based on the previously published 
literature. The “ConsensusClusterPlus” package (25), with 
an hierarchical agglomerative consensus, was used to 
stratify the LUAD samples into two discrete subgroups. 
The stability evidence was used in this analysis to determine 
the cluster counts and membership, and this procedure 
was repeated 1,000 times to ensure clustering stability. The 
two PcG patterns were compared for overall survival (OS) 
using Kaplan-Meier (KM) curves. Lastly, the accuracy of 
this classification was verified using principal component 
analysis (PCA).

Gene set variation analysis (GSVA) of the two PcG patterns

Gene enrichment analysis was conducted using the 
“GSVA” R package (26) to explore the variations in the 
biological processes (BP) of the PcG patterns. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) gene set 
was downloaded from the Molecular Signatures Database 

(MSigDB) database (http://software.broadinstitute.org/
gsea/msigdb/) to perform GSVA.

Evaluation of the immune cell infiltration of the two PcG 
patterns

The “GSVA” R package was used to perform single-
sample gene-set enrichment analysis (ssGSEA), based on 
the expression levels of 23 immune-related genes, to assess 
and characterize immune cell infiltration in each sample of 
the PcG patterns. By estimating the enrichment fraction, 
ssGSEA can determine the relative abundance of each 
immune cell population. Lastly, the variations in immune 
cell infiltration levels between the two PcG patterns were 
investigated.

Identification and enrichment analysis of the DEGs in the 
two PcG patterns

Two PcG patterns were identified by using the consensus 
clustering algorithm, after which the “limma” R package 
was used to identify the DEGs in the two PcG patterns (27). 
DEGs with P value <0.01 and |log2FC| >1.5 were deemed 
significant and used in further analysis. Lastly, the DEGs were 
subjected to Gene Ontology (GO) and KEGG enrichment 
analysis using the “clusterProfiler” R package (28). 

Prognostic model based on the PcG-related genes

Univariate Cox regression was used to identify the PcG-
related genes in the training dataset that were correlated 
with OS in LUAD patients. LUAD prognostic features 
in the training dataset were examined by the “glmnet” R 
package (29) for the OS associated PcG-related genes with 
the LASSO analysis. The PcGScore was determined as 
follows: 

1
Risk score Coef

=
= ∗∑n

i ii
Exp  [1]

where i is the number of variables in the model, Coef 
denotes the regression coefficient, and Exp denotes the 
mRNA expression levels of the variables in the LUAD 
samples. The LUAD patients in the training and validation 
datasets were divided into high-risk and low-risk groups, 
based on the median risk score. Furthermore, KM curves 
were generated using the “survival” and “survminer” R 
packages, to examine the survival differences between 
the high- and low-risk groups to further evaluate the 

https://www.ncbi.nlm.nih.gov/geo/
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viability of the model. The “timeROC” and “survivor” 
R packages were used to plot time-dependent receiver 
operating characteristic (ROC) curves to evaluate the 
predictive performance of the risk scores on 1-, 3-, and 
5-year survival rates of the LUAD patients. Thereafter, 
the survival statuses of the two groups were plotted. 
The “pheatmap” package was used to create a visual 
representation of the mRNA expression patterns of each 
variable in the prognostic model. Lastly, the “Rtsne” 
and “ggplot2” packages were used to conduct PCA and 
t-distributed stochastic neighborhood embedding (t-SNE) 
analysis of the LUAD patients to further validate the risk 
score prediction model. 

Comprehensive assessment of the PcGScore and the clinical 
parameters of the LUAD patients

A boxplot was created using the “ggpubr” package to 
compare the differences between the PcGScore and other 
clinically relevant parameters of LUAD. Additionally, 
KM curves were plotted for various clinical parameters, 
including age, gender, sex, and the stages of tumor 
progression, to determine whether the PcGScore is 
applicable in different clinical situations.

Prediction of the PcGScore and development of a prognostic 
nomogram 

Univariate and multivariate Cox regression analyses of the 
clinical information (age, gender, and stage) were conducted 
for the training and testing datasets to determine whether 
the PcGScore is an independent prognostic predictor of 
LUAD. Subsequently, a nomogram was created using the 
“rms” package for both the training and testing datasets 
to predict the 1-, 3-, and 5-year survival rates of the 
LUAD patients. Calibration curves were used to assess the 
prediction ability of the nomogram.

Assessment of the TMB in the two risk groups

TMB was calculated using the somatic alteration data of 
the LUAD patients, which was downloaded from TCGA. 
The relationship between the PcGScore and TMB was 
investigated using Spearman correlation analysis, while 
KM analysis was used to compare TMB and prognostic 
variations between the high- and low-risk groups. The 
non-synonymous point mutations in the somatic cells were 
counted using the “maftools” R package (30).

PcGScore correlation with LUAD immune status

The Estimation of Stromal and Immune Cells in Malignant 
Tumors Using the Expression Data (ESTIMATE)  
algorithm (31) was used to calculate the immune and 
stromal fractions in the samples, predict the level of 
infiltrating immune and stromal cells, and determine the 
purity of each tumor sample. The abundance of 23 tumor-
infiltrating immune cell types was then calculated for 
each LUAD sample in the high- and low-risk groups in 
the training dataset using the ssGSEA algorithm, and the 
results were visualized using a boxplot. 

Correlation analysis between the PcGScore and treatment 
sensitivity

Wilcoxon and Spearman tests were used to compare the 
differences between the PcGScore and the six key ICB 
genes, and the results were visualized using boxplots. 
The clinical response to ICIs in LUAD patients was 
measured using the Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm (32). A systemic search was 
conducted for ICB gene expression profiles, to further 
determine the accuracy of the PcGScore as a prognostic 
factor for immunotherapy. A single immunotherapy 
cohort (IMvigor210: http://research-pub.gene.com/
IMvigor210CoreBiologies/), focusing on metastatic 
urothelial tumors, was included in the study (33,34). The 
“edgeR” R package was used to filter and normalize the raw 
data. Lastly, the relationship between PcGscore and four 
commonly used chemotherapeutic agents was assessed, and 
the “pRRophetic” R package (35) was used to calculate the 
half maximal inhibitory concentration (IC50) values of the 
chemotherapeutic drugs. The Wilcoxon test was used to 
compare the IC50 values between the high- and low-risk 
groups.

Statistical analysis

The Wilcoxon test was used to compare two groups, and 
the Kruskal-Wallis test was used to compare multiple 
groups. The “survival” software package was used for the 
KM analysis, and the log-rank test was used to determine 
statistically significant differences. The Spearman test was 
used for correlation analysis and correlation coefficient 
calculation. The R software (version 4.1.3) was used for all 
statistical analyses and P<0.05 was considered statistically 
significant.

http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
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Results

After excluding patients with no information on OS, the 
TCGA and GEO databases yielded a total of 935 LC 
patients for the follow-up study. Table 1 summarizes the 
main demographic and clinical characteristics of the LUAD 
sample in the aforementioned dataset.

Genetic variation of the PcG-related genes in LUAD

Based on the previously reported literature, the 28 PcG-
related genes were obtained in LUAD samples, which are 
summarized in the Table S1. The expression levels of the 
28 PcG-related genes were determined in 59 normal tissues 
and 539 LUAD samples. The results revealed that MBTD1, 
PCGF2, PCGF3, PCGF6, PHC2, SCML2, SFMBT1 , 
PCGF1, MTF2, EZH2 and SUZ12 were up-regulated, while 
EPC1, PCGF5, PHC1, RYBP, SCMH1, SCML4, PHF1 and 
EZH1 were significantly down-regulated in the LUAD 
samples, compared with their expression in the adjacent 
non-tumor tissues (Figure 1A). Analysis of the somatic 
mutation profiles revealed that the PcG-related genes were 
mutated in 110 samples of the 561 LUAD samples, with 
a mutation frequency of 19.61%. Furthermore, BCOR 
showed the highest mutation rate, followed by SFMBT2, 
ASXL1, and SCML2 (Figure 1B). The interaction networks 

of these genes were obtained from the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) 
database and visualized them with the “ggraph” R package, 
to further explore the relationships among the 28 PcG-
related genes. As shown in Figure 1C, ASXL1, BMI1, EED, 
EZH1, and EZH2 showed higher interactions with the 
other genes. In addition, the CNV incidence of the 28 
PcG-related genes were assessed in the TCGA cohort and 
CNV alterations were found to be widespread in the PcG-
related genes, and different PcG-related genes exhibited 
unique deletions or amplifications. PHC3, MBTD1, EED, 
SCMH1, ASXL1, EZH2, etc., showed high copy number 
amplification frequencies, while MTF2, PHC1, SCML4, etc., 
showed high deletion frequencies (Figure 1D). Figure 1E  
demonstrates the location of the PcG-related genes on the 
chromosome. These results indicate that the PcG-related 
genes are highly heterogeneous in expression and genetic 
mutations in normal and tumor tissues, suggesting that 
the PcG-related genes are critical in the development of 
LUAD. 

PcG patterns in LUAD

The training dataset consisted of 633 LUAD samples 
from the TCGA and GSE13213 datasets, which were 

Table 1 LUAD patients’ clinical information from various datasets

Characteristics TCGA GSE13213 GSE30219 GSE31210

Number 522 117 85 226

Age, median [range] 66 [33–88] 61 [32–84] 60 [44–84] 61 [30–76]

Gender, n (%)

Female 280 (53.6) 57 (48.7) 19 (22.4) 121 (53.5)

Male 242 (46.4) 60 (51.3) 66 (77.6) 105 (46.5)

OS days (median) 665 2,019 2,040 1,744.5

Survival status, n (%)

Alive 334 (64.0) 68 (58.1) 40 (47.1) 191 (84.5)

Dead 188 (36.0) 49 (41.9) 45 (52.9) 35 (15.5)

TNM stage, n (%)

I 279 (53.4) 79 (67.5) 81 (95.3) 168 (74.3)

II 124 (23.8) 13 (11.1) 4 (4.7) 58 (25.7)

III 85 (16.3) 25 (21.4) 0 0

IV 26 (5.0) 0 0 0

LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; OS, overall survival.

https://cdn.amegroups.cn/static/public/JTD-22-1324-Supplementary.pdf
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Figure 1 Genetic variation of the PcG-related genes in LUAD. (A) The differences in expression of 28 PcG-related genes in normal and 
tumor tissues. (B) The incidence of mutation and categorization of the 28 PcG-related genes in LUAD. (C) The protein interaction network 
of the 28 PcG-related genes from the STRING database. (D) CNV frequencies of the 28 PcG-related genes. (E) The distribution of CNV 
in the PcG-related genes across 23 chromosomes. *, P<0.05; **, P<0.01; ***, P<0.001. PcG, polycomb group; LUAD, lung adenocarcinoma; 
TMB, tumor mutational burden; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; CNV, copy number variation. 
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subjected to consensus clustering analysis based on the 
expression of the PcG-related genes. The LUAD samples 
showed excellent clustering stability in the consensus 
matrix when the number of groups (K) was 2. Furthermore, 
the cumulative distribution function (CDF) reached its 
approximate maximum value when K was 2 (Figure 2A-2C). 
Therefore, the LUAD patients were divided into two PcG-
related patterns: PcG cluster A and B (317 and 316 samples, 
respectively). Prognostic analysis of the two PcG patterns 
revealed that the PcG cluster A had a significantly lower 
survival advantage than PcG cluster B (P=0.004; Figure 2D). 
Additionally, PCA analysis revealed a substantial difference 
between the two cluster patterns (Figure 2E). Moreover, the 
heatmap in Figure 2F clearly demonstrates the variations 
in the expressions of PcG-related genes between the two 
clusters. Subsequent, immune cell infiltration analysis 
using ssGSEA revealed that the two PcG patterns differed 
significantly in immune cell infiltration characteristics 
(Figure 2G). Further examination revealed that the PcG 
cluster B was significantly infiltrated with innate immune 
cells, including eosinophils, myeloid-derived suppressor 
cells (MDSCs), macrophages, mast cells, monocytes, 
neutrophils, natural killer (NK) cell, etc. In contrast, the 
PcG cluster A showed significantly lower immune cell 
infiltration, indicating an immune-desert phenotype (36). 
These results strongly suggest that immune cell infiltration 
is important in the clustering, stratification, and progression 
of LUAD, thereby supporting the prognosis of the two 
PcG patterns described above. GSVA enrichment analysis 
of the two PcG patterns revealed that the PcG cluster 
A was primarily associated with DNA damage repair, 
including base excision repair, homologous recombination, 
mismatch repair, DNA replication, nucleotide excision 
repair, spliceosome, and RNA degradation. In contrast, 
the PcG cluster B was primarily associated with fatty acid 
metabolism, including arachidonic acid metabolism, linoleic 
acid metabolism, primary bile acid biosynthesis, and the 
peroxisome proliferator-activated receptor (PPAR) signaling 
pathway. Additionally, the PcG cluster B was significantly 
enriched in aldosterone-regulated sodium reabsorption; 
complement and coagulation cascades; calcium signaling 
pathways; neuroactive ligand receptor interactions; drug 
metabolism; and cytochrome P450 pathways (Figure 2H).

Development of the LUAD prognostic risk model

The 18 DEGs (FDR <0.01 and |log2FC| >1.5) were 
identified between the two PcG patterns, which were 

then subjected to GO and KEGG enrichment analyses. 
GO enrichment analysis showed that the DEGs were 
significantly enriched in nuclear division, as well as mitosis, 
in BP and chromatin condensation in cellular constituents 
(CC; Figure S1A,S1B). The KEGG enrichment analysis 
showed that the DEGs were enriched in platinum 
resistance (Figure S1C,S1D). After eliminating 13 
samples that lacked complete OS temporal information, 
the univariate Cox regression analysis was performed 
and discovered 16 PcG-related genes associated with 
LUAD prognosis (P<0.01). Among these, nine genes 
were considered to be risk factors according to the 
hazard ratio (HR), while the remaining seven genes 
were considered to be protective factors (Figure 3A).  
Overfitting was avoided by performing LASSO Cox 
regression analysis. Finally, four core PcG-related genes 
including NIMA-related kinase 2 (NEK2), Anillin (ANLN), 
the Polymeric Immunoglobulin Receptor (PIGR), and 
Surfactant Protein C (SFTPC) were selected to develop 
a novel prognostic risk score model known as the 
PcGScore (Figure 3B,3C). The risk score of this model 
was calculated using the following formula: PcGScore 
= 0.0656816627702443 × mRNA expression of NEK2 
+ 0.186081340526048 × mRNA expression of ANLN + 
(−0.012442499748831) × mRNA expression of PIGR + 
(−0.0183563668042736) × mRNA expression of SFTPC. All 
the LUAD patients in the training dataset were categorized 
into high- and low-risk subgroups, based on the median risk 
score, and KM survival analysis revealed that the prognosis 
was higher for the low-risk group than for the high-risk 
group (P<0.001; Figure 3D). Furthermore, the ability of the 
PcGScore to accurately predict 1-, 3-, and 5-year survival 
of LUAD patients had an AUC of 0.692, 0.674, and 0.643, 
respectively (Figure 3E). The distribution of the PcGScore 
for LUAD patients can be seen in Figure 3F. The survival 
status of the LUAD patients is shown in Figure 3G, which 
demonstrates that the high-risk group showed higher death 
rate compared to the low-risk group. Furthermore, as 
seen in the heatmap (Figure 3H), NEK2 and ANLN were 
highly expressed in the PcGScore high-risk groups than in 
the PcGScore low-risk groups. In addition, the PCA and 
t-SNE algorithms verified that the samples in the two risk 
categories were distributed independently (Figure 3I-3J). 

Correlation analysis of the PcGScore and clinical 
characteristics of LUAD

The PcGScore was further evaluated for its ability to 

https://cdn.amegroups.cn/static/public/JTD-22-1324-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-22-1324-Supplementary.pdf
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Figure 2 Consensus clustering analysis identified two PcG patterns in LUAD samples. (A) Unsupervised clustering of the 28 PcG-related 
genes from the training dataset, with consensus matrices for k=2. (B) Variations in the relative area of the CDF curves at k=2 and k=9. (C) 
CDF plot of consensus at different k values. (D) Survival analysis of the two PcG patterns based on 633 LUAD patients from the training 
dataset (P=0.004). (E) PCA plots of the two PcG patterns. (F) Heatmap of the expression of 28 PcG-related genes and clinicopathological 
characteristics of the two PcG patterns. (G) Abundance of the 23 immune cells in the two PcG patterns (*, P<0.05; **, P<0.01; ***, P<0.001; 
ns, not significant). (H) The heatmap demonstrating the biological pathways of the two PcG patterns using GSVA. The red and blue 
colors represent activation and repression pathways, respectively. PcG, polycomb group; LUAD, lung adenocarcinoma; CDF, cumulative 
distribution function; PCA, principal component analysis; TCGA, The Cancer Genome Atlas; GSVA, gene set variation analysis. 
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Figure 3 PcG-related prognostic model was constructed in the training cohort (A) Univariate Cox regression analysis identified 16 
differentially expressed genes associated with the OS of the LUAD patients. (B) The LASSO Cox regression analysis of the partial 
likelihood deviance for each lambda value. (C) LASSO coefficient analysis of the 16 PcG-related genes. (D) KM curves comparing the 
survival differences between the high- and low-risk groups. (E) ROC curves for 1-, 3-, and 5-year OS predicted based on the PcGScore. 
(F) Distribution of the PcGScore. (G) Survival status of the high and low PcGScore groups. The colors red and blue represent death and 
survival, respectively. (H) The heatmap showing mRNA expressions of four core genes in high- and low-risk groups. (I-J) PCA and t-SNE 
analysis used to distinguish high- and low-risk groups. PcG, polycomb group; OS, overall survival; LUAD, lung adenocarcinoma; LASSO, 
least absolute shrinkage and selection operator; KM, Kaplan-Meier; ROC, receiver operating characteristic; AUC, area under the curve; 
PcGScore, PcG-related gene score; PCA, principal component analysis; t-SNE, t-distributed stochastic neighborhood embedding. 
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predict the LUAD clinical parameters, such as the age, 
gender, T stage, N stage, and TNM stage. The PcGScore 
was found to vary significantly with age, gender, T stage, N 
stage, and TNM stage. Therefore, the long-term survival 
of the PcGScore and LUAD clinical characteristics were 
investigated further. The study showed that patients in the 
low-risk group had a greater survival advantage in age and 
gender than patients in the high-risk group. Furthermore, 
the early-stage LC patients in the low-risk group showed a 
better prognosis, while there was no significant difference 
in the survival of the advanced LC patients in the high- 
and low-risk groups (Figure 4A-4E). These results indicate 
that the PcGScore model is more accurate and applicable 
for assessing the clinical characteristics and survival 
status of the early-stage LC. However, due to the lack of 
similar samples distribution between cancer and healthy 
samples, there may be a lack of consistency between 
TNM staging within the TCGA dataset and of relevant 
clinicopathological data.

Construction of a prognostic nomogram for LUAD

Univariate and multivariate Cox regression analyses were 
conducted to determine whether the PcGScore prognostic 
model is an independent indicator for LUAD in the training 
dataset. The univariate Cox regression analysis revealed that 
the TNM stage and risk score were significantly associated 
with OS in LUAD patients (P<0.001), while the multivariate 
Cox analysis revealed that the age, TNM stage, and risk 
score were independent prognostic factors for LUAD 
patients (P<0.01; Figure 5A,5B). Thereafter, a nomogram 
was constructed based on these findings by combining 
the risk score with the two clinical characteristics: age and 
TNM stage (Figure 5C). The calibration plots revealed a 
high degree of agreement between the nomogram-predicted 
and actual 1-, 3-, and 5-year OS of the LUAD patients 
(Figure 5D). The 1-, 3-, and 5-year (AUC =0.758, 0.717, 
and 0.713, respectively) survival rates of the LUAD patients 
were also examined using ROC curves (Figure 5E), which 
revealed that the nomogram, combining the signature and 
clinical variables, outperformed a single clinical variable in 
terms of predictive accuracy.

Validation of the signatures and the nomogram using 
external validation cohort

The validation dataset consisted of 311 LUAD samples 
from the GSE30219 and GSE31210 datasets. The validity 

and feasibility of the signatures and the nomogram were 
verified using the validation dataset, as described earlier. 
A risk score was calculated for each LUAD sample using 
the same formula, after which the samples were divided 
into high- and low-risk groups based on the median risk 
score. As shown in Figure 6A, the significant difference 
was discovered in the OS between the high- and low-
risk groups in the validation dataset (P<0.01). The low-
risk group showed a better chance of survival compared 
to the high-risk group, which was consistent with results 
of the training dataset. Furthermore, ROC curves from 
the validation dataset showed that the PcGScore model 
was extremely accurate in predicting the outcomes of the 
LUAD patients. According to the ROC curves, survival at 
1-, 3-, and 5-year had an AUC of 0.705, 0.715, and 0.739, 
respectively (Figure 6B). Figure 6C shows the risk curve 
for the high- and low-risk groups. Figure 6D depicts the 
survival status of the LUAD patients, while the heatmap in 
Figure 6E demonstrates the differences in gene expression 
between the high- and low-risk groups. Furthermore, the 
PCA and t-SNE analyses revealed that the LUAD patients 
in the validation dataset can be divided into two groups 
(Figure 6F,6G). Moreover, univariate and multivariate Cox 
regression analyses of the validation dataset revealed that 
the risk score was an independent prognostic factor in 
LUAD (Figure 7A,7B). Furthermore, the nomogram based 
on the age, TNM stage, and risk score (Figure 7C) showed 
an excellent correlation between predicted and observed 
values, as observed by the calibration curves (Figure 7D). 
According to the nomogram, the AUCs of 1-, 3-, and 5-year 
OS were 0.677, 0.741, and 0.756, respectively (Figure 7E).  
Altogether, these results demonstrate the excellent 
predictive ability and reproducibility of the nomogram in 
predicting the OS of LUAD patients.

Correlation analysis of the PcGScore and TMB

Studies show that infiltrating CD8+ T cells are linked 
to TMB. For instance, infiltrating CD8+ T cells reduce 
TGF-β signaling in tumor stromal cells, following anti-
PD-L1treatment, to facilitate T cell infiltration, resulting 
in intense tumor killing effects (33). In addition, patients 
with a high TMB showed better prognosis with anti-
PD-L1 therapy (37). Therefore, we speculated that TMB 
might serve as a biomarker for ICB efficacy prediction. 
Considering that somatic mutation rates are high in LC (38),  
the possible interaction between the PcGScore and TMB 
is investigated. The study showed TMB was higher in 
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Figure 4 Comprehensive assessment of the PcGScore and clinical characteristics. (A-E) The boxplots showed the difference between 
PcGScore and clinical characteristics (age, gender, T stage, N stage, and TNM stage) of LUAD patients. The KM survival curves displayed 
the survival status between PcGScore and different clinical characteristics. PcGScore, polycomb group-related gene score; LUAD, lung 
adenocarcinoma; KM, Kaplan-Meier. 

the PcGScore high-risk group (P<2.22e-16; Figure 8A) 
and correlation analysis revealed that TMB was positively 
and significantly correlated with the PcGScore (R=0.43, 
P<2.2e-16; Figure 8B). In addition, the stratified survival 
analysis was performed to examine the potential synergistic 
effect of the PcGScore and TMB in the prognosis 
prediction of LUAD. Patients in the PcGscore low-risk 
and high TMB group showed the best prognosis, while 
those in a PcGScore high-risk and low TMB showed the 
worst prognosis (Figure 8C). Furthermore, the distribution 
of LUAD gene mutations in the PcGScore high- and low-
risk groups was investigated, and the top 20 highly mutated 
genes in each group have been displayed in Figure 8D and 
Figure 8E. TP53 (62%) and MUC16 (29%) were the most 
frequently mutated genes in the high- and low-risk groups, 
respectively.

PcGScore correlation with LUAD immune status

In recent years,  tumor microenvironment (TME) 
has emerged as a critical factor in tumorigenesis and 
progression (39,40). Thus, the potential relationship 
between the PcGScore and TME was investigated. 
The ESTIMATE algorithm revealed that immune, 
stromal,  and estimated scores were higher in the 
PcGScore low-risk group compared to the PcGScore 
high-r i sk  group,  whi le  tumor pur i ty  was  h igher 
in the PcGScore high-risk group (Figure 9A-9D) .  
After that，the relationship between the PcGScore and 

immune infiltration was analyzed. The boxplot depicted 
the distribution of tumor-infiltrating cells in the high- and 
low-risk groups as predicted by the ssGSEA algorithm  
(Figure 9E). A large number of immune cells, including 
activated B cells, activated dendritic cells, eosinophils, 
immature B cells, immature dendritic cells, macrophages, 
mast cells, monocytes, NK cells, plasmacytoid dendritic 
cells, T follicular helper cells, type 17 helper cells, and 
type 1 helper cells, were found in the PcGscore low-risk 
group. In contrast, immune cell infiltration was significantly 
decreased in the PcGScore high-risk group. Moreover, 
the correlation analysis confirmed that the majority of 
the infiltrating cells were negatively correlated with the 
PcGScore (Figure 9F). According to a previous study, 
immune infiltration can be classified into immune-inflamed, 
immune-excluded, and immune-desert phenotypes. The 
immune cells accumulate in the stroma surrounding the 
tumors, instead of the tumor parenchyma, resulting in 
the immune-excluded phenotypic state. In contrast, the 
immune-desert phenotype is characterized by a low immune 
cell infiltration (36,41). The results of the current study have 
demonstrated that different PcGScores indicate different 
immune cell infiltration characteristics. The PcGScore 
low-risk group exhibited a characteristic immune-excluded 
phenotype (massive immune cell infiltration and stromal 
activation), while the PcGScore high-risk group exhibited 
an immune-desert phenotype (a weakened immune cell 
infiltration). These results indicate that the PcGScore may 
play a significant role in the TME of the LUAD patients.
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Figure 5 Creation of a nomogram using the training dataset. (A,B) Univariate and multivariate Cox regression analyses of the clinical factors 
and the signature PcGScore. (C) Construction of a nomogram using the age, TNM stage, and risk score. (D) The calibration plots of the 
nomogram predicting the probability of 1-, 3-, and 5-year OS. (E) ROC curves for the 1-, 3-, and 5-year OS predicted by the nomogram. 
PcGScore, polycomb group-related gene score; OS, overall survival; ROC, receiver operating characteristic; AUC, area under the curve.
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Figure 6 External verification of the signature for LUAD samples in the testing dataset. (A) KM survival curves were used to compare OS 
between high-risk and low-risk groups in the validation dataset. (B) ROC curves were used to assess the PcGScore ability to predict 1-, 
3-, and 5-year OS. (C-E) The distribution of risk scores, survival status, and expression of four core genes in low- and high-risk patients 
from the validation dataset. (F-G) PCA and t-SNE analysis were applied to differentiate between high and low risk groups. LUAD, lung 
adenocarcinoma; KM, Kaplan-Meier; OS, overall survival; ROC, receiver operating characteristic; AUC, area under the curve; PcGScore, 
polycomb group-related gene score; PCA, principal component analysis; t-SNE, t-distributed stochastic neighborhood embedding.
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Figure 7 External verification of the nomogram for LUAD samples in the testing dataset. (A,B) Univariate and multivariate Cox regression 
analysis was used to validate the correlations between the PcGScore and the OS of LUAD patients in the testing dataset. (C) Construction 
of a nomogram using the age, TNM stage, and risk score. (D) Nomogram calibration plots for predicting the probability of 1-, 3-, and 5-year 
OS. (E) ROC curves in the testing dataset were used to analyze PcGScore for predicting the probability of 1-, 3-, and 5-year OS. LUAD, 
lung adenocarcinoma; PcGScore, polycomb group-related gene score; OS, overall survival; ROC, receiver operating characteristic; AUC, 
area under the curve.
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Figure 8 Integrated assessment of the PcGScore and TMB. (A) TMB variations in the PcGScore high- and low-risk groups. (B) Correlation 
analysis of the PcGScore and TMB. (C) KM survival curves demonstrating the difference in the OS stratified by the PcGScore and TMB. 
(D,E) The waterfall diagram demonstrating the mutation landscape of the 20 highly mutated genes in the PcGScore high- and low-risk 
groups. PcGScore, polycomb group-related gene score; TMB, tumor mutation burden; KM, Kaplan-Meier; OS, overall survival.

PcGScore shows great potential in evaluating therapeutic 
sensitivity in LUAD

Immunotherapy is expected to become the preferred 
mode of treatment for cancer, owing to the successful 
use of ICIs, such as anti-CTLA4 and anti-PD-1/PD-
L1, in several tumors (42-44). Thus, six main immune 
checkpoint genes were examined in LUAD patients to 
determine whether the PcGScore could be used to predict 
the prognosis of immunotherapy. The findings revealed 
that PD-L1, PDCD1, PDCD1LG2, LAG3, and IDO1 
had higher expression in the high-risk group compared 
to the low-risk group, whereas CTLA4  expression 
did not differ significantly between the two groups 
(Figure 10A-10F). A correlation analysis revealed that 

the six main immune checkpoint genes were positively 
correlated with the PcGScore (Figure 10G), suggesting 
that immunotherapy may be more effective for the high-
risk group. Thereafter, the accuracy of the PcGScore was 
tested in predicting immunotherapy response by using 
TIDE and IMvigor210 cohort. TIDE is a computational 
approach that models two major mechanisms of tumor 
immune evasion: inducing T-cell dysfunction in tumors 
with high cytotoxic T-lymphocyte (CTL) infiltration 
and blocking T-cell infiltration in tumors with low levels 
of CTL infiltration (32). Prediction of the therapeutic 
efficacy of ICI by TIDE revealed that the TIDE score 
was higher in the PcGScore low-risk group and there 
was a significant negative correlation between PcGScore 
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Figure 9 Correlation of the PcGScore and immune status. (A-D) Comparison of the immune, stromal, and estimated scores, as well as 
tumor purity of the PcGScore high- and low-risk groups, obtained by the estimation of stromal and immune cells in malignant tumors using 
the expression data (ESTIMATE) algorithm. (E) Abundance of each type of immune infiltrating cells in the high- and low-risk groups. (F) 
Correlation analysis between the PcGScore and the abundance of each immune infiltrating cell. The colors red and blue represent positive 
and negative correlations, respectively. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant. PcGScore, polycomb group-related gene score. 

and TIDE score (R=−0.45, P<2.2e-16; Figure 10H,10I). 
These results indicate that immune evasion is more 
common in immunotherapy patients in the low-risk group 
compared to those in the high-risk group. Patients in the 
IMvigor210 cohort who received the ICI therapy were 
analyzed to determine if the PcGScore could predict their 
response to the ICI treatment. The results of this study 
indicate that a higher percentage of patients responded to 
the ICI therapy in the high-risk group compared to the 
low-risk group (Figure 10J,10K). Therefore, the PcGScore 
was shown to have a great potential in predicting the 
prognosis of immunotherapy for patients in the high-risk 

group. Lastly, the correlation was analyzed between the 
PcGScore and the four commonly used chemotherapeutic 
drugs: cisplatin, paclitaxel, docetaxel, and gemcitabine. 
There was a significant difference in the estimated IC50 
values of the chemotherapeutic drugs between the two 
risk groups, with the IC50 values being lower in the 
high-risk group (P<0.001; Figure 10L-10O), suggesting 
that chemotherapy may be more effective for patients 
in the high-risk group. Altogether, these results suggest 
that the PcGScore has a great potential for predicting 
the sensitivity of immunotherapy and chemotherapeutic 
treatments.
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Figure 10 Correlation between the PcGScore and sensitivity to immunotherapy and chemotherapy. (A-F) Distribution of the six common 
immune checkpoint genes in high- and low-risk populations. (G) Spearman analysis of the six most commonly immune checkpoint genes 
and the PcGScore. (H) TIDE score estimation of the high- and low-risk populations. (I) Scatter plot showing a significant negative 
correlation between the TIDE scores and the PcGScores. (J) The PcGScores of high- and low-risk groups in the IMvigor210 cohort. (K) 
The proportion of the patients responding and not responding to the PD-L1 blockade therapy in the IMvigor210 cohort in the high- and 
low-risk groups. (L-O) The IC50 values of the four commonly used chemotherapeutic drugs between the high- and low-risk populations. 
PcGScore, polycomb group-related gene score; TIDE, tumor immune dysfunction and exclusion; PD-L1, programmed death-ligand 1; 
IC50, half maximal inhibitory concentration. 
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Discussion

It is estimated that more than one million people die each 
year from LC, making it one of the most common cancers 
worldwide (45). However, since early symptoms of LC are 
difficult to detect, approximately 75% of the patients are 
found to have advanced LC at the time of diagnosis (46). 
According to the previous studies, the 5-year OS rate for 
advanced LC is approximately 6%, whereas the OS rate for 
early-stage LC is approximately 82% (47). Although non-
invasive techniques have increased the chances of early 
detection of LC, only 16% of the patients are detected in the 
early stages (48). Therefore, there is an urgent need for novel 
and more effective methods for early diagnosis and treatment 
of LC. The PcG is a family of chromatin regulators that 
is overexpressed in several tumors, including melanoma, 
chronic myelogenous leukemia, prostate cancer, breast 
cancer, ovarian cancer, LC, etc. and has been linked to poor 
prognosis in many cases (49-55). In addition, PcG proteins 
play a critical role in cell proliferation (56), apoptosis (57), 
and senescence (58) as well as tumor progression, depending 
on the cellular environment (59). However, the role of PcG 
proteins in LUAD has not yet been established. Therefore, 
we developed a novel independent predictive model based 
on the PcG-related genes to predict the prognosis and 
treatment of LUAD patients.

Based on the expression levels of 28 PcG-related genes, 
two distinct PcG patterns were identified in LUAD, which 
differed significantly in the survival and immune infiltration 
of LUAD patients. Subsequently, evaluation of the immune 
cell infiltration in TME using the ssGSEA method revealed 
that immune cells, especially innate immune cells, including 
eosinophils, MDSCs, macrophages, mast cells, monocytes, 
neutrophils, NK cells, etc., were highly infiltrated in the PcG 
cluster B. In contrast, PcG cluster A showed an immune-
desert phenotype, which is characterized by a significantly 
reduced infiltration of immune cells. Furthermore, 
consistent with the previously observed results, PcG cluster 
A showed the worst prognostic survival, possibly due to 
the low infiltration of the protective immune cells. GSVA 
enrichment analysis of the PcG patterns showed that the 
PcG cluster A was predominantly enriched in DNA damage 
repair, while the PcG cluster B was significantly enriched in 
various metabolic pathways, including fatty acid metabolism. 
It has been demonstrated that genomic instability, a risk 
factor for cancer, is closely associated with the accumulation 
of DNA damage over time (60), which forms the basis for 
radiation therapy and chemotherapy in cancer treatment (61).  

Mutations in some key genes, including oncogenes, 
tumor-suppressor genes, and cell cycleregulatory genes, 
may produce clonal cell populations with a significant 
proliferative advantage, leading to tumorigenesis (62). 
Furthermore, cellular metabolism is another characteristic 
feature of cancer , since limiting the use of fatty acids, 
which are required for the synthesis of membranes and 
signaling molecules, has been shown to inhibit cancer cell 
proliferation (63). These findings suggest that PcG-related 
genes play a key role in tumorigenesis and progression and 
should be explored further for their use in the diagnosis and 
treatment of LUAD.

Subsequently, 18 DEGs were identified between the 
two PcG patterns, which were significantly enriched in 
cell proliferation and division. Moreover, existing studies 
have found a strong correlation between normal stem cell 
division and cancer incidence (64), reaffirming the existence 
of a strong correlation between the PcG-related genes 
and tumorigenesis. Furthermore, the prognostic model 
was developed to evaluate the prognosis and sensitivity of 
LUAD patients with regard to different types of treatments. 
The LUAD patients from the training (TCGA and 
GSE13213) and validation (GSE30219 and GSE31210) 
datasets were divided into high- and low-risk groups based 
on the median risk score, and patients in the high-risk 
group showed a poorer prognosis. The PcGScore was also 
found to be an independent predictor in both univariate and 
multifactorial Cox regression analyses. Furthermore, the 
prognostic nomogram model, constructed by combining 
the PcGScore and multifactorial Cox analysis results, 
outperformed clinical characteristics in predicting 1-, 
3-, and 5-year OS of LUAD patients, which was further 
validated using the validation dataset. Therefore, the study 
results provide a new direction and strategy for clinical 
diagnosis and treatment of LUAD.

Furthermore, TMB can be used to predict immunotherapy 
response (65), and patients treated with ICI show a better 
prognosis with elevated TMB (66). Therefore, the potential 
association of the PcGScore with TMB was explored 
and TMB was found to increase significantly with the 
PcGScore. Patients with a low PcGScore and a high TMB 
showed the best prognosis, as shown by the stratified 
survival analysis, which is consistent with the previously 
reported literature (66). Additionally, the study showed 
that TP53 and MUC16 were the most frequently mutated 
genes in the high- and low-risk groups. Previous studies 
have shown that in NSCLC, TP53 mutations significantly 
increase the expression of immune checkpoints, activated 
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T-cell effectors, and γ-interferon signatures, as well as 
TMB, implying that patients with TP53 mutations may 
benefit more from ICI therapy (67). Additionally, patients 
with high MUC16 mutation rates have higher TMB, better 
ICI response, and a better prognosis (68). These findings 
imply that differences in the distribution of the PcGScore-
related somatic mutation driver genes are significantly 
associated with antitumor immunity and that the complex 
regulatory mechanism of their interaction may provide a 
new direction for immunotherapy in LUAD.

Subsequently, the ESTIMATE and ssGSEA algorithms 
were employed to compare the differences between 
PcGScore high- and low-risk groups, to further understand 
the underlying mechanisms associated with the PcGScore 
and TME. The study revealed that almost all immune cell 
infiltrations and immune scores were negatively-correlated 
with the PcGScore significantly, suggesting that the 
PcGScore may serve as an indicator of immunosuppression. 
The PcGScore high- and low-risk groups demonstrated 
immune-desert and immune-excluded phenotypes, 
respectively, which is consistent with the better prognosis 
of the PcGScore low-risk group and the worse prognosis of 
the PcGscore high-risk group. Therefore, the PCGScore 
has a significant impact on the TME in LUAD.

During the last decade, there was a significant 
improvement in the long-term survival rates of advanced 
NSCLC patients, due to the use of PD-1/PD-L1 blocking 
antibodies (69,70). Thus, the correlation analysis between 
the PcGScore and immune checkpoints was investigated, 
and five common immune checkpoint genes were found to 
be significantly expressed in the high-risk group. Thereafter, 
the study showed that the PcGScore can accurately predict 
response to ICI therapy. The TIDE scores were higher 
in the low-risk group compared to those in the high-risk 
group. Additionally, the ICI therapy was more effective 
for patients in the high-risk group. Lastly, analysis of the 
association between the PcGScore and common clinical 
chemotherapeutic drugs revealed that the IC50 values were 
lower in the high-risk group, suggesting that the high-risk 
group may benefit more from chemotherapy. Altogether, 
these findings suggest that patients in the high-risk group 
respond better to immunotherapy and chemotherapy, 
and that PcGScoer may serve as a marker for predicting 
response to immunotherapy and chemotherapy in LUAD.

Conclusions

In summary, the PcGScore model was constructed 

using four PcG-related genes to predict prognosis and 
treatment responsiveness in LUAD. The predictive 
ability of the model was further validated, thus providing 
an ideal and stable predictor for the clinical treatment 
of the LUAD patients. However, this study has a few 
limitations. Firstly, the stability of the PcGScore stability 
was only tested and validated by two independent cohorts 
in this paper. Secondly, prospective cohort studies are 
required to demonstrate the validity of the PcG-related 
genetic signature. Moreover, the additional unrelated 
immunotherapy cohorts are required to confirm the stability 
and reliability of the PcGScore in predicting the outcome of 
immunotherapy in LUAD. Lastly, to fully comprehend the 
unique role of the PcG-related genes in the development 
of LUAD and their regulatory mechanisms, it is necessary 
that the identified DEGs are further validated by in vivo and  
in vitro studies.
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Table S1 Specific information of 28 polycomb group (PcG)-related genes

CR_id Official_symbol Aliases Complex Function PMID Type Histone_type

54880 BCOR MAA2; ANOP2; MCOPS2 BCOR Polycomb group (PcG) protein 26153137

80314 EPC1 Epl1 NuA4, Piccolo_NuA4, NuA4-related complex; Polycomb group Polycomb group (PcG) protein 26153137; 24240475

54799 MBTD1 SA49P01 MBT Polycomb group (PcG) protein 26153137; 24240475

10039 PARP3 IRT1; ARTD3; ADPRT3; ADPRTL2; 
ADPRTL3; PADPRT-3

poly (ADP-ribose) polymerase and other nucleotide enzymes Polycomb group (PcG) protein 26153137; 24240475

7703 PCGF2 MEL-18; RNF110; ZNF144 PRC1; Polycomb Repressive Complex 1 Polycomb group (PcG) protein 24063517; 26153137

10336 PCGF3 RNF3; DONG1; RNF3A PRC1, RING2-FBRS Polycomb group (PcG) protein 26153137

84333 PCGF5 RNF159 PRC1, RING2-FBRS Polycomb group (PcG) protein 26153137

84108 PCGF6 MBLR; RNF134 PRC1, RING2-L3MBTL2; Polycomb Repressive Complex 1 Polycomb group (PcG) protein 24063517; 26153137

1911 PHC1 EDR1; HPH1; RAE28; MCPH11 PRC1; Polycomb Repressive Complex 1 Polycomb group (PcG) protein 26153137; 24063517

1912 PHC2 PH2; EDR2; HPH2 PRC1; Polycomb Repressive Complex 1 Polycomb group (PcG) protein 26153137; 24063517

80012 PHC3 EDR3; HPH3 PRC1; Polycomb Repressive Complex 1 Polycomb group (PcG) protein 26153137; 24063517

23429 RYBP AAP1; DEDAF; YEAF1; APAP-1 BCOR, RING2-L3MBTL2, RING2-FBRS Polycomb group (PcG) protein 26153137

22955 SCMH1 Scml3 PRC1; MBT Polycomb group (PcG) protein 24240475; 26153137

10389 SCML2 PRC1; MBT Polycomb group (PcG) protein 26153137; 24240475

256380 SCML4 dJ47M23.1 MBT Polycomb group (PcG) protein 26153137; 24240475

51460 SFMBT1 RU1; SFMBT; hSFMBT SCL; MBT Polycomb group (PcG) protein 26153137; 24240475

8726 EED HEED; WAIT1 PRC2; Polycomb group protein; Polycomb Repressive Complex 
2; Polycomb group

Polycomb group (PcG) protein; Histone Modification (histone 
deacetylation); Different isoforms determine PRC3 or PRC4 PRC2 
variants.

26153137; 26169266; 24063517; 
24240475

Histone 
Modifier

648 BMI1 PCGF4; RNF51; FLVI2/BMI1; flvi-2/bmi-1 PRC1; Polycomb Repressive Complex 1;  
RING finger

Polycomb group (PcG) protein; Maintenance of transcriptional 
repression of key genes during development. H2AK119ub.

26153137; 24063517; 24240475; 
22196736; 22196736

5252 PHF1 PCL1; PHF2; hPHF1; MTF2L2; TDRD19C PRC2; Polycomb Repressive Complex 2; Polycomb group; 
Polycomb group

Polycomb group (PcG) protein; Mediates PRC2 intrusion into active 
H3K36 chromatin regions.

24240475; 24063517; 26153137; 
24240475

Histone 
Modifier

84759 PCGF1 NSPC1; RNF68; RNF3A-2; 2010002K04Rik PRC1, BCOR; Polycomb Repressive Complex 1(BCOR 
complex)

Polycomb group (PcG) protein; Represses CDKN1A expression in a 
RARE-dependent manner.

24063517; 26153137

22823 MTF2 M96; PCL2; TDRD19A; dJ976O13.2 PRC2; Polycomb Repressive Complex 2; Polycomb group Polycomb group (PcG) protein; Required for PRC2-mediated Hox 
repression.

24063517; 26153137; 24240475

2145 EZH1 KMT6B PRC2; enhancer of zeste 1 polycomb repressive complex 2 
subunit; Polycomb Repressive Complex 1(Catalytic subunit ); 
SET-HMT

Histone modification write, Polycomb group (PcG) protein (Histone 
methylation); Histone Modification [Histone methyltransferases (HMT)]; 
H3K27me1/me2/me3 HMT. Less critical for H3K27me3 formation than 
EZH2; Writer

26153137; 26169266; 24063517; 
24240475; 24253304; 22196736; 

22196736

Histone 
Modifier

Writer

2146 EZH2 WVS; ENX1; EZH1; KMT6; WVS2; ENX-1; 
EZH2b; KMT6A

PRC2; enhancer of zeste 2 polycomb repressive complex 2 
subunit; Histone methyltransferases; SET-HMT

Histone modification write, Polycomb group (PcG) protein (Histone 
methylation); Histone Modification [Histone methyltransferases (HMT)]; 
H3K27me1/me2/me3 HMT. Major role in stem cell identity maintenance. 
Also methylates GATA4. Catalytic subunit of PRC2 complex; Writer

26153137; 26169266; 24063517; 
24063517; 24240475; 24253304; 
22196736; 22196736; 22196736; 

22196736; 22196736

Histone 
Modifier

Writer

6015 RING1 RNF1; RING1A PRC1, BCOR, RING2-L3MBTL2, RING2-FBRS; Polycomb 
Repressive Complex 1

Histone modification write, Polycomb group (PcG) protein (Histone 
ubiquitination); H2AK119ub.

26153137; 24063517 Histone 
Modifier

Writer

23512 SUZ12 CHET9; JJAZ1 PRC2; Polycomb group protein; Polycomb Repressive Complex 
2(EZH2 coenzyme); Polycomb group

Histone modification write cofactor, Histone modification write cofactor, 
Polycomb group (PcG) protein, TF (Histone methylation, Histone 
ubiquitination, TF repressor); Histone Modification (chromatin silencing); 
Required for PRC2 H3K27 HMT activity. Interacts with SIRT1.

26153137; 26169266; 24063517; 
24240475; 22196736; 22196736; 

22196736

Histone 
Modifier

Writer

57713 SFMBT2 MBT Histone modification read, Polycomb group (PcG) protein, TF (TF 
repressor)

26153137; 24240475 Histone 
Modifier

Reader

171023 ASXL1 MDS; BOPS PR-DUB; Polycomb Repressive Complex 2 Histone modification erase, Polycomb group (PcG) protein (Histone 
deubiquitination); Associates with PRC2 to promote gene repression.

26153137; 24063517; 24240475; 
22196736; 22196736

Histone 
Modifier

Eraser

8314 BAP1 UCHL2; hucep-6; HUCEP-13 PR-DUB; Polycomb Repressive Complex 1 Histone modification erase, Polycomb group (PcG) protein (Histone 
deubiquitination); Catalytic component of the PR-DUB complex, that 
specifically deubiquitinates H2AK119ub1.

26153137; 24063517; 22196736; 
22196736

Histone 
Modifier

Eraser
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Figure S1 Enrichment analysis of PcG-related genes (A,B) Results of GO enrichment of 18 PcG-related genes. (C,D) Results of KEGG enrichment of 18 PcG-
related genes.
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