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Background: Breast cancer has the highest incidence and mortality rates among women worldwide. Hormone 
receptor (HR)+/human epidermal growth factor receptor 2 (HER2)− breast cancer is the most common molecular 
subtype, accounting for 50–79% of breast cancers. Deep learning has been widely used in cancer image analysis, 
especially for predicting targets related to precise treatment and patient prognosis. However, studies focusing on 
therapeutic target and prognosis predicting in HR+/HER2− breast cancer are lacking.
Methods: This study retrospectively collected hematoxylin and eosin (H&E)-stained slides of HR+/HER2− 
breast cancer patients between January 2013 and December 2014 at Fudan University Shanghai Cancer 
Center (FUSCC) and scanned to generate whole-slide images (WSIs). Then, we built a deep-learning-based 
workflow to train and validate model to predict clinicopathological features, multi-omics molecular features 
and prognosis; the area under the curve (AUC) of the receiver operating characteristic (ROC) and the 
concordance index (C-index) of the test set were used to assess model effectiveness. 
Results: A total of 421 HR+/HER2− breast cancer patients were included in our study. Regarding 
clinicopathological features, grade III could be predicted with an AUC of 0.90 [95% confidence interval 
(CI): 0.84–0.97]. Regarding somatic mutations, TP53 and GATA3 mutation could be predicted with AUCs 
of 0.68 (95% CI: 0.56–0.81) and 0.68 (95% CI: 0.47–0.89), respectively. Regarding gene set enrichment 
analysis (GSEA) pathways, the G2-M checkpoint pathway was predicted with an AUC of 0.79 (95% CI: 
0.69–0.90). Regarding markers of immunotherapy response, intratumoral tumor-infiltrating lymphocytes 
(iTILs), stromal tumor-infiltrating lymphocytes (sTILs), CD8A, and PDCD1 were predicted with AUCs of 
0.78 (95% CI: 0.55–1.00), 0.76 (95% CI: 0.65–0.87), 0.71 (95% CI: 0.60–0.82), and 0.74 (95% CI: 0.63–0.85), 
respectively. In addition, we found that the integration of clinical prognostic variables and deep features of 
images can improve the stratification of patient prognosis.
Conclusions:  Using a deep-learning-based workflow, we developed models to predict the 
clinicopathological features, multi-omics features and prognosis of patients with HR+/HER2− breast cancer 
using pathological WSIs. This work may contribute to efficient patient stratification to promote the 
personalized management of HR+/HER2− breast cancer.

Keywords: Hormone receptor/human epidermal growth factor receptor 2 breast cancer (HR+/HER2− breast 

cancer); digital pathological image; deep learning; therapeutic targets; prognosis

Submitted Mar 21, 2023. Accepted for publication May 17, 2023. Published online May 23, 2023.

doi: 10.21037/jtd-23-445

View this article at: https://dx.doi.org/10.21037/jtd-23-445

2543

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd-23-445


Journal of Thoracic Disease, Vol 15, No 5 May 2023 2529

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(5):2528-2543 | https://dx.doi.org/10.21037/jtd-23-445

Introduction

Breast cancer has the highest morbidity and mortality 
among women in the world (1,2). In current clinical 
practice, breast cancer is classified into molecular subtypes 
including luminal A, luminal B, HER2-enriched and triple-
negative breast cancer (TNBC) (3,4). Hormone receptor 
(HR)+/human epidermal growth factor receptor 2 (HER2)− 
breast cancer refers to breast cancer that expresses the 
estrogen receptor (ER) or the progesterone receptor (PR) 
and does not express HER2. HR+/HER2− is the most 
common type of breast cancer, accounting for 50–79% 
of cases (5,6). Although a number of therapies, including 
endocrine therapy, have improved the prognosis of HR+/
HER2− breast cancer, there are still clinical problems such as 
long-term recurrence (7,8). Therefore, precision treatment 
with targeted therapies is important for HR+/HER2− breast 
cancer. Although there are traditional laboratory methods 
for the detection of treatment targets, these methods are 
expensive, slow and inconvenient, limiting their broad use 
in clinical practice.

In recent years, deep learning has been widely used in 
cancer imaging research, especially for predicting some 
targets related to precise treatment and patient prognosis 
(9-11). The theoretical basis of its prediction based on 
deep learning is that computers can mine and learn the 
mapping relationship between pathological morphology 
and molecular features and form a neural network model 
to realize molecular feature prediction based on whole-
slide images (WSIs). Previous studies have attempted to 
predict the molecular characteristics and prognosis of non-
small cell lung cancer, gastrointestinal tumors, pan-cancer, 
and bladder cancer (12-16). In breast cancer, previous 

studies have tried to predict lymph node status, improve 
histological grade, and determine hormonal receptor status 
(17-21). However, there have been few studies on the 
prediction of therapeutic targets and prognoses of HR+/
HER2− breast cancer based on digital pathology.

First, we constructed a cohort of 421 HR+/HER2− breast 
cancer patients with multi-omics data and pathological 
WSIs. Second, we set up an analysis workflow including 
image preprocessing, tissue type classification, molecular 
feature prediction and prognosis prediction. Third, we 
predicted clinicopathological features, gene mutations, gene 
set enrichment analysis (GSEA) pathways, immunotherapy 
markers, and prognosis based on the WSIs. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-445/rc).

Methods

Prediction workflow based on deep learning

The workflow of our study is shown in Figure 1. First, we 
collected hematoxylin and eosin (H&E)-stained histological 
slides from patients after surgery. We used a NanoZoomer 
digital pathology scanner at ×40 to scan H&E-stained 
histological slides and generated digital WSIs. Then, WSIs 
were cut into image tiles, and background image tiles were 
filtered out. The deep learning-based analysis pipeline 
consisted of two convolutional neural networks (CNNs) in 
series. The first was a tile-level tissue type classifier which 
was developed in our previous study (21). The second CNN 
was trained based on the tiles of certain tissue type to predict 
clinicopathological features, somatic mutations, important 
cancer-related pathways, immunotherapy biomarkers 
and prognosis. We selected common clinicopathological 
features for prediction, including pathological T category, 
pathological N category, histological grade, and Ki67. 
Histological grades were assigned according to the 
World Health Organization (WHO) histological grade 
standard (22). We used 15% as the cut-off value for  
Ki67 (23): expression levels higher than 15% were defined 
as high Ki67, while expression levels lower than 15% were 
defined as low Ki67. In addition, we predicted somatic 
mutations with a mutation frequency greater than 4%. 
What’s more, we selected six cancer related pathways 
from the Molecular Signatures Database (MSigDB) and 
attempted to predict whether cancer related pathways are 
activated based on the ssGSEA score. Last but not least, we 
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attempted to predict key immune-related targets related to 
immunotherapy.

Patients and dataset

We retrospectively collected H&E-stained pathological 
slides from HR+/HER2− breast cancer patients after radical 
mastectomy or breast conserving surgery between January 
2013 and December 2014 at FUSCC and scanned them 
to generate WSIs according to standard protocols. The 
inclusion criteria for this cohort study were as follows: (I) 
the diagnosis of HR+/HER2− breast cancer was confirmed 
by histopathology or cytology; and (II) there was no 
evidence of distant metastasis. The exclusion criteria were 
as follows: (I) no formalin-fixed, paraffin-embedded (FFPE) 
samples were available; (II) patients with slides or WSIs of 
poor quality (large artifacts, debris, pen marks or blurred 
images) (15); and (III) patients lost to follow-up (Figure S1).  
Two pathologists independently conducted the quality 
control of all WSIs. Disagreements on the quality control 
results were discussed and resolved through negotiation. 
Only those patients with high-quality WSIs were included 
in the study. Finally, a total of 421 patients were selected. 

Data preprocessing

Background image region exclusion
To reduce the computational burden and shorten the 
training time, we used the rectangle tool of ImageScope 
software to generate one or two region of interests (ROIs) 
that included the vast majority of the invasive breast cancer 
areas and excluded the dragged tissue and background areas.

Digital pathological image tiling
WSIs were cut into image tiles before being fed into 
CNNs for modelling. We used the OpenSlide library of the 
MATLAB software to divide each WSI into 256×256 pixel 
square image tiles. The white background part in the ROI 
area were filtered out during MATLAB image tiling. Image 
tiles with limited tissues (defined as more than half of the 
pixels within the tile were >210) were also discarded (21). 
Four hundred and twenty-one slides were cut into 3,388,890 
image tiles (Figure S2). Tiles were stored in PNG format, 
and the information about the patient ID was contained in 
the filenames.

Tissue type segmentation
A WSI contains a variety of tissue types, including tumor, 

Clinical center Breast cancer surgery H&E pathological slides Pathological slides Slide scanning WSIs

421 WSIs 3.38 million tiles
(256*256 pixels)

Neural network model Tissue types classification Neural network model Prediction result

Tissue segmentation Multi-targets prediction

Figure 1 Study design. Digital pathology data generation and deep learning-based analysis workflow. H&E, haematoxylin and eosin; WSIs, 
whole-slide images. 
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stroma, immune infiltration, normal duct, and necrosis or 
hemorrhage. We selected certain tissue types of image tiles 
for model development. For example, we used tumor image 
tiles to predict somatic mutations and used tumor, stroma 
and immune infiltrates tiles to predict immunotherapy 
biomarkers such as CD274 and PDCD1. Therefore, we 
used a tile tissue type classifier we previously developed 
to realize the automatic classification of certain types of 
image tiles (21). We used the ResNet-18 as our tissue type 
segmentation CNN architecture, which is a commonly used 
residual neural network (24). The other hyperparameters 
were set as follows: cross-entropy loss as the loss function 
and ADAM algorithm for optimization. We took 256 image 
tiles in the training set for each training epoch and trained 
the model for 200 epochs. The learning rate was set to 0.001 
and the momentum was set to 0.9.

Image-based identification of clinicopathological features 
and multi-omics molecular features using deep learning

Clinicopathological features and multi-omics molecular 
labels
The baseline clinical and pathological characteristics of the 
HR+/HER2− breast cancer patient cohort are detailed in 
Table 1.

First, we aimed to predict the clinicopathological features 
of the HR+/HER2− breast cancer cohort, including T 
category, N category, histological grade, and Ki67. We set 
corresponding clinicopathological feature labels for patients 
according to their clinical data. Second, we developed 
models to predict somatic mutations with a frequency of 
≥4% from WSIs. Patients with the corresponding gene 
mutations were labelled as the “positive” cases. Third, 
we explored the prediction of biological pathways. We 
selected six breast cancer-related hallmark gene sets from 
MSigDB including the G2-M checkpoint pathway, DNA 
repair pathway, PI3K/AKT/mTOR signalling pathway, 
IFN-γ response pathway, angiogenesis pathway and early 
estrogen response pathway (25). For each of them, we 
calculated an enrichment score for each sample using 
the single sample GSEA method to measure the relative 
activity of the corresponding biological pathways (26). 
Patients whose ssGSEA scores were higher than the 
median were labelled as the “positive” cases. Fourth, we 
attempted to predict key immunotherapeutic biomarkers, 

Table 1 Clinicopathological characteristics of patients with HR+/
HER2− breast cancer included in our study

Variables HR+/HER2− breast cancer cohort (N=421)

Age, years

≤50 173 (41.1)

>50 248 (58.9)

T category

T1 199 (47.3)

T2 218 (51.8)

T3 3 (0.7)

NA 1 (0.2)

N category

N0 190 (45.1)

N1 134 (31.9)

N2 59 (14.0)

N3 38 (9.0)

Tumor grade

I–II 284 (67.5)

III 117 (27.8)

Unknown 20 (4.8)

Surgery type

Non-BCS 417 (99.0)

BCS 4 (1.0)

Radiotherapy

No 253 (60.1)

Yes 128 (30.4)

Unknown 40 (9.5)

Chemotherapy

No 86 (20.4)

Yes 312 (74.1)

Unknown 23 (5.5)

Endocrine therapy

No 11 (2.61)

Yes 359 (85.27)

Unknown 51 (12.12)

Data are presented as number (percentage) of patients. BCS, 
breast conserving surgery.



Hu et al. Prediction of therapeutic targets and prognoses of HR+/HER2− breast cancer based on deep learning2532

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(5):2528-2543 | https://dx.doi.org/10.21037/jtd-23-445

including stromal tumor-infiltrating lymphocytes (sTILs), 
intratumoral tumor-infiltrating lymphocytes (iTILs), PD-
L1 expression, PD-1 expression, and CD8 expression. iTILs 
were defined as lymphocytes within nests of carcinoma 
having cell-to-cell contact with no intervening stroma, while 
sTILs were defined as lymphocytes located in the stroma 
between the tumor nests. TILs were evaluated according 
to the 2015 TILs evaluation recommendation by the 
International TILs Working Group (27). TILs scores were 
independently assessed according to the recommendations by 
two experienced pathologists who were unaware of the clinical 
information of the patients. Disagreements between the two 
raters were resolved through discussion and consensus. The 
expression levels of PD-L1 and PD-1 were measured by 
CD274 and PDCD1 mRNA expression, respectively (28), and 
the expression level of CD8 was measured by CD8A mRNA 
expression (29). Patients whose mRNA expression was higher 
than the median were labelled as the “positive” cases.

Division strategy for the training set, verification set 
and test set
We used the hold-out method to train and validate 
CNN models predicting clinicopathological features and 
multi-omics molecular features. The hold-out method is 
one of the most common methods used to evaluate the 
performance of a machine learning model. We divided the 
training set, the validation set and the test set into 3:1:1. 
Stratified random sampling reduces the sampling error 
to avoid the impact on the results due to data bias. We 
tessellated the WSIs into tiles as described previously. All of 
the tiles inherited the labels of the corresponding patients. 

Training of the neural network and visualization of 
prediction results
CNN models were trained on the tiles from the training set, 
validated on the tiles from the verification set, and tested 
on the tiles from the test set. For the clinicopathological 
feature and multi-omics feature prediction, we used the 
ResNet-18 as the CNN architecture (24). The other 
parameters were set as follows: cross-entropy loss as loss 
function; the learning rate was set to 0.001; the batch size 
was set to 256 and the ADAM algorithm for optimization.

Tiles in the validation set and test set acquired a 
prediction score output from the model. The prediction 
score was calculated by averaging all the tile scores from 
the corresponding patient. The patient-level prediction 
scores were used for receiver operating characteristic (ROC) 
analysis. A model was saved after each training epoch, and 

the model with the highest area under the curve (AUC) in 
the validation set was considered the best model and further 
evaluated in the test set.

Two visualization methods were used to display 
the predicted results of the CNN models and identify 
pathological patterns associated with the clinicopathological 
and molecular characteristics. First, for each prediction task, 
the CNN model outputs a score for each tile. We visually 
described the morphological characteristics of tiles with the 
highest prediction scores in true positive patients. Second, 
class activation maps were established for these tiles (30). 
This approach enabled identification of the local regions 
most relevant to the prediction target.

Prediction of prognosis using deep learning

DeepSurv neural network
DeepSurv i s  a  neural  network based on the Cox 
proportional risk model to model the relationship 
between patients’ covariates and prognosis. The DeepSurv 
architecture consists of fully connected layers (20, 128, 512, 
2,048, 1,024, 256, 64, and 8 neurons) followed by dropout 
layers and ReLU activation. Patients’ or tiles’ features 
were took as input and the model output a risk score which 
estimated the log-risk function in the Cox model. The 
Cox loss function was used as the loss function and the 
ADAM algorithm was used for optimization. For the other 
hyperparameters settings, the dropout rate was set to 0.2; 
the learning rate was set to 0.001; momentum was set to 0.9; 
and the model was trained for 100 epochs. 

Modelling strategies
We compared two modelling strategies. The first was a 
clinic-based model. We selected statistically significant 
variables according to univariate Cox analysis to determine 
the clinical prognostic factors. The second modelling 
strategy is an integrated model. We selected 500 tiles of all 
five tissue types for each patient and fed them into a neural 
network for deep feature extraction. Deep features of image 
tiles and clinical prognostic features were combined to build 
the integrated model to predict overall survival (OS) and 
relapse-free survival (RFS).

Three-fold cross validation
We used a three-fold cross-validation strategy to train and 
validate the prognostic models (15,21). The entire cohort 
was divided into three parts of equal size. One part was 
used as the validation set, and the other two parts were used 
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as the training set. A model was saved after each training 
epoch, C-index value was used to evaluate the prediction 
accuracy and the best model was selected according to the 
maximum value of the C-index in the validation set (31). 
This method was repeated three times until each part 
had been used as the validation set. Each of the three best 
models output risk scores for their corresponding validation 
set. These scores were concatenated and therefore each 
patient obtained a final risk score. The median value of 
the risk scores was used to separate high-risk and low-risk 
patients and hazard ratio was calculated between groups.

Statistical analysis

PyTorch framework was used for deep learning experiments (32). 
The AUC, along with its 95% confidence interval (CI), was 
used to evaluate the prediction accuracy. RFS was defined 
as the time from diagnosis to first recurrence, diagnosis of 
contralateral breast cancer, or death from any cause. OS was 
defined as the time from randomization to death due to any 
cause. Survival curves were drawn using the Kaplan-Meier 
method, and survival differences between groups were 
compared using the log-rank test and the Cox proportional 
hazards (CPH) model. The C-index was used to evaluate 
the prediction accuracy of prognostic models.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Fudan University Shanghai Cancer Center 
(FUSCC) Ethics Committee (approval No. 050432-4-
1911D). All patients provided written informed consent.

Results

Establishment of a HR+/HER2− breast cancer cohort

We retrospectively analyzed 421 HR+/HER2− breast cancer 
patients between January 2013 and December 2014 at 
FUSCC. Among these 421 patients, all patients had clinical 
and pathology data, 358 had whole-exome sequencing 
(WES) data, 417 had RNA sequencing data, and 379 had 
copy number variation (CNV) data (Figure 2A). The Venn 
diagram of the HR+/HER2− breast cancer cohort showed 
that 323 patients had clinical data, digital pathological image 
data, WES data, RNA sequencing data and CNV data 
available simultaneously (Figure 2B). Clinicopathological 
characteristics of the cohort was shown in Table 1.

Classification of tissue types using CNN

Using the tissue type classifier developed in our previous 
study, we classified all image tiles into five tissue types: 
tumor, stroma, immune infiltrates, normal duct, and 
necrosis (21). Tumor, stroma, immune infiltrate, normal 
duct, and necrosis image tiles accounted for 37.92%, 
53.43%, 2.42%, 3.59% and 2.63%, respectively (Figure 3A).  
Representative tiles for each of the five tissue types are 
shown in Figure 3B. We present four representative examples 
of tissue type classification results in Figure 3C. For the 
following prediction tasks, we selected certain tissue types of 
tiles that were related to the prediction targets (Table 2).

Prediction of clinicopathological features

We found that histological grade and Ki67 had high 
prediction accuracy. In the test set, grade I, grade II and 
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Figure 2 Overview of the study cohort. (A) Cohort information about the data dimension of the study cohort. (B) Venn diagram displaying 
the available number of patients with different data dimensions. WES, whole-exome sequencing; RNA seq, RNA-sequencing; CNV, copy 
number variation. 
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grade III can be predicted with AUCs of 0.68 (95% CI: 
0.46–0.89), 0.82 (95% CI: 0.72–0.92) and 0.90 (95% CI: 
0.84–0.97), respectively; low Ki67 and high Ki67 were 
predicted with AUCs of 0.81 (95% CI: 0.69–0.92) and 0.80 
(95% CI: 0.66–0.94), respectively. However, the models for 
predicting T category and pathological N category did not 
achieve perfect accuracy (Figure 4, Table 3).

We investigated the morphological patterns that were 
associated with the clinicopathologic characteristics. For a 
certain clinicopathological feature, we visually examined the 
tiles with the highest prediction score from the true positive 

patients. Tiles indicating grade I had the morphologic 
features of little cellular atypia and rare mitosis, and obvious 
glandular tubes. Tiles indicating grade II had more cellular 
atypia, more mitosis and less glandular tube than grade I. 
Tiles indicating grade III had features of conspicuously 
pleomorphic cells, frequent mitoses and no glandular tube 
(Figure S3A-S3C). The characteristics of high Ki67 image 
tiles were similar to those of grade III tiles, with lymphocyte 
infiltration. In addition, low Ki67 image tiles were similar 
to those of grade I–II with rare lymphocyte infiltration  
(Figure S3D,S3E).

Figure 3 Tissue type classification, examples of representative tiles and segmentation results. (A) Percentage of image tiles of the five tissue 
types. (B) Representative tiles of five tissue types. Tile scale bar: 128 μm. (C) Visualization of the segmentation results. The original H&E 
stained WSIs and the segmentation results were shown. Whole slide image scale bar: 4 mm. WSI, whole slide image; H&E, hematoxylin 
and eosin. 
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Prediction of multi-omics molecular features

In this section, we aimed to develop CNN models for 
predicting multi-omics molecular features from WSIs. We 

first predicted somatic mutations with a frequency of ≥4%; 

the AUCs ranged from 0.50 to 0.85 for the validation set 

and from 0.42 to 0.68 for the test set (Figure 5, Table 4). 

Table 2 Tissue types of the tiles used for different prediction targets

Prediction categories Prediction targets Tissue types of tiles sampled

Clinical pathological features T1 Tumor

T2–3 Tumor

N0 Tumor

N1–3 Tumor

Grade I Tumor

Grade II Tumor

Grade III Tumor

Low Ki67 Tumor

High Ki67 Tumor

Somatic mutations PIK3CA Tumor

TP53 Tumor

GATA3 Tumor

MAP3K1 Tumor

KMT2C Tumor

AKT1 Tumor

PTEN Tumor

FAT3 Tumor

SF3B1 Tumor

Gene set enrichment analysis scores Angiogenesis Tumor

DNA repair Tumor

Estrogen response early Tumor

G2-M checkpoint Tumor

IFN-γ response Tumor

PI3K/AKT/mTOR signaling Tumor

Immunotherapy biomarkers iTILs Tumor

sTILs Stroma and immune infiltrates

CD8A mRNA Stroma and immune infiltrates

PDCD1 mRNA Stroma and immune infiltrates

CD274 mRNA Tumor, stroma and immune infiltrates

Prognosis OS All five tissue types

DFS All five tissue types

iTILs, intratumoral tumor-infiltrating lymphocytes; sTILs, stromal tumor-infiltrating lymphocytes; OS, overall survival; DFS, disease-free 
survival. 
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Specifically, TP53 mutation and GATA3 mutation can be 
predicted with AUCs of 0.68 (95% CI: 0.56–0.81) and 0.68 
(95% CI: 0.47–0.89), respectively in the test set. Second, we 
predicted the GSEA scores of six cancer-related pathways. 
The AUCs ranged from 0.63 to 0.87 for the validation set 
and from 0.48 to 0.79 for the test set (Figure 5, Table 4). 
Third, we attempted to predict several key biomarkers 
associated with immunotherapy responses, including 
CD274 mRNA expression, CD8A mRNA expression, 
PDCD1 mRNA expression, sTILs and iTILs. The AUCs 
ranged from 0.59 to 0.76 for the validation set and from 0.51 
to 0.78 for the test set (Figure 5, Table 4).

We displayed the representative tiles indicating certain 
molecular characteristics (Figure S4). Tiles indicating 

somatic TP53 mutation were morphologically characterized 
by mitosis can be seen, with necroses appeared and 
rare lymphocyte infiltration; tiles indicating somatic 
PTEN mutation were characterized by rare mitosis, 
rare lymphocyte infiltration, and no obvious fibrous 
hyperplasia; and tiles indicating somatic GATA3 mutation 
were characterized by rare mitosis, little/moderate cellular 
atypia, and no glandular tube (Figure S4A-S4C). In 
terms of the image tiles characteristics of cancer- related 
pathways, we observed cells size were similar, and with 
lymphocyte infiltration in DNA repair image tiles; G2-M 
checkpoint image tiles were characterized by many mitosis; 
IFN-γ response pathway image tiles were characterized 
by mitosis and glandular tube observed; and PI3K/AKT/

Figure 4 Prediction of clinicopathological features. (A) Prediction of clinicopathological features in the validation set. (B) Prediction of 
clinicopathological features in the test set. AUC, area under the curve. 

Table 3 Predictions of clinicopathological features of HR+/HER2− breast cancer based on pathological whole-slide images using deep learning

Clinicopathological features Validation AUC (95% CI) Test AUC (95% CI)

T1 0.66 (0.54–0.78) 0.57 (0.44–0.70) 

T2–3 0.61 (0.49–0.74) 0.54 (0.41–0.67) 

N0 0.61 (0.48–0.74) 0.51 (0.39–0.64) 

N1–3 0.59 (0.47–0.72) 0.52 (0.39–0.65) 

Grade I 0.97 (0.92–1.00) 0.68 (0.46–0.89) 

Grade II 0.81 (0.71–0.91) 0.82 (0.72–0.92) 

Grade III 0.80 (0.70–0.89) 0.90 (0.84–0.97) 

Low Ki67 0.85 (0.71–0.99) 0.81 (0.69–0.92) 

High Ki67 0.83 (0.70–0.96) 0.80 (0.66–0.94) 

AUC, area under the curve; CI, confidence interval.
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Figure 5 Prediction of multi-omics molecular features. (A,B) Prediction of somatic mutations in the validation set and test set. The genes 
mutated in at least 4% in the HR+/HER2− breast cancer cohort were predicted. (C,D) Prediction of GSEA scores of six cancer-related 
pathways in the validation set and test set. (E,F) Prediction of immunotherapy biomarkers in the validation set and test set. AUC, area under 
the curve; GSEA, gene set enrichment analysis; iTILs, intratumoral tumor-infiltrating lymphocytes; sTILs, stromal tumor-infiltrating 
lymphocytes.  

mTOR signaling pathway image tiles were characterized 
by the polymorphic tumor cells, frequent mitoses, and 
high immune infiltration (Figure S4D-S4G). In addition, 
tiles indicating high CD8A mRNA expression had a 
high density of lymphocytes (Figure S4H). Moreover, 

those indicating high PDCD1 mRNA expression were 
characterized by myofibroblast hyperplasia (Figure S4I). 
Finally, the characteristics of the image tiles rich in iTILs 
were intratumoral lymphocytes can be seen, and those rich 
in sTILs were characterized by high density lymphocytes 
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Table 4 Predictions of multi-omics molecular features of HR+/HER2− breast cancer based on pathological whole slide images using deep learning

Prediction categories Multi-omics molecular features Validation AUC (95% CI) Test AUC (95% CI)

Somatic mutations PIK3CA 0.68 (0.56–0.80) 0.58 (0.44–0.71) 

TP53 0.73 (0.62–0.85) 0.68 (0.56–0.81) 

GATA3 0.50 (0.31–0.68) 0.68 (0.47–0.89) 

MAP3K1 0.81 (0.63–0.99) 0.42 (0.22–0.61) 

KMT2C 0.69 (0.49–0.89) 0.57 (0.36–0.79) 

AKT1 0.72 (0.49–0.94) 0.49 (0.27–0.71) 

PTEN 0.85 (0.72–0.97) 0.62 (0.40–0.83)

FAT3 0.84 (0.67–1.00) 0.61 (0.16–1.00)

SF3B1 0.75 (0.49–1.00) 0.47 (0.00–1.00)

Gene set enrichment analysis scores Angiogenesis 0.63 (0.51–0.75) 0.52 (0.39–0.65)

DNA repair 0.70 (0.59–0.82) 0.63 (0.50–0.75)

Estrogen response early 0.64 (0.50–0.77) 0.48 (0.34–0.62)

G2-M checkpoint 0.87 (0.80–0.95) 0.79 (0.69–0.90)

IFN-γ response 0.72 (0.61–0.84) 0.62 (0.50–0.75)

PI3K/AKT/mTOR signaling 0.71 (0.60–0.82) 0.63 (0.50–0.76)

Immunotherapy biomarkers iTILs 0.59 (0.35–0.82) 0.78 (0.55–1.00)

sTILs 0.76 (0.65–0.87) 0.76 (0.65–0.87)

CD8A mRNA 0.66 (0.54–0.77) 0.71 (0.60–0.82)

PDCD1 mRNA 0.68 (0.56–0.79) 0.74 (0.63–0.85)

CD274 mRNA 0.64 (0.52–0.76) 0.51 (0.39–0.64)

AUC, area under the curve; CI, confidence interval; iTILs, intratumoral tumor-infiltrating lymphocytes; sTILs, stromal tumor-infiltrating 
lymphocytes. 

infiltration in stroma (Figure S4J,S4K).

Prediction of prognosis

We built clinically based prognosis prediction models based 
on clinical prognostic features and integrated models based 
on clinical prognostic features combined with deep features 
of image tiles. First, in the development of the clinically 
based models, T category, N category and radiotherapy 
were identified as prognostic factors by univariate analysis 
(Table 5). Since the negative prognostic effect of radiotherapy 
might be related to the selection bias, radiotherapy was not 
used in the subsequent modelling (33). The T category 
and N category were used to build a clinical-based model 
(Figure 6A). The clinically based models achieved a cross-
validation C-index of 0.75 in the prediction of OS and 

0.71 in the prediction of RFS (Figure 6B). Then, we built 
integrated models combining clinical features and deep 
features of image tiles. The integrated models achieved a 
cross-validation C-index of 0.76 in OS prediction and 0.73 
in RFS prediction (Figure 6C). The integrated models also 
yielded higher HRs between the high- and low-risk groups 
than the clinical models.

Discussion

Based on the data from the multi-omics HR+/HER2− 
breast cancer cohort, we collected WSIs and designed a 
workflow based on deep learning to train neural network 
models to predict the clinical and multi-omics molecular 
characteristics and prognosis.

In terms of predicting clinicopathological features, we 
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found that the prediction accuracy for histological grade 
and Ki67 was good. The histological grade is closely related 
to the nature of the tumor. When the grade is higher, the 
prognosis of the patient is worse (22). Ki67 is an important 
indicator of proliferation of tumor cells, and it’s high 
expression is associated with poor prognosis. Studies have 
shown that patients with high Ki67 expression have a worse 
prognosis (34,35). 

In predicting multi-omics molecular characteristics, 
we used digital pathology to predict somatic mutations, 
important cancer pathways and immune-related targets. For 
somatic mutations, the models achieved high accuracy in 
predicting TP53 and GATA3 mutations. Studies have shown 

that patients with TP53 mutations have poorer prognoses 
and were more likely to develop resistance to tamoxifen and 
aromatase inhibitors (36,37). GATA3 mutations occurred 
mainly in patients with luminal-like breast cancer and 
were associated with a favourable prognosis (38). In terms 
of cancer-related pathways, we achieved high accuracy in 
predicting the G2-M checkpoint pathway and PI3K/AKT/
mTOR signalling pathway activation. Patients with tumors 
with G2-M checkpoint pathway activation are more likely to 
develop metastasis and have a worse prognosis (39). Previous 
studies indicated that PI3K inhibitors and AKT inhibitors 
improve the prognosis of patients with PI3K/AKT/mTOR 
pathway-activated HR+/HER2− breast cancer (40,41). 
Immunotherapy has excellent prospects in the treatment 
of breast cancer (42). Our models achieved high accuracy 
in predicting sTILs, iTILs, PDCD1 mRNA and CD8A 
mRNA expression, which were widely studied biomarkers 
that can distinguish patients who may benefit from 
immunotherapy (43-47). These results indicated that it may 
be possible to predict immunotherapy response based on 
WSI through deep learning.

Previous studies have made remarkable success in 
predicting patient outcomes based on WSIs using the deep 
learning algorithm. For example, Saillard et al. using two 
deep learning algorithms predicted the prognosis of liver 
cancer patients based on pathological sections (48). Byun 
et al. compared the CPH models, the random survival 
forest (RSF) and DeepSurv models in predicting the 
prognosis of renal cell carcinoma. The C-index values 
were 0.794, 0.789, and 0.802, respectively. The efficacy of 
DeepSurv was superior to the CPH models and the RSF 
models (49). Matsuo et al. published a study comparing the 
predictive efficacy of the CPH regression model based on 
clinicopathological features and the deep-learning neural 
network model in predicting prognosis in cervical cancer. 
The deep-learning model had higher accuracy in predicting 
prognosis of cervical cancer than the CPH regression model 
(mean absolute error, CPH regression vs. deep-learning, 
43.6 vs. 30.7) (50). The above studies indicated that deep 
learning was a new method for effectively predicting the 
prognosis of different types of tumor.

Deep learning was a new, emerging neural network 
technique that simulates the human brain for analyzing 
and interpreting data. In contrast to traditional image 
processing methods, deep learning can extract deep features 
of images to predict targets. We are the first study to predict 
clinicopathological features, somatic mutations, important 
cancer-related pathways, and immune-related targets in a 

Table 5 Univariate analysis of relapse-free survival using Cox 
proportional hazards models in the HR+/HER2− breast cancer 
cohort

Variables
Relapse-free survival

HR (95% CI) P

Age, years

≤50 Reference –

>50 1.09 (0.66–1.80) 0.732

T category

T1 Reference –

T2 1.85 (1.09–3.14) 0.022

T3 19.34 (5.65–66.22) <0.001

N category

N0 Reference –

N1 2.24 (1.10–4.53) 0.025

N2 4.11 (1.90–8.87) <0.001

N3 10.95 (5.40–22.20) <0.001

Tumor grade

I–II Reference –

III 1.40 (0.81–2.42) 0.230

Radiotherapy

No Reference –

Yes 2.91(1.76–4.79) <0.001

Chemotherapy

No Reference –

Yes 1.17 (0.62–2.19) 0.630

HR, hazard ratio; CI, confidence interval. 
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Figure 6 Prediction of prognosis. (A) Schematic overview of prognostic prediction using two strategies. (B) Kaplan-Meier curves for high- 
and low-risk groups stratified by the clinical-based model. (C) Kaplan-Meier curves for high- and low-risk groups stratified by the integrated 
model. WSIs, whole slide images; OS, overall survival; RFS, relapse-free survival; C-index, concordance index; HR, hazard ratio.

large-scale HR+/HER2− breast cancer cohort based on deep 
learning and WSIs. This research results were expected to 
achieve low-cost, rapid and convenient primary screening 
and prognostic assessment of therapeutic targets for HR+/
HER2− breast cancer, and promote the clinical realization 
of precise diagnosis and treatment of HR+/HER2− breast 
cancer, which is important for selection of treatment 
options. 

However, our study also had some limitations. First, 
although we developed models to predict a wide range 
of targets, including clinicopathological features, somatic 
mutations, important cancer pathways and immune-
related targets, only a few targets achieved high prediction 
accuracy. For example, the prediction accuracy values for 
MAP3K1 mutation and CD274 mRNA expression need 
to be improved. In future studies, we may further try to 

use cell-level features to predict molecular events. Second, 
our study lacked external cohorts to validate the accuracy 
of the model. Further research should use The Cancer 
Genome Atlas (TCGA) dataset for external validation of 
our prediction model.

Conclusions

In conclusion, this study successfully established a deep-
learning-based workflow to predict clinicopathological 
features, somatic mutations, important cancer pathways, 
immune-related targets and prognosis with HR+/HER2− 
breast cancer based on pathology images. Our workflow 
and models may promote efficient patient stratification 
and offers clues for artificial intelligence guided precision 
treatment of HR+/HER2− breast cancer.
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Figure S1 Patient inclusion procedure of the HR+/HER2− breast cancer cohort. FFPE, formalin-fixed, paraffin-embedded; WSIs, whole-
slide images; WES, whole-exome sequencing; RNA seq, RNA-sequencing; CNV, copy number variation.  
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Figure S2 Histogram of the number of tiles per slide of the HR+/HER2− breast cancer cohort. 
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Figure S3 Representative image tiles for the tumors of grade I (A), grade II (B), grade III (C), low Ki67 (D), and high Ki67 (E). Class 
activation maps highlight the regions contributing most to the prediction. Staining method: hematoxylin and eosin; scale bar: 128 μm.  
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Figure S4 Representative image tiles indicating certain molecular or pathological features. Representative image tiles for tumors with 
TP53 mutation (A), PTEN mutation (B) and GATA3 mutation (C). Representative image tiles for tumors with high GSEA scores of DNA 
repair pathway (D), G2-M checkpoint pathway (E) and IFN-γ response pathway (F). Representative image tiles for tumors with high 
CD8A mRNA expression (H), PDCD1 mRNA expression (I), high iTILs (J) and high sTILs (K). Staining method: hematoxylin and eosin; 
scale bar: 128 μm. iTILs, intratumoral tumor-infiltrating lymphocytes; sTILs, stromal tumor-infiltrating lymphocytes; GSEA, gene set 
enrichment analysis.  


