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Background: Acute respiratory distress syndrome (ARDS) is a common life-threatening critical illness with 
high mortality. Fusu mixture (FSM) can improve the mechanical ventilation in ARDS patients. However, 
the detailed pharmacological mechanisms and active substances of FSM are still unclear. This study aimed to 
explore the potential pharmacological mechanisms of FSM for treating ARDS and its chemical compositions.
Methods: A lipopolysaccharide (LPS)-induced ARDS mouse model was established, and the mice 
subsequently received FSM (50 mg/kg) orally for 5 days. Then, the blood samples and lung tissues were 
collected. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of tumor necrosis 
factor-α (TNF-α) and interleukin-6 (IL-6) in serum, and histopathology examinations were applied to 
analyze the inflammatory response of lung tissues in ARDS mice. In addition, protein expressions of 
aquaporin 5 (AQP-5), surfactant-associated protein C (SP-C), and Notch1 were detected by western blot 
assays and immunohistochemical (IHC) examination. In addition, the chemical compositions of FSM were 
analyzed by high performance liquid chromatography (HPLC), using standard reference agents.
Results: After LPS induction, the serum levels of IL-6 and TNF-α in ARDS mice were significantly 
increased (P<0.01, vs. Control), and FSM significantly reduced these 2 pro-inflammatory cytokines (IL-6 
and TNF-α) compared to the model mice (P<0.01). Histopathology examinations showed FSM significantly 
attenuated the inflammatory responses in lung tissues. Furthermore, after FSM treatment, the SP-C and 
AQP-5 were significantly increased, compared to the Model mice (P<0.01), and FSM also up-regulated the 
Notch1 expressions in lung tissues of ARDS mice (P<0.001, vs. Model).
Conclusions: Collectively, it is suggested that FSM alleviates inflammatory reactions and promotes the 
proliferation of alveolar epithelial cells in LPS-induced ARDS mice via regulation of SP-C, AQP-5, and 
Notch1 in lung tissues.
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Introduction

Acute respiratory distress syndrome (ARDS), characterized 
by intractable hypoxia and expiratory dyspnea, is a common 
life-threatening critical illness in with high mortality (1,2). 
Importantly, new emerging evidences have revealed that 
ARDS has a very high morbidity in coronavirus disease 
of 2019 (COVID-19)-induced respiratory tract infection, 
which is also a predominant cause for the poor prognosis 
of patients with severe COVID-19 pneumonia (3-5). The 
detailed pathogenesis for ARDS is extremely complex and 
remains uncovered, and the results of previous research 
showed that ARDS might be closely correlated to lung 
injury induced by inflammatory cytokines released from 
several inflammatory cells (6,7). Currently, the available 
treatment for ARDS predominantly comprises supportive 
treatment including lung protective ventilation, restricted 
liquid management, and extracorporeal membrane 
oxygenation (ECMO). Taraxasterol (8), vitamin D (9), and 
fraxin (10) may help alleviate ARDS by downregulating 
inflammatory responses. However, there is a lack of 
evidence or effective drugs to ameliorate ARDS in the 
clinical setting. Consequently, there is an urgent need to 
discover more reliable candidate drugs for the treatment 
of ARDS (11,12). Natural herbal medicines, particularly 
traditional Chinese medicines (TCMs), are irrefutably 
precious resources for the exploration of new drugs for 
treating various intractable diseases (13,14). Increasing 
evidences have shown that TCMs could be used to improve 
COVID-19 pneumonia, and could be also effective to treat 

ARDS induced by various viruses or bacteria (15-17).
Fusu mixture (FSM) is an effective TCM formula 

for treating ARDS or septic shock in the clinic that is 
derived from the ancient prescriptions of Qian-yang-dan 
recorded in a TCM monograph of Yilizhenchuan written 
in the Qing dynasty (18,19). FSM comprises 7 herbal 
medicines, including Aconiti Lateralis Radix Praeparata (Fuzi;  
30 g), Amomi Fructus (Sha Ren; 15 g), Testudinis Carapax 
et Plastrum (Gui Jia; 30 g), Ephedrae Herba (Ma Huang;  
10 g), Zingiberis Rhizoma (Gan Jiang; 10 g), and Glycyrrhizae 
Radix et Rhizoma (Gan Cao; 12 g). Our previous clinical 
research results suggested that FSM can improve the 
mechanical ventilation in ARDS patients via increase of the 
arterial partial pressure of oxygen (PaO2) and oxygenation 
index [PaO2/fraction of inspired oxygen (FiO2)] (18,19). 
In the previous clinical practice, we found that the TCM 
FSM could supplement the basic treatment of Western 
medicine, clinically reduce the extravascular lung water 
index of patients with sepsis-induced ARDS, and improve 
the prognosis of patients (19). However, the detailed 
pharmacological mechanisms and active substances 
of FSM are still unclear. So, in our present study, we 
established an ARDS animal model to explore the potential 
pharmacological mechanisms of FSM for treating ARDS, 
and we also further explored the chemical compositions of 
FSM analyzed by high performance liquid chromatography 
(HPLC). We present this article in accordance with the 
ARRIVE reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-23-367/rc).

Methods

Chemicals and reagents

Lipopolysaccharide (LPS), hematoxylin and eosin (H&E) 
staining, and pentobarbital sodium were purchased 
from Sigma-Aldrich (Shanghai, China); enzyme-linked 
immunosorbent assay (ELISA) kits for interleukin-6  
(IL-6) and tumor necrosis factor-α  (TNF-α) ,  and 
horseradish peroxidase (HRP)-conjugated secondary 
antibodies were purchased from Boster Biotech (Wuhan, 
China); primary antibodies of surfactant-associated 
protein C (SP-C), aquaporin 5 (AQP-5), and Notch1 were 
purchased from Thermo Fisher Inc. (Shanghai, China).

Preparation of water extracts of FSM

All the 7 herbal medicines, obtained from the Chinese 
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Pharmacy of our hospital, were powdered and soaked in 
purified water for 30 minutes. Then, all the herbal medicines 
were decocted for 1.5 hours. The extracts were subsequently 
filtrated and concentrated at 50 ℃ using a rotary evaporator 
in vacuum to afford the water extracts of FSM.

Animal model and grouping

A total of 30 mice (20±2 g), purchased from the Dossy 
Experimental Animals Co. Ltd. (Chengdu, China), were 
used to establish the ARDS model. All mice were male in 
order to avoid interference with the female estrus cycle 
and obtain more stable experimental results. All animals 
were kept in a specific pathogen free (SPF) environment 
with temperature and humidity of 22–24 ℃ and 50–60%, 
respectively. The animals had free access to food and 
water. Sterilized and residue-free wood shavings were used 
for animal bedding. Animal experiments were performed 
under a project license (No. 2021DL-003) granted by the 
Experimental Animal Ethics Committee of the Hospital of 
Chengdu University of Traditional Chinese Medicine, in 
compliance with institutional guidelines for the care and 
use of animals. A protocol was prepared before the study 
without registration. After 1 week of adaptive feeding, the 
research began.

In the specific experimental mouse modeling and 
grouping process ,  20 mice were anesthet ized by 
pentobarbital sodium at the dose of 50 mg/kg (i.p.), and 
subsequently received the LPS via the respiratory tract by 
nasal drip. Another 10 mice received the same operation 
with normal saline instead of LPS, and were used as the 
Normal control mice. Then, the ARDS mice were divided 
into 2 groups (n=10), including a Model (LPS) and a 
Treatment group (LPS+FSM). The selection of the above 
experimental animals is random.

The Control and Model (LPS) group were administered 
orally with normal saline (10 mL/kg), and the Treatment 
group (LPS+FSM) were received FSM at the dose of  
50 mg/kg orally. All the mice received a 5 days’ treatment. 
At the end of the treatment, blood samples were collected 
from the abdominal aorta under anaesthetization by 
pentobarbital sodium at the dose of 50 mg/kg (i.p.). After 
blood sampling, mice were sacrificed via decapitation and 
the lung tissues were collected for further determination.

ELISA assays

Serum samples were prepared by centrifugation at 10,000 rpm 

for 10 minutes, then levels of TNF-α and IL-6 in serum 
were determined by commercial ELISA kits following the 
standard protocols of instruction.

Histopathology examination

Histopathology examinations were applied to analyze the 
inflammatory response of lung tissues in ARDS mice following 
the reported method with minor modifications (20). Lung 
tissues were collected and fixed in 4% paraformaldehyde for 
24 hours, and then embedded in paraffin. After a series of 
standard protocols for tissue section preparation, the lung 
tissue section was cut into 5 μm and stained with H&E. The 
histopathological changes of lung tissues were analyzed and 
the representative figures were captured using an optical 
microscope (Olympus, Tokyo, Japan).

Immunohistochemical (IHC) examination

Conduct IHC experiments on mice from the three groups 
mentioned above. After the lung tissue section (5 μm) 
was prepared as described in previous method, protein 
expressions of AQP-5, SP-C, and Notch1 were detected 
by IHC examination. Then, the IHC determination was 
carried out with primary antibodies of AQP-5, SP-C, 
and Notch1. Primary antibodies included: AQP-5 (1:200, 
PA5-36529, Thermo Fisher), SP-C (1:200, PA5-76631, 
Thermo Fisher), and Notch1 (1:200, PA5-32522, Thermo 
Fisher), β-actin (1:5,000, AC026, ABclonal, USA). Briefly, 
the deparaffinized tissue sections were treated with citric 
acid and antigenic unmasked at 98 ℃ for 10 minutes and 
subsequently incubated with primary antibodies overnight 
at 4 ℃, followed by incubation with the secondary antibody 
at room temperature for 1 hour. Finally, the tissue sections 
were further stained with 3,3'-diaminobenzidine (DAB) 
solution. The target protein positive expressions of lung 
tissues were analyzed and the representative figures were 
captured using an optical microscope (Olympus, Japan).

Western blot assay

Total proteins of the lung tissues were extracted using 
radioimmunoprecipitation assay (RIPA) solution and the 
protein concentration was quantified by bicinchoninic acid 
(BCA) reagents. After separation of the protein bands by 
sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE), the target protein bands were blotted 
on a polyvinylidene fluoride (PVDF) membrane, and 
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subsequently incubated with primary antibodies of AQP-
5, SP-C, and Notch1, respectively. Then, the PVDF 
membrane was incubated with HRP-conjugated secondary 
antibodies, and followed visualized by chemiluminescence 
with the enhanced chemiluminescence (ECL) chemicals.

HPLC analysis

The main compositions in FSM were determined by HPLC 
extracts (21,22). Separation was carried out using the Agilent 
1200 High-Performance Liquid Chromatograph (Agilent, 
Santa Clara, CA, USA) with a Shimadsu InertSustain C18 
column (250 mm × 4.6 mm, 5 μm; Shimadsu, Kyoto, Japan) 
at 30 ℃ using a gradient elution at a flow rate of 1.0 mL/min. 
The acetonitrile (B) and 0.1% formic acid-water (A) was 
used as the mobile phase and the gradient program was 
as following: 0–15 min, 5–20% A; 15–40 min, 20–25% A; 
40–50 min, 25–35% A; 50–80 min, 35–65% A; 80–90 min, 
65–65% A. The volume of injected sample was 10 μL and 
the detection wavelength was set at 230 nm.

Statistical analysis

All values were described as the mean ± standard deviation. 
The software SPSS 22.0 (IBM Corp., Armonk, NY, 
USA) was used for statistical testing, and significance was 
determined by one-way analysis of variance (ANOVA) 
with the least significant difference (LSD) test. Statistical 
significance was defined as P<0.05.

Results

FSM decreased pro-inflammatory cytokines in serum of 
ARDS mice

As shown in Figure 1, after LPS induction, the serum 
levels of IL-6 and TNF-α in ARDS mice were significantly 
increased (P<0.01, vs. Control). Interestingly, FSM 
treatment significantly reduced these 2 pro-inflammatory 
cytokines compared to the model mice (P<0.01).

FSM improved pro-inflammatory responses in lung tissues 
of ARDS mice

As shown in Figure 2, after LPS induction, the alveolar 
septum was s ignif icant ly  broadened and obvious 
inflammatory reactions and pink homogenous edema fluids 
were observed in the alveolar cavity. In addition, the results 
also showed focal pulmonary dilatation, alveoli collapse, 
and multifocal hemorrhage. Interestingly, FSM significantly 
attenuated the inflammatory responses in lung tissues; no 
obvious alveoli collapse and multifocal hemorrhage were 
observed in the treatment group mice.

FSM increased AQP-5, SP-C, and Notch1 in lung tissues 
of ARDS mice

Subsequently, we explored the potential mechanisms of 
FSM for treating ARDS via western blot assays and IHC 
examinations. We determined the protein expressions of 

Figure 1. Results of the ELISA assays of IL-6 and TNF-α. Data were expressed as

mean±SD (n=10), **P <0.01, vs. Model.
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Figure 1 FSM decreased pro-inflammatory cytokines in serum of ARDS mice. (A) Results of the ELISA assays of IL-6 in Control, Model, 
and Treatment groups, respectively; (B) results of the ELISA assays of TNF-α in Control, Model, and Treatment groups, respectively. 
Data were expressed as mean ± SD (n=10), **, P<0.01 indicated vs. Model. IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; FSM, Fusu 
mixture; ARDS, acute respiratory distress syndrome; ELISA, enzyme-linked immunosorbent assay; SD, standard deviation.
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AQP-5, SP-C, and Notch1 (Figure 3) in the lung tissues of 
ARDS mice. Our results showed that after FSM treatment, 
the SP-C and AQP-5 were significantly increased, compared 
to the Model mice (P<0.01). Besides, FSM treatment also 
up-regulated the expression of Notch1 in the lung tissues 
of ARDS mice (P<0.001, vs. Model). In addition, similar 
results with the western blot assays were also observed from 
the IHC examinations on AQP-5 (Figure 4), SP-C (Figure 5), 
and Notch1 (Figure 6) in lung tissues of ARDS mice.

Chemical compositions of FSM

As shown in Figure 7, over 20 chromatography peaks were 
obtained from the HPLC chromatogram, and 8 constituents 

of FSM were identified by using standard reference 
agents, including (I) liquiritin, (II) isoliquiritin, (III) 
benzoylmesaconine, (IV) mesaconitine, (V) liquiritigenin, 
(VI) hypaconitine, (VII) glycyrrhizic acid, and (VIII) 
6-gingerol, respectively.

Discussion

FSM is a clinical empirical TCM formula for treating 
ARDS and other respiratory diseases. In the present study, 
we reported experimental animal evidences for FSM against 
ARDS for the first time, in addition, we also explored the 
related potential mechanisms.

The mouse model of LPS-induced ARDS is a consistent 

Figure 2 FSM improved pro-inflammatory responses in lung tissues of ARDS mice. (A-C) H&E-staining results of the histopathology 
examinations in Control, Model, and Treatment groups, respectively. FSM, Fusu mixture; ARDS, acute respiratory distress syndrome; H&E, 
hematoxylin and eosin.
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and reproducible ARDS animal model which can mimic the 
pathophysiology of ARDS in humans (23,24). In the real-
world study, the proinflammatory cytokines TNF-α, IL-
6, and IL-8 are among the most promising as biomarkers 
for predicting morbidity and mortality (25,26). In our 
present study, we established the LPS-induced ARDS 
mouse model to evaluate the curative effects of FSM 
against ARDS, and the results showed that FSM could 
significantly attenuate the ARDS symptoms of mice. The 
pathological characteristics of ARDS include increased 
pulmonary capillary permeability, uncontrolled local 
inflammatory responses, and inflammatory cytokines 
release, finally leading to systemic inflammatory response 
(23,27). Currently, it  is generally recognized that 
uncontrolled inflammatory reactions are closely related 
to the development of ARDS, and the over-produced 
inflammatory cytokines of IL-1, IL-6, and TNF-α further 
exacerbated the injury of alveolus (26,27). Recently, a study 
showed that the inhibition of miR-129-5p may induce 
autophagy and inhibit the inflammatory response by 
promoting the expression of the PPAR-γ, thereby relieving 
ARDS (28). Our present results showed that FSM treatment 
could remarkably attenuate the inflammatory responses and 
injury of lung tissues induced by LPS challenge, including 

reduction of inflammatory exudation, decrease of alveoli 
collapse and multifocal hemorrhage, and so on. In addition, 
FSM treatment could also reduce the serum levels of IL-6 
and TNF-α in ARDS mice.

SP-C, one of the pulmonary surfactants of the lung 
tissues, is important for maintaining the normal functions 
of lung tissues, such as regulation of alveolar surface tension 
and local defense system of lung (29). Importantly, recent 
studies have suggested that pulmonary surfactants could 
attenuate the ARDS both in children and adults (30,31). 
Aquaporins (AQP) are water channels with the function 
of regulating the balance of intracellular and intercellular 
water fluid (32). Current findings have shown that AQPs 
are closely correlated to the development of ARDS, and 
upregulation of AQPs are beneficial for improving ARDS 
(33,34). Notch/DLK1 is a key signaling pathway for the 
development of type II alveolar epithelial cells, which could 
be beneficial for the repair of lung function after ARDS 
(35-38). In our present study, we found that FSM treatment 
significantly up-regulated the protein expressions of SP-
C, AQP-5, and Notch1 in lung tissues of ARDS mice. In 
addition, we also analyzed the main composition of FSM, 
and 8 potential active constituents were identified including 
(I) liquiritin, (II) isoliquiritin, (III) benzoylmesaconine, (IV) 

Figure 3 Western blot assays suggested that FSM increased SP-C, AQP-5, and Notch1 in lung tissues of ARDS mice. **, P<0.01 indicated 
vs. Model. SP-C, surfactant-associated protein C; FSM, Fusu mixture; AQP-5, aquaporin 5; ARDS, acute respiratory distress syndrome.
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mesaconitine, (V) liquiritigenin, (VI) hypaconitine, (VII) 
glycyrrhizic acid, and (VIII) 6-gingerol. Consequently, 
future works might be devoted to investigating the activities 
of these monomers on ARDS and the related mechanisms.

In our study, we found that SP-C proteins were 
significantly elevated in the model group, either as a result 
of compensatory expression of the SP-C gene in the model 
construct or as a consequence of pulmonary epithelial cell 
damage in the model construct, which activates the repair 
mechanism of the body. Notably, the tissue expression 
of SP-C was further increased after pharmacological 
intervention, indicating that the intervention induced 
pulmonary epithelial cell proliferation accompanied by an 

up-regulation of SP-C protein expression. To determine 
the specific mechanisms of SP-C protein expression in 
the intervention arm, it is necessary to confirm this by 
histological analysis and specific staining in subsequent 
studies.

In the model group, AQP-5 was significantly reduced, 
indicating that the inhibition of the protein was significant 
in the modeling process, whereas in the intervention group, 
we found that AQP-5 was significantly elevated, even 
higher than in the control group. This suggests that the 
intervention not only affects the protein by improving the 
tissue status but is likely to have a regulatory effect on the 
AQP-5 gene. In subsequent studies, we need to validate 

Figure 4 Immunohistochemical assays revealed that FSM increased AQP-5 in lung tissues of ARDS mice. (A-C) Immunohistochemical 
assays results of AQP-5 in Control, Model, and Treatment groups, respectively. FSM, Fusu mixture; AQP-5, aquaporin 5; ARDS, acute 
respiratory distress syndrome.
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the mechanisms by which the AQP-5 gene is regulated in 
primary cells.

Notch signaling pathway has a critical role in regulating 
cell fate determination, proliferation, and differentiation 
during development and tissue regeneration (38). In the 
adult, Notch is involved in repair and regeneration of 
several airway cells types. Finn reported that Notch1 
expression was affected in type II pulmonary epithelial  
cells (39). Similarly, in the present study, FSM up-regulated 
the Notch expressions in lung tissues of ARDS mice, 
attenuating the inflammatory responses in lung tissues.

There are several limitations in this study. Firstly, there 
are too few inflammatory cytokine detections. Secondly, the 
research of signaling pathway is limited, due to the limited 
funds and conditions. In the future, we will continue to 
explore the relationship between FSM and the proliferation 
of alveolar epithelial cells.

Conclusions

In our study, FSM alleviates inflammatory reactions and 
promotes the proliferation of alveolar epithelial cells in 

A
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C

Figure 5 Immunohistochemical assays revealed that FSM increased SP-C in lung tissues of ARDS mice. (A-C) Immunohistochemical assays 
results of SP-C in Control, Model, and Treatment groups, respectively. FSM, Fusu mixture; SP-C, surfactant-associated protein C; ARDS, 
acute respiratory distress syndrome.
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Figure 6 Immunohistochemical assays revealed that FSM increased Notch1 in lung tissues of ARDS mice. (A-C) Immunohistochemical 
assays results of Notch1 in Control, Model, and Treatment groups, respectively. FSM, Fusu mixture; ARDS, acute respiratory distress 
syndrome.

Figure 7 Chemical analysis of FSM using HPLC. FSM, Fusu mixture; HPLC, high-performance liquid chromatography.
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LPS-induced ARDS mice via regulation of SP-C, AQP-5, 
and Notch1 in lung tissues, providing basic evidence for the 
clinical treatment.
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