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Introduction

Calcified aortic valve disease (CAVD) is a common 
cardiovascular disorder affecting between 13% of the 
population aged 65 and older (1), and the disease burden is 
expected to double over the next 50 years due to an ever-

increasing aging population (2). When the remodeling of 
valve tissues is sufficiently severe to result in hemodynamic 
changes at the aortic valve, CAVD manifests as aortic 
stenosis (AS), which is associated with high morbidity 
and mortality, with a 5-year mortality of 56% and 67% 
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of moderate and severe aortic stenosis respectively in 
a large Australian registry (3). Currently, there is no 
pharmacological treatment for CAVD. The only treatment 
available to patients with symptomatic severe AS is to 
implant mechanical or bioprosthetic valves either surgically 
or percutaneously (through a catheter). However, the 
intervention has several serious problems including 
anticoagulation therapy for life, deterioration and the 
substantial societal costs (estimated at £13,000 per patient 
over 5 years) (4). Therefore, identifying more suitable 
treatment targets or biomarkers to prevent progressive 
leaflet calcification or to delay the time to valve replacement 
is urgent.

CAVD is characterized by fibro-calcific remodeling 
of aortic valves, which is a progressive process involving 
lipoprotein deposition, chronic inflammation, myoblastic 
transition, and osteoblastic transition of valve interstitial 
cells (VICs) (5-7). Lipid-lowering therapy has failed to 
suppress CAVD progression (8). Inflammatory response 
mainly mediates the initiation phase of CAVD (9). 
The endothelial damage results in lipid infiltration and 
subsequent oxidation, initiating the inflammatory response 
within the valvular endothelium (10). Macrophages, 
neutrophils and mast cells have been proved associated with 
valvular thickening and the increase in osseous metaplasia 
within the valve (11-15), and the pro-inflammatory 

cytokines secreted by immune cells were identified to 
mediate the inflammatory response during AS (16,17). The 
propagation phase is characterized by the myofibroblast 
and osteoblast-like activation of VICs (10). VICs exist 
primarily as quiescent fibroblasts to maintain valve function 
and homeostasis (18). During the propagation phase, 
VICs transition to pro-fibrotic myofibroblast phenotype 
mediated by secreted biochemical cues (e.g.,  pro-
inflammatory cytokines and growth factors) (19-21). The 
myofibroblast phenotype of VICs results in pathological 
fibrosis and eventually contributes to the transition to 
osteoblast phenotype that promotes calcium phosphate 
deposition (22). It is known that preosteoblasts undergo a 
proliferative phase before fully committing to osteoblast-
like cells (23). Although previous studies suggested several 
pro-inflammatory cytokines participate in the eventual 
differentiation of myofibroblasts to osteoblast-like cells 
in the valve (18,24), only a few studies have explored the 
mechanism of the interaction between immune cells and 
myofibroblast-like phenotype of VICs in aortic valve 
calcification.

In this study, we downloaded the microarray dataset of 
CAVD from the Gene Expression Omnibus (GEO) database 
and then used machine learning algorithms to screen the 
markers of CAVD. Additionally, we used a combination of 
single-cell sequencing technology and CIBERSORT, an 
analysis tool using RNA-seq data to evaluate the expression 
of immune cells (25), to conduct target verification and 
explore underlying molecular mechanism of the interaction 
between immune cells and myofibroblast-like VICs. We 
present this article in accordance with the TRIPOD 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-23-72/rc).

Methods

Microarray data download

We used the “GEOquery” package (26) of R software 
(version 4.1.0, http://r-project.org/) to download human 
calcified aortic valve tissue sample datasets GSE12644 (27), 
GSE51472 (28) and GSE83453 (29) from the GEO (https://
www.ncbi.nlm.nih.gov/geo/) database (30). GSE12644 
and GSE51472 are both based on GPL570 platform. 
The inclusion criteria of the samples were as follows: 
calcified and normal aortic valve, excluding sclerotic aortic 
valve. Calcified aortic valves were collected from patients 
undergoing aortic valve replacement. Normal aortic 
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valves were collected from hearts harvested at the time of 
cardiac transplantation or aortic replacement. GSE12644 
contains 10 calcification samples and 10 normal samples, 
and GSE51472 dataset contained 5 calcification and  
5 normal samples. In addition, we used GSE83453, based 
on GPL10558 platform, to serve as the validation cohort, 
which contains 9 calcification samples and 8 normal 
samples.

Microarray data processing

Raw data of GSE12644 and GSE51472 datasets were read 
through the “affy” package (31), and the Robust Multi-
Array Average (RMA) algorithm was used for background 
correction and data normalization. The gene expression 
matrix of GSE12644 and GSE51472 were then combined, 
and the inter-batch difference was removed using the “sva” 
package (32). The effect of inter-sample correction was 
demonstrated using a two-dimensional principal component 
analysis (PCA) cluster plot. Differentially expressed genes 
(DEGs) was screened by the “limma” package (33), DEGs 
with P<0.05 and |log2FC|>1 were considered statistically 
significant. Subsequently, we used “clusterProfiler” 
package (34) to perform Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses of DEGs. Gene set enrichment analysis (GSEA) 
was performed on the gene expression matrix through the 
“clusterProfiler” package and “c2.cp.kegg.v7.0.symbols.
gmt” from the Molecular Signatures Database (MSigDB) 
was selected as the reference gene set (35). A false discovery 
rate (FDR) <0.25 and P<0.05 was considered significant 
enrichment.

Human specimen and ethics

Aortic valve tissue specimens were obtained from patients 
underwent surgical aortic valve replacement or heart 
transplantation at Fuwai Hospital in Beijing, China. 
Once collected, the tissues were submerged in Dulbecco’s 
modified Eagle’s medium (DMEM, Gibco, USA) for cell 
isolation. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
protocol was approved by the Institutional Review Board 
of Fuwai Hospital, Peking Union Medical College, Beijing, 
China. Written informed consent was obtained from each 
patient.

Single cell sequencing data processing

Aortic valve tissues were obtained from patients and 
prepared single-cell suspension to perform droplet 
sequencing. A paired-end sequencing library was prepared 
using the Nextera XT DNA library preparation kit 
(Illumina, San Diego, CA, USA) and libraries were 
sequenced using paired-end sequencing in samples sent to 
GenomeScan. Single-cell expression data were processed 
using the FastQC to perform quality control and low-
quality reads were filtered by cutadapt. Single-cell 
expression data were then used to map read to the reference 
genome (hg38, UCSC) based on STAR (2.5.2b). Gene 
annotation was implemented using featureCounts according 
to GENECODE (GRCh38.81). Cells with more than 500 
genes and less than 20% mitochondrial genes were retained.

Data integration was performed by Seurat (2.0.1). Unique 
molecular identifiers (UMIs) were calculated by Seurat to 
identify genes with significant expression variation and then 
used for PCA. The number of principal components for 
downstream analysis was obtained by evaluating principal 
components and corresponding genes. The above principal 
components were used to cluster the cells, and T-distributed 
Stochastic Neighbor Embedding (t-SNE) was used to 
visualize the clustering results. Pseudotime trajectory was 
constructed using semi-unsupervised Monocle. GO and 
KEGG enrichment analysis of differentially expressed genes 
was performed by DAVID (6.8).

Screening diagnostic markers

We combined least absolute shrinkage and selection 
operator (LASSO) logistic regression (36), support vector 
machine-recursive feature elimination (SVM-RFE) (37) 
and random forest (RF) (38) to perform feature selection to 
screen diagnostic markers for CAVD. The expression matrix 
of the GSE12644 and GSE51472 datasets were merged into 
an independent dataset after quality control, and then the 
diagnostic efficiency of the obtained diagnostic marker was 
determined based on this independent dataset. The LASSO 
algorithm was applied with the “glmnet” package (39) 
using 10-fold across-validation. SVM-RFE is a machine 
learning method based on support vector machine, which is 
used to find the best variables by deleting SVM-generated 
eigenvectors. SVM module was established to further 
identify the diagnostic utility of the biomarkers in CAVD 
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by “e1071” package with the 10-fold cross validation (40).  
The RF algorithm was a machine learning algorithm based 
on decision tree theory classified according to its ability 
to deal with high-dimensional data and select the most 
informative gene clusters. We integrated LASSO, SVM-
RFE and RF algorithms for further analysis. A two-sided 
P<0.05 was considered to be statistically significant.

Evaluation of immune cell infiltration

The gene express ion matr ix  data  were  uploaded 
to CIBERSORT. CIBERSORT presents cell-type 
identification by estimating relative subsets of RNA 
transcripts. Newman et al. designed and validated a 
leukocyte gene signature matrix, termed LM22. LM22 
is a gene matrix that contains 547 white blood cells 
characteristic genes to differentiate 22 types of immune 
cells, including myeloid subgroup, natural killer (NK) cells, 
naive and memory B-cells, and seven types of T-cells (25). 
We used CIBERSORT in combination with the LM22 
characteristic matrix to estimate the proportion of 22 
human immune cell phenotypes. Moreover, CIBERSORT 
apply linear support vector regression to deconvolve a 
given mixture based the genes from the signature matrix. 
Data with a CIBERSORT P value <0.05 were filtered 
and reserved for the following analysis. Proportions of 
infiltrating immune cells were visualized in R software using 
“ggplot2” package and “pheatmap” package. The difference 
of immune cells infiltration between aortic valve tissue 
samples from CAVD patients and normal individuals were 
shown in the boxplot using the “ggplot” package.

Correlation analysis between diagnostic markers and 
infiltrating immune cells

Spearman correlation analysis was used to identify genes 
significantly associated with immune cell abundance. 
The Spearman correlation coefficient was used to access 
the threshold effect, with r>0.6 and P<0.05, indicating a 
significant threshold effect between studies. The correlation 
between biomarkers and immune infiltration was visualized 
by the “ggplot2” package.

Statistical analysis

Statistical analyses and figures were implemented and 
obtained using R software (version 4.1.0). The pheatmap 
package was applied to constructed the expression heat maps 

of important genes and immune infiltration in calcified 
aortic valves and normal aortic valves. The area under the 
curve (AUC) value in the receiver operating characteristic 
(ROC) curve was used to evaluate the diagnostic efficacy. 
P<0.05 was considered statistically significant.

Results

Identified DEGs in calcified aortic valve sample and 
functional correlation analysis showed DEGs mainly 
associated with extracellular matrix remodeling and 
immune response

The batch effect was removed after merging the GSE12644 
and GSE51472 datasets. The merged gene expression 
matrix was then normalized and processed, and it is 
presented in a two-dimensional PCA cluster diagram before 
and after normalization (Figure 1A,1B). The results showed 
that the clustering of the two groups of samples was more 
obvious after normalization, indicating that the sample 
source was reliable. 205 DEGs were identified using the 
“limma” package form the gene expression matrix, as shown 
in the heat map (Figure 1C).

GO analysis results showed that DEGs mainly related 
to extracellular matrix structural constituent, serine-type 
endopeptidase activity, serine-type peptidase activity, 
serine hydrolase activity and extracellular matrix structural 
constituent conferring tensile strength (Figure 2A). The 
relationship between biological processes terms and each 
DEG was shown in Figure 2B. KEGG pathway analysis 
shows that DEGs were mainly enriched in the PI3K-
Akt signaling pathway, ECM-receptor interaction, focal 
adhesion, protein digestion and absorption and complement 
and coagulation cascades (Figure 2C). Additionally, GSEA 
results showed that the enriched pathways mainly involved 
chemokine signaling pathway, cytokine receptor interaction 
and hematopoietic cell lineage (Figure 2D). These results 
indicate that collagen matrix deposition and the immune 
response significantly affect the process of CAVD.

Screening CTHRC1 as characteristic gene via the 
comprehensive strategy

We used three different machine learning algorithms to 
screen key DEGs as biomarkers of CAVD. The LASSO 
logistic regression algorithm with 10-fold cross validation 
was used to identify 12 genes from robust DEGs as 
diagnostic markers for CAVD (Figure 3A,3B). Ten genes 
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Figure 1 Screening of DEGs in CAVD. (A,B) Two-dimensional PCA cluster plot of the GSE12644 and GSE51472 datasets before and 
after sample correction. (C) Heatmap of DEGs in datasets combined with GSE12644 and GSE51472. DEGs, differentially expressed genes; 
CAVD, calcified aortic valve disease.
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were identified as potential biomarkers by SVM-RFE 
algorithms (Figure 3C). Fourteen genes were identified 
using RF algorithm. The gene markers obtained by 
the three algorithms were overlapped, and finally one 
diagnostic related gene [collagen triple helix repeat 
containing 1 (CTHRC1)] was obtained. The diagnostic 
effectiveness of CTHRC1 was further validated in another 
independent dataset (GSE83453) with an AUC of 0.917 
(Figure 3D). CTHRC1 was initially found in the balloon-
injured rat arteries (41), and subsequent studies found 
that CTHRC1 was involved in many physiological and 
pathological processes, including vascular remodeling, tissue 
fibrosis, bone formation, developmental morphogenesis, 
inflammatory arthritis and cancer progression (42-46).

Single-cell RNA sequencing showed CTHRC1 highly 
expressed in a VIC subpopulation

We performed PCA on gene expression variability across 
all 4,314 cells and then classified the cells into cell-type 
groups as shown in Figure 4A,4B and Table 1. CTHRC1 
highly expressed in the VIC subpopulation, cluster 4 [valve 
interstitial cells-fibroblast 2 (VIC-FB2)]. VIC-FB2 had an 
abundance in myxoid, fibrotic, and calcified valves, with the 
highest proportion in calcified valves. VIC-FB2 was barely 
emerged in normal aortic valve sample (Figure 4C). We 

performed pseudotime differentiation trajectory analysis 
using Monocle to determine how the newly identified 
cell types were related to developmental states. The 
trajectory timing of VIC-FB2 was abundantly distributed 
in the stage of calcification (Figure 4D). GO analysis of 
cell cluster VIC-FB2 showed highly expressed genes 
related to collagen fibril organization, negative regulation 
of angiogenesis, endodermal cell differentiation, skeletal 
system development, positive regulation of smooth muscle 
cell proliferation and osteoblast differentiation (Figure 4E),  
which turned out to be related to pathways driving the 
calcification process, indicating VIC-FB2 played an 
important role in CAVD.

Differences in immune cells suggested the important role 
of the immune system in CAVD

We evaluated immune cells infiltration with GSE12644 
and GSE51472 merged data matrix based on CIBERSORT 
algorithm. The proportion of immune cells from 15 
calcified valve tissue samples and 15 normal valve tissue 
samples was illustrated in Figure 5A,5B. As shown in the 
boxplot of the immune cell infiltration difference, compared 
with the control sample, naïve B cells, resting dendritic cells 
and activated mast cells infiltrated more, whereas memory B 
cells, monocytes, activated dendritic cells resting mast cells 
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Figure 2 Enrichment plots from gene set enrichment analysis in CAVD. (A-C) Enrichment analysis of DEGs between calcified and normal 
aortic valve tissue samples via GO and KEGG database. (D) GSEA enrichment analysis of whole genes between calcified and normal aortic 
valve tissue samples. ECM, extracellular matrix; TNF, tumor necrosis factor; CAVD, calcified aortic valve disease; DEG, differentially ex-
pressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopaedia of Genes and Genomes. 



Lu et al. CTHRC1 was identified as the key gene of CAVD3732

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(7):3726-3740 | https://dx.doi.org/10.21037/jtd-23-72

 −5 −4 −3 −2 −1
Log(λ)

 0 2 4 6
L1 norm

 2 4 6 8 10
Number of features

0.0 0.5 1.0
1–Specificity

ROC curve for CTHRC1

9.558 (0.875, 1.000)

AUC: 0.917

11 11 12 9 9 7 5 4 4 2 2 1 0 4 8 10

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

−0.5

−1.0

0.11

0.10

0.09

0.08

0.07

0.06

0.05

1.0

0.8

0.6

0.4

0.2

0.0

B
in

om
ia

l d
ev

ia
nc

e

C
oe

ffi
ci

en
ts

10
×

 C
V

 e
rr

or

S
en

si
tiv

ity

B C DA

Figure 3 Identification of biomarker of CAVD based on machine learning algorithms. (A,B) Biomarkers selection by LASSO algorithms. (C) 
Biomarkers selection by SVM-RFE algorithms. (D) Evaluation of the diagnostic effectiveness of the biomarkers. CV, cross validation; ROC, 
receiver operating characteristic; CTHRC1, collagen triple helix repeat containing 1; AUC, area under the curve; CAVD, calcified aortic 
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and eosinophils infiltrated less (Figure 5C).

CTHRC1 associated with mast cells mostly

Correlation analysis showed that CTHRC1 was correlated 
15 of the 22 types of immune cells (Table 2). In correlation 
analysis, activated mast cells (r=0.708, P<0.001; Figure 6A),  
resting dendritic cells (r=0.680, P<0.001; Figure 6B) 
and neutrophils (r=0.588, P<0.001; Figure 6C) were 
demonstrated to be positively correlated with CTHRC1 
mostly, and eosinophils (r=−0.666, P<0.001; Figure 6D), 
resting mast cells (r=−0.617, P<0.001; Figure 6E) and 
monocytes (r=−0.594, P<0.001; Figure 6F) were negatively 
correlated with CTHRC1 mostly.

Discussion

CAVD is a common cardiovascular disease in developed 
countries and characterized by progressive fibrous 
calcification remodeling of valve leaflets (2,47). For 
advanced CAVD and CAVD accompanied by significant 
clinical symptoms, surgical and transcatheter aortic valve 
replacement remain the most effective treatment options. 
However, surgical aortic valve replacement was associated 
with a higher incidence of reoperation and bleeding (48). 
The complications of transcatheter aortic valve replacement 
included major vascular complications, stroke, coronary 
obstruction, intraventricular conduction abnormalities and 
paravalvular regurgitation (2,49). Therefore, it is important 

to understand the potential molecular mechanisms of 
CAVD to yield potential therapeutic targets to prevent or 
to reverse CAVD (2,50). Inflammatory response ignites 
the initiation phase, however, the molecular mechanisms 
mediated by immune cells are still not clear. We sought to 
identify potential target for CAVD based on GEO datasets 
and single-cell data and further explore the role of immune 
cell infiltration in CAVD.

In this study, we integrated three CAVD datasets from 
the GEO database and identified 205 DEGs. Enrichment 
analysis showed that these DEGs were mainly correlated 
with immune and inflammatory responses and extracellular 
matrix structural constituent formation process. In 
addition, the pathway enriched by GSEA mainly involves 
chemokine signaling pathway, cytokine receptor interaction 
and hematopoietic cell lineage. Inflammatory response, 
extracellular matrix transformation and cellular ossification 
have been proposed to be associated with the dynamic 
process of CAVD. Research have shown that combining 
multiple machine learning methods could improve 
predictive performance. We further identified CTHRC1 as 
the characteristic gene for CAVD by combining machine 
learning algorithms and DEGs in the public database. In 
another independent dataset, CTHRC1 got a high diagnostic 
effectiveness with an AUC of 0.917.

CTHRC1 is a secreted 28 kDa glycoprotein that is 
highly conserved from chordates to vertebrates (41). 
CTHRC1 expression has been correlated with conditions 
associated with deregulated wound and tissue repair, 
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Table 1 The name of the 13 cell clusters

Cell cluster 1 2 3 4 5 6 7 8 9 10 11 12 13

Cell, n 601 489 482 426 408 358 347 244 233 200 163 96 69

Cell type VIC-
FOSB+

VIC-
FB1

VIC- 
BMP2+

VIC-FB2 VIC-EC like VIC- 
SMC

VIC-CM 
like

EC-
CD34+

MC-MRC1+/
CD86+

MC like T cell CM B cell

VIC-FOSB+, valve interstitial cell-FosB Proto-Oncogene positive; VIC-FB1, valve interstitial cell-fibroblast 1; VIC-BMP2+, valve interstitial 
cell-bone morphogenetic protein 2 positive; VIC-FB2, valve interstitial cell-fibroblast 2; VIC-EC like, valve interstitial cell-endothelial 
cell like; VIC-SMC, valve interstitial cell-smooth muscle cell like; VIC-CM like, valve interstitial cell-cardiomyocyte like; EC-CD34+, 
endothelial cell-CD34+; MC-MRC1+/CD86+, macrophage cell-mannose receptor C-type 1+/CD86+; MC like, macrophage cell like; CM, 
cardiomyocyte.
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Figure 5 Evaluation and visualization of immune cells infiltration in calcified and normal aortic valve tissue samples. (A) The proportion 
of infiltrating immune cells of aortic valve tissue samples. (B) Heatmap of infiltrating immune cells of aortic valve tissue samples. (C) The 
difference of 22 subpopulations of immune cells between calcified and normal aortic valve tissue samples. *, P<0.05, **, P<0.01, ***, P<0.001, 
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including arterial injury (41), liver and lung fibrosis and 
myocardial infarction (43,51-55), liver injury caused 
by Hepatitis B infection (56,57), suggesting the pro-
fibrotic effect of CTHRC1. Additionally, several researches 
showed CTHRC1 was closely related to the osteogenesis. 
Takeshita et al. concluded that CTHRC1 might function as 
a guidance molecule for targeting stromal cells to promote 
the initiation of subsequent bone-forming activity (45). 
Mouse studies have clearly demonstrated that CTHRC1 
played the essential regulatory role in bone homeostasis 
(44,45,58). Chen et al. demonstrated that extracellular 
vesicles obtained from human urine-derived stem cells 
alleviated bone loss in osteoporotic mice by transferring 
CTHRC1 and osteoprotegerin to enhance osteoblastic bone  

formation (59). Evidence from above studies concluded that 
CTHRC1 might be a key gene of CAVD.

We used the valve samples from our hospital for 
single-cell RNA sequencing to obtain insight into key 
gene expression at the single-cell level and verify the 
transcriptomic results. After quality control, the VICs 
was divided into seven clusters. We found that expression 
level of CTHRC1 was upregulated, especially in VIC-
FB2 clusters. Decano et al. also identified a disease-driver 
population (DDP) within VICs, and temporal proteomic 
profiling of DDP-VICs identified potential targets for 
therapy, including Monoamine Oxidase A (MAOA) and 
CTHRC1. This strengthened the evidence for CTHRC1 as 
a potential therapeutic target. Moreover, our study included 
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Table 2 Correlation between CTHRC1 and infiltrating immune cells

Immune cells Correlation P value

B.cells.naive 0.493 4.248e−04

T.cells.CD4.memory.resting 0.322 2.728e−02

Dendritic.cells.resting 0.68 1.497e−07

Mast.cells.activated 0.708 2.61e−08

Neutrophils 0.588 1.407e−05

B.cells.memory −0.046 1.676e−03

T.cells.CD8 −0.306 3.654e−02

T.cells.CD4.naive −0.345 1.746e−02

T.cells.CD4.memory.activated −0.301 3.957e−02

T.cells.regulatory.Tregs. −0.342 1.865e−02

T.cells.gamma.delta −0.308 3.521e−02

NK.cells.resting −0.426 2.865e−03

Monocytes −0.594 1.072e−05

Eosinophils −0.666 3.313e−07

Mast.cells.resting −0.617 3.87e−06

 0 1000 2000 3000 4000
CTHRC1

 0 1000 2000 3000 4000
CTHRC1

 0 1000 2000 3000 4000
CTHRC1

 0 1000 2000 3000 4000
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Figure 6 Correlations between CTHRC1 and infiltrating immune cells in CAVD. (A-C) Positive correlations between CTHRC1 and 
infiltrating immune cells. (D-F) Negative correlations between CTHRC1 and infiltrating immune cells. CAVD, calcified aortic valve disease.

different types of diseased valves, including fibrotic valves, 
and performed the pseudotime analysis, which showed the 
changing tendency of the cells (60). Pseudotime analysis 
concluded that the cluster VIC-FB2 was abundantly 
distributed in the stage of calcification in CAVD, suggesting 
that CTHRC1 might have a potential role in the phenotype 
transformation of VICs. The function analysis showed 
that CTHRC1 was primarily involved in binding to a Wnt-
protein, frizzled binding and growth hormone receptor 
binding. Increased Wnt pathway gene expression has 
been proved to be associated with CAVD in adults (61). 
VICs treated with the noncanonical Wnt ligands exhibited 
significant apoptosis and enhanced calcification (62). This is 
likely mediated through frizzled and lipoprotein receptor-
related protein5/6 (LRP5/6) co-receptor activation in 
calcified aortic valve leaflets, which play overlapping roles 
in Wnt/β-catenin signaling (63). Transforming growth 
factor β1 (TGF-β1) is a member of the bone morphogenetic 
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protein (BMP) superfamily and is recognized as a potent 
pro-osteogenic factor and demonstrated associated with 
increased VIC activation of diseased aortic valves (64-66). 
Plentiful evidence links CTHRC1 to the TGF-β pathway 
(43,45,51,53,67,68). TGF-β1 has been demonstrated 
to induce VIC myofibroblast differentiation in a matrix 
stiffness-dependent manner (69). In an ex vivo CAVD model, 
TGF-β1 together with mechanical strain enhanced the 
activation, remodeling, and calcification potential of cultured 
VICs (70,71). Evidence from above studies concluded that 
CTHRC1 had the potential to be the therapeutic target.

The initial stage of is CAVD pathological process 
characterized by lesion development which is similar to 
that of atherosclerosis, such as endothelial injury, lipid 
infiltration, and inflammatory response (72). Nordquist et al. 
showed that in the mouse model of heart valve endothelial 
cell injury, positive injury response was associated with an 
acute increase in TGF-β1 enriched within the endothelial 
compartment and upregulation of CTHRC1 within the 
interstitium. And further experiments proved that the 
paracrine TGF-β1-CTHRC1 signaling axis potentially 
between valve endothelial cells (VECs) and VICs, 
influenced this biological function (73). Therefore, whether 
VECs-derived CTHRC1 was involved in the progression of 
the propagation phase is worth investigating.

In addition, based on CIBERSORT, we found that 
CTHRC1 was significantly correlated with activated mast 
cells mostly. A review had summarized that mast cells were 
associated with severity of aortic stenosis, restriction in 
leaflet motion, and calcification development (14). The 
chymase released by mast cells could convert angiotensin I 
to angiotensin II, contributing to the promotion of CAVD 
(11,12,74). Undetermined are the specifics of mast cells 
interactions with VICs. Fibroblasts and myofibroblasts are 
responsible for the excessive deposition of extracellular 
matrix (ECM). A study has demonstrated that mechanical 
stretch activated mast cells reseeded in fibrotic matrix. 
The activated mast cells degranulation then induced 
TGF-β1 activation, which contributed to pulmonary 
fibrosis progression (75). Previous experiments showed 
that CTHRC1 involved in the TGF-β1 signaling pathway. 
The existence of CTHRC1-immunocyte-VIC regulatory 
pathway is the future research direction. In addition, 
Zhang et al. found the cardiac fibroblasts exposed to 
sustained inflammatory signaling exhibited an increased 
pro-fibrotic phenotypic response in response to TGF-β 
signaling between cardiac mast cells and resident cardiac 
fibroblasts. The treatment with type I TGF-β receptor 

(TβR I) antagonist significantly attenuated the mast 
cell-induced the increase of alpha-smooth muscle actin 
(α-SMA) staining in fibroblasts (76). Studies have also 
reported that CTHRC1 was derived from fibroblasts and 
could be induced by TGF-β to modulate fibrotic process 
(53,77,78). Moreover, CTHRC1 was reported to be 
enhanced in fibroblasts and chondrocytic cells in response 
to TGF-β family members (68) and Ni et al. demonstrated 
that treatment with recombinant TGF-β increased the 
CTHRC1 level in colorectal cancer (CRC) cells, resulting in 
epithelial-mesenchymal transition promotion, by activating 
the TGF-β signaling pathway (79). Therefore, we speculate 
that the VICs with over-expressed CTHRC1 exhibit an 
increased repertoire of pro-fibrotic phenotypic responses in 
response to TGF-β released by mast cells. The immune cell 
activation-CTHRC1-VICs activation-VICs myofibroblast 
transformation signaling pathway is also worth further 
investigation.

Our study has certain limitations. First, the study 
lacks experimental verification, but the datasets used for 
analysis can be mutually verified to increase the reliability 
of the results. Second, direct analysis of the CTHRC1-
immunocyte-VIC pathway was lacking, but the emphasis 
of the study was on the new regulatory gene, CTHRC1. 
Future tests in cell biology are needed to verify the causal 
relationship between CTHRC1 and CAVD, as well as to 
verify the regulatory pathway involved in mast cells and 
VICs in CAVD.

Conclusions

In summary, we found that CTHRC1 is a biomarker 
associated with CAVD. Mast cells, B cells, dendritic cells 
and eosinophils are related to CAVD occurrence. CTHRC1 
and immune cells may play an important role in CAVD. 
Further exploration for the specific molecular mechanism 
of CTHRC1 and immune cells is required.
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