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Defining a therapeutic window in chemo- and 
immunotherapy of cancer

An important point in cancer treatment is defining molecular 
differences between tumors and normal tissue. First line 
treatment usually involves surgery but when the tumor is not 
completely removed, radiotherapy and/or chemotherapy are 
the next possible options. Radiotherapy induces DNA damage, 
as do many chemotherapy treatments. The concept is that 
the tumor is more sensitive to DNA damage as it proliferates 
faster than normal tissue. Other chemotherapeutics affect 
metabolism and microtubule stability, factors where fast 
growing tumor cells can be expected to be more sensitive than 
slower growing healthy cells. Some tumors can have specific 
mutated drivers that can be targeted by compounds such as the 
Abl inhibitor (Gleevec) in CML tumors or the BRAF (V600E) 
inhibitors in melanoma and sometimes (~2% of the cases) 
NSCLC (1-4). 

Both melanoma and NSCLC are tumors specified 
by many DNA mutations, due to respectively UV light 
exposure and smoking behavior. This fact can make these 

tumors more susceptible to the adaptive immune system 
that is trained to recognize new antigens (such as viruses, 
transplanted tissue but also mutated antigens; the immune 
response does not distinguish between these) (5,6). The 
interesting consequence of this aspect of the adaptive 
immune surveillance is that tumors with mutated antigens 
can be less sensitive to chemotherapy but more sensitive to 
immunotherapy. But how to activate the adaptive immune 
system against cancer? 

Current immunotherapy treatments for various 
forms of cancer

Tumors are obviously different with respect to their 
mutation rate (in immunological terms; antigenic load), 
their expression of MHC class I molecules (that should 
present the antigenic load to the immune system), their 
access by the immune system, and their local control of 
the immune system (the tumor microenvironment). It may 
not be a surprise that various ways to direct the immune 
system to a tumor have been studied for decades. As soon 
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as it was realized that MHC class I molecules present 
peptides of intracellular proteins to the immune system, 
peptide vaccination, peptide loading on dendritic cells, 
RNA transfection of antigens, exosome vaccination and 
more have been tried (7). These are a type of personalized 
treatment protocol where both the antigen and the immune 
cells of the patient are being used to try to generate strong 
immune responses against antigens specific for a tumor. 
The prime tumor in these studies was melanoma, which 
is considered immunogenic because of their many point 
mutations and the expression of proteins otherwise only 
expressed in melanocytes (such as tyrosinase and gp100), 
but also because of their spontaneous regression in a small 
subset of patients. While immune responses were boosted 
by the various therapies, these yielded responses in only a 
small set of patients, and the question was whether these 
responses could be improved (8).

Another approach was to extract lymphocytes from 
the patient tumor followed by expansion ex vivo (either 
or not with tumor fragments or peptides) in a medium 
supplemented with interleukin 2 (IL-2), a cytokine that 

assist in T cell differentiation and activation. These T cells 
are subsequently re-infused in the patient in the hope that 
this induces a stronger anti-tumor response. This is called 
tumor infiltrating lymphocyte (TIL) therapy (Figure 1). 
This type of therapy yielded response rates in various trials 
of approximately 50% in stage IV melanoma patients and 
7–20% of the patients in various studies had a complete 
response and long overall survival (OS) (9,10). TIL therapy 
has been tested mostly with melanoma patients, as these 
tumors have been proposed to be most sensitive to immune 
cell attack. A particular problem with this therapy is that 
it is labor intensive, immune cell based and extraordinary 
personalized. For these reasons, the therapy is also very 
expensive. A therapy where one compound can be used for 
many patients would be a better and more cost effective 
option for immunotherapy of tumors. 

Such an immunotherapy has been developed in cancer 
for some years. Initially humanized antibodies against 
unique proteins expressed on tumor cells were introduced 
in oncology treatment. Examples include Herceptin against 
Her2/neu in breast cancer and rituximab against CD20 in 
B cell lymphoma (11,12). These antibodies likely attract 
the complement system for elimination of the protein 
expressing tumor cells. These are examples of targeted 
therapies directed against relatively unique antigens on 
defined tumors. Alas, there are only few examples of such 
tumor-specific cell surface expressed proteins. 

Accelerating immune responses against the mutations in 
tumors would be another way to boost immunotherapy of 
cancer. This was originally done by treating patients with 
IFNγ or IL-2 with some reported responses in patients 
(13,14). These studies were not further expanded due to 
the induced strong auto-immune responses. More recently, 
antibodies were developed targeting proteins on T cells or 
(tumor) target cells that normally keep the immune system 
‘in check’. These so-called checkpoint antibodies have 
revolutionized immunotherapy. Humanized antibodies 
against two checkpoint proteins are currently used in 
clinical trials; antibodies against programmed cell death 
protein (PD)-1 (or its ligand PD-L1) and antibodies against 
CTLA-4. PD-1 is a cell surface protein expressed by T and 
B cells. It functions as an immune checkpoint by interacting 
with its ligand PD-L1 or PD-L2 on other cells including 
various tumor cells (Figure 2). This interaction dampens 
the activation of the T lymphocytes. The PD-1, PD-L1/2 
system is developed to prevent auto-immunity, however, 
cancer is capable of using this system to its advantage by 
inactivating the immune response against itself by simply 
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Figure 1 A schematic overview of adoptive T cell transfer or 
TIL therapy. The tumor is removed from the patient, T cells are 
isolated from the tumor and grown under laboratory conditions 
to expand and activate the tumor specific lymphocytes in the 
pool of lymphocytes. Once sufficient numbers of ‘tumor-specific’ 
lymphocytes have been generated, they are reinfused in the original 
patient now depleted of lymphocytes to generate ‘space’ for the 
new tumor-specific lymphocytes. This approach is extremely 
individualized. 
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expressing PD-L1 or PD-L2. Immunotherapy using PD-1 
blockades is based on interrupting this interaction with 
specific humanized antibodies and allowing tumor-specific 
T cells that are kept in check by the tumor environment to 
now become activated to, hopefully, eliminate the tumor 
cells, which indeed is successful in some 20% of melanoma 
patients. This is a prime example of an effective immune 
checkpoint blockade and successful immunotherapy (15). 

CTLA-4 is a receptor found at the surface of T cells 
that competes likely with the activating receptor CD28 for 
the same ligands. CTLA-4 inhibits CD28 thus preventing 
the activation of lymphocytes, in fact creating immune 
tolerance. When CTLA-4 control is inhibited (for examples 
by antibodies, like ipilimumab), cytotoxic T cells can become 
activated to recognize and destroy cancer cells, when they 
were recognizing these tumors. Blocking both PD-1 and 
CTLA4 by combining nivolumab and ipilimumab can 
further improve immune responses against untreatable 
melanoma. This showed a significant longer disease-
free progression in patients treated with this antibody 

combination therapy than the single therapy arms and 
reported a 2-year OS of 40%. Interestingly, a direct link 
between PD-L1 expression on melanoma tumors and the 
success of checkpoint antibodies was sometimes observed (16)  
while another study failed to observe this (17). There is 
currently not a good, validated and accepted biomarker that 
predicts successful tumor immunotherapy with checkpoint 
antibodies. In addition, it should be noted that these therapies 
come at a price as the immune system is triggered to become 
auto-reactive. Autoimmune responses following checkpoint 
antibody therapy are indeed frequently observed (18)  
and can limit treatment. The question is then to what 
extent immunotherapy with checkpoint antibodies can 
be improved to cure more patients while controlling 
autoimmune responses, but this definitively will be a major 
area of research for the coming years.

Immunotherapy in non-small cell lung cancer 
(NSCLC)

If checkpoint antibodies are effective in melanoma because 
of the many neo-antigens that are seen by cytotoxic T 
cells as foreign, then these antibodies may be effective in 
lung cancer as well, as smoking induces many mutations in 
these tumors (19). In the past year the FDA has approved 
two humanized anti-PD-1 antibodies for therapeutic use 
in advanced lung cancer; Keytruda (pembrolizumab) and 
Opdivo (nivolumab). Three more PD-1 blockade antibodies 
are currently in phase III trials; atezolizumab, durvalumab 
and avelumab. These trials are testing various treatment 
options in combination and as stand-alone treatment.

A pooled analysis study of NSCLC patients combined 
seven studies on the effect of checkpoint antibodies 
including 914 patients in total. An objective response of 
checkpoint antibodies on OS of NSCLC patients was 
observed. Blocking PD-1/PD-L1 with these antibodies 
yielded some 24% OS after 2 years (the docetaxel control 
arm had a 10% survival at that point) (19). Surprisingly, it is 
unclear whether this relates to PD-1 or PD-L1 expression, 
as the studies contradict each other on this point (15,20,21). 
Yet, these studies suggest that the presentation of mutated 
antigens through MHC class I to cytotoxic T cells that 
have lost their checkpoint control can be effective for a 
subgroup of lung cancer patients. The question is, can this 
be improved to yield responses to a larger group of NSCLC 
patients. One option could be to improve the presentation 
of the mutated antigens by MHC class I molecules (16). 

Figure 2 The concept of checkpoint antibodies in immunotherapy. 
The T cell receptor on CD8+ cytotoxic T cells recognizes MHC 
class I molecules in combination with a specific peptide (grey 
dot). This would activate the T cell and induce the delivery of the 
cytolytic hit on the tumor cell unless the response is quenched 
by checkpoint proteins like PD-1 on the activated cytotoxic T 
cells and its cognate receptor PD-L1 or PD-L2 on the tumor 
cell. Checkpoint antibodies bind to these proteins to inhibit their 
interaction and prevent the quenching of the immune responses, 
thus initiating unrestricted killing of tumor cells by tumor cell 
specific cytotoxic T cells.

Tumor cell

PD-11

MHC Class I

Tolerance Cytotoxic lymphocyte

PD-1

T cell receptor

Activation

antiPD-1

Cytokine release



E561Journal of Thoracic Disease, Vol 8, No 7 July 2016

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2016;8(7):E558-E563jtd.amegroups.com

The immunoproteasome in support of 
immunotherapy

Antigen presentation of mutated antigens by MHC class I 
molecules follow a particular path (22). Proteins are degraded 
in small fragments by the proteasome. These fragments 
can be further trimmed or even fully degraded into single 
amino acids. A fraction of the peptides manage to contact a 
peptide transporter in the ER membrane, called TAP. TAP 
introduces the peptides in the ER for consideration by MHC 
class I that selects high affinity ones for display at the cell 
surface and consideration by cytotoxic T cells.

The proteasome is a large multisubunit protease in the 
form of a constricted barrel with three different protease 
subunits in the middle chamber. Proteins (usually after 
modification by ubiquitin) have to enter this chamber in an 
unfolded state for degradation into fragments (i.e., peptides). 
The proteasome comes in different flavors. The two best 
known ones are the constitutive and the immunoproteasome 
(23-25). The three active subunits of the proteasome are 
replaced by three others in the immunoproteasome (i.e., in 
immune cells or after cell exposure to IFN-γ) resulting in 
an altered handling of antigens (Figure 3). In general it is 
assumed that the immunoproteasome is geared at making 

peptides that are optimal for antigen presentation by MHC 
class I molecules, thus resulting in better immune responses. 
Is this relevant for the immune responses to NSCLC? 

A recent article by Tripathi and colleges (26) investigates 
the negative regulation of immunoproteasome subunits 
in NSCLC with a mesenchymal phenotype and how this 
can be associated to a poor outcome. They reported down 
regulation of immunoproteasomal subunits in cell lines that 
have undergone epithelial to mesenchymal (EMT) change 
together with patient data underlining that the negative 
regulation of these subunits could serve as a marker for 
EMT and is associated with poor outcome. They first 
analyzed gene expression profiles of all 49 genes related 
to proteasome and associated processes. A significant 
difference was observed for immunoproteasome subunits 
and for related genes. These included lower expression 
of IRF1 and STAT1, proteins involved in regulating 
expression of immunoproteasome subunits. This related to 
gene expression profiles corresponding to mesenchymal cell 
types (27). Further analyses suggested that these expression 
profiles could serve as a prognostic factor for EMT. 
Immunohistochemical staining for immunoproteasome 
subunit PSMB8 corresponded to decreased survival 
for patients in the lowest quartile of expression. The 
authors did not report staining for the other two 
immunoproteasome subunits PSMB9 and PSMB10. A lower 
mRNA expression of PSMB8 and PSMB9 in recurrent lung 
tumors was extracted from public datasets. Alas, the authors 
did not complete the analyses by including PSMB10. Yet 
expression of immunoproteasomes, definitively in light 
of the immunotherapy approaches discussed above, could 
be an interesting prognostic factor, especially when such 
data could be linked to clinical responses to checkpoint 
inhibitors. This was not included in this study.

Why would immunoproteasome expression affect clinical 
outcome? One option is that the peptidome on MHC class 
I (named HLA in human) in NSCLC is different due to 
immunoproteasome expression (Figure 3). The authors tested 
this and identified peptides that are presented on a variety of 
cell lines in different EMT states. These data suggested that 
the diversity and numbers of MHC class I presented peptides 
is much lower in mesenchymal cell lines than in epithelial 
cell lines. These data were further supported by initiating 
immunoproteasome expression by simply exposing the 
mesenchymal cell lines to IFN-γ followed by analysis of the 
MHC class I peptidome. Differences in immunoproteasome 
expression in NSCLC may result in different antigen 
degradation and then a different peptidome presented by 
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Figure 3 The constitutive (upper) and the immunoproteasome 
(bottom) generate different peptide fragments (bars in colors) 
from the same antigen. The proteolytically active subunits 
different between the proteasomes are shown in blue in the 
immunoproteasome. These generated fragments are ultimately 
presented by MHC class I molecules at the cell surface for 
consideration by cytotoxic T cells. The peptidome in MHC class I 
will be different in cells expressing the different proteasome forms. 
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MHC class I to cytotoxic T cells. This may promote a better 
outcome of disease… (26).

And now…

The immunoproteasome does not degrade more antigens 
but perhaps produces better fragments for presentation by 
MHC class I. It may, however, be difficult to understand 
how the immunoproteasome ‘knows’ which fragments are 
best for the different MHC class I alleles in an outbred 
population such as Homo sapiens. Yet, it is likely that a 
more diverse peptide pool from the antigens present in a 
cell increases the option for presentation of the modified 
fragment that can be recognized by cytotoxic T cells as 
non-self. TIL therapy effectiveness has been linked to 
the diversity of tumor antigens found in melanoma (9). 
Along these lines, it is possible that the effects of anti-
PD-1 or any other checkpoint antibody treatment would 
also depend on the variability and diversity of the peptide 
repertoire presented by MHC class I on tumor cells. 
Immunoproteasome expression levels could then assist in 
determining the responses to T cells awakened after the 
removal of their checkpoint by anti-PD-1 antibodies. One 
recent publication about the genomic and transcriptomic 
features of patients either or not responding to anti-PD-1 
treatment correlated a high mutational load in melanoma 
with improved survival. This is unlikely the whole story 
since the same study showed that objective responses did 
not correlated to these factors (27,28). 

These were data for melanoma and the studies on the 
effect of checkpoint therapy on NSCLC are lagging behind 
these studies. Yet, Tripathi et al. (26) provide information 
that can be used in combination with checkpoint inhibitors 
as they suggest an important role of expression of the 
immunoproteasome in NSLCL in responsiveness to 
immunotherapy. How to induce this expression is not 
further discussed but could be of interest to study with 
the aim to include this in combination with checkpoint 
antibody therapy. One option is to combine checkpoint 
antibodies with radiotherapy where MHC class I expression 
is increased by mTOR activation resulting in better TIL 
therapy and checkpoint antibody responses (29,30). Another 
option may be to combine PD-1 blockades, TIL therapy 
and IFN-γ: first start with IFN-γ treatment of the patient 
to induce upregulation of immunoproteasome expression 
and MHC class I associated peptide diversity. Then remove 
the tumor and proceed with a TIL therapy protocol. 
Once the tumor specific cytotoxic T cells have expanded, 
a further treatment with checkpoint antibodies may allow 

optimal T cell responses in the tumor microenvironment 
while overcoming the many local immune suppressive 
mechanisms. This may further increase the OS of 
NSCLC patients after immunotherapy. Yet, it may come 
at a cost; the financial costs of this personalized treatment 
will be exceedingly high and the therapy may be limited 
by accelerated autoimmune responses. The advantage of 
combining checkpoint antibodies with radiotherapy is that 
the latter is local rather than systemic thus limiting side 
effects such as auto-immunity responses. Yet these or other 
ways to induce expression of the immunoproteasome to 
improve the diversity of MHC class I presented peptide 
repertoire may be an important step on the road to 
immunotherapy as a mainstream treatment option for cancer. 
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