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Background: Gram-positive bacterial infections are very common in the intensive care unit (ICU) 
and may lead to sepsis. However, there are no models to predict the risk of sepsis in persons with Gram-
positive bacterial infections. Therefore, the purpose of this study was to create and validate a nomogram for 
predicting the risk of sepsis in patients with common gram-positive bacterial infections.
Methods: Patients infected with three common Gram-positive bacteria who were admitted to the 
Multiparameter Intelligent Monitoring in Intensive Care IV (MIMIC IV) database were included in this 
retrospective cohort study. A Cox regression model was used to develop a nomogram for predicting 3-day, 
1-week, 2-week, and 1-month sepsis probability. The performance of the nomogram was analyzed using 
receiver operating characteristic (ROC) curves, calibration curves, and decision curves.
Results: In total, 19,961 eligible patients were enrolled from MIMIC IV datasets. All participants were 
allocated to training and validation cohorts at random in a 7:3 ratio. The use of more than 3 types of 
antibiotics, dementia, ethnicity, aspartate aminotransferase (AST), neutrophils, the use of antifungal drug, 
ventilation and need for vasopressors were all discovered to be highly correlated with enhanced probability 
of sepsis in patients with Gram-positive bacteria. A prediction nomogram was constructed using these  
8 predictors. The area under the curve (AUC) for predicting 3-day, 1-week, 2-week, and 1-month sepsis 
risk in the training cohort was 0.857, 0.774, 0.740, and 0.728, respectively, and that in the validation cohort 
was 0.855, 0.781, 0.742, and 0.742, respectively. The predictive power of our model is better than the SOFA 
score. The model had good predictive performance in all three classes of Gram-positive bacteria. Based on 
the calibration and clinical decision curves, the nomogram correctly predicted sepsis in patients with Gram-
positive bacteria.
Conclusions: We were able to build a nomogram to predict the probability of sepsis in patients with 
Gram-positive bacteria, particularly those infected with Streptococcus spp. and Staphylococcus spp. This model 
performs effectively, and it might be used clinically to manage patients with Gram-positive bacteria.
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Introduction

Sepsis is a clinical disease defined by life-threatening organ 
failure caused by an aberrant host response to infection, and 
both sepsis and septic shock are serious healthcare issues (1). 
Although the “Surviving Sepsis Campaign” has existed for 
more than 20 years, sepsis mortality and morbidity remain 
unacceptably high, affecting millions of people worldwide 
each year, with over 30% dying within 90 days (2,3). 
Early detection and treatment of sepsis in the initial hours 
following its onset can significantly reduce mortality (1).  
Hence, detecting early sepsis is crucial for preventing the 
progression from early sepsis to septic shock. However, 
unlike other medical emergencies, sepsis is a complex and 
dynamic syndrome that makes precise clinical decision-
making difficult (4).

Numerous previous studies have been devoted to 
discovering potential predicted risk modes or biomarkers 
to detect early sepsis. The results of some studies have 
suggested that the NeoSeD score (5), and Presepsin  
(P-SEP) (6) may have a good performance to detect sepsis 
in infants. However, owing to the peculiarity of the research 
sample, these findings cannot be applied to a wide range of 
people. Some other studies have found some novel markers 
or methods, such as chemokine ligand 7 (CXCL7) (7), and 
deep learning-based model using electrocardiography (8), 
that may be useful in detecting early sepsis. These novel 
discoveries, unfortunately, cannot be widely applied due 
to limitations in local laboratory conditions or equipment. 

In addition, other research has also discovered that some 
factors may have a certain relationship with sepsis, but the 
value of these factors has not been evaluated, making it 
impossible to apply them appropriately in clinical decision-
making (9,10).

Systemic inflammatory response syndrome (SIRS) was 
the first sepsis-diagnosed criteria, and it has been used as 
a diagnostic standard for sepsis for more than 20 years. 
However, with a better understanding of infectious diseases, 
it was revealed that some “sepsis” detected by SIRS was 
just an appropriate host response to infectious diseases. As 
a result, SIRS was abandoned due to a lack of discriminant 
and convergent validity (11,12). A recent case-control 
study discovered that the current screening score in the 
emergency department, known as quick Sequential Organ 
Failure Assessment (qSOFA), may be associated with higher 
mortality than SIRS. Therefore, a novel screening method 
for the early detection of sepsis is required (13).

The severity of sepsis is determined, in part, by the 
pathogen responsible for the initial infection. Initially, 
it was thought that the pathogens causing sepsis were 
predominantly Gram-negative pathogens, but more recent 
epidemiologic a study has shown a greater preponderance 
of Gram-positive pathogens (14). A study based on 
10 million cases of sepsis showed that Gram-positive 
bacteria accounted for 52.1% of reported sepsis cases 
in 2000, Gram-negative bacteria accounted for 37.6%, 
polymicrobial infections accounted for 4.7%, anaerobes 
accounted for 1.0%, and fungi accounted for 4.6% (14). 
Meanwhile, Gram-positive, and Gram-negative bacteria are 
highly heterogeneous in terms of susceptible populations, 
susceptible sites, and mechanisms of infection (15-18). 
However, no studies have been conducted to predict the 
risk of sepsis in populations infected with Gram-positive 
bacteria.

Therefore, the primary objective of this research was to 
create and verify a nomogram as a simple predictive model 
for predicting the risks of sepsis in patients with common 
Gram-positive bacterial infections and stratifying patients 
into low or high-risk sepsis groups. Since Staphylococcus 
spp., Streptococcus spp., and Enterococcus spp. are the most 
prevalent gram-positive bacteria among sepsis-causing 
organisms, we chose infected individuals with these bacteria 
as our study population (19). We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-23-
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1133/rc).

Methods

Sources of data

The Multiparameter Intelligent Monitoring in Intensive 
Care Database IV (MIMIC IV) is a large critical care 
database which was used to collect data for the present 
study. MIMIC IV is a widely available public database that 
contains comprehensive and high-quality data for every 
patient admitted to a tertiary academic medical facility 
in Boston, MA, USA, between 2008 and 2019 (20). This 
database was verified by the Institutional Review Board 
of the Massachusetts Institute of Technology. We were 
granted approval to collect data from MIMIC IV after 
taking the National Institutes of Health (NIH) web-
based training course and the Protecting Human Research 
Participants examination (ID: 11218931). The MIMIC IV 
program was approved by the Institutional Review Boards 
of the Massachusetts Institute of Technology and Beth 
Israel Deaconess Medical Center. Patient information 
is anonymized so that informed patient consent is not 
required. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Population selection criteria

Patients infected with more than one of the three common 
Gram-positive bacteria on admission were considered 
eligible for the study. Gram-positive bacterial infections 
were determined by blood culture results. The three 
common Gram-positive bacteria included Streptococcus 
spp., Staphylococcus spp., and Enterococcus spp. Sepsis 
is characterized as severe organ failure induced by an 
abnormal host response to infection (11). Organ dysfunction 
is defined as a sudden increase in the overall SOFA score of 
more than 2 points as a result of the infection.

Sepsis is characterized as severe organ failure induced by 
an abnormal host response to infection. In this study, sepsis 
was defined according to Sepsis 3.0: patients with proven or 
suspected infection with an elevation of ≥2 SOFA points (11). 
Confirmed or suspected infection was determined based on 
ICD codes and microbiologic culture results.

The exclusion criteria were as follows: If a patient 
was admitted more than once, only the first stay with an 
available admission time was analyzed. Patients who were 
discharged or died within 24 hours after admission were 

excluded. Patients diagnosed with sepsis before or within 
24 hours of admission were excluded. In the present study, 
patients with missing values were excluded.

Data collection and definitions

Age, gender, ethnicity, insurance, marital status, admission 
time, first time of being diagnosed with sepsis, discharge 
time, comorbidities, Glasgow coma scale (GCS), central 
venous pressure (CVP), SOFA score, vital signs, use of 
vasopressors, laboratory test results, and mechanical 
ventilation were all collected from MIMIC IV using 
Structured Query Language (SQL) in PostgreSQL 
(version 14.2: https://www.postgresql.org/). For multiple 
measurements, we used data within 24 hours of admission 
for analysis. If an indicator was measured multiple times 
within 24 hours of admission, the first measurement was 
used. Treatments initiated after the onset of sepsis (e.g., 
medications, mechanical ventilation, and dialysis) were 
considered ineffective.

Endpoint and follow-up time

If a patient had sepsis more than once, only time of the first 
diagnosis was used as the endpoint, and the period between 
the time of admission and the endpoint was used as the 
follow-up time (days). If a patient did not manifest sepsis, 
the discharge time was analyzed as the endpoint, and the 
time between the discharge time and the endpoint was the 
follow-up time.

Statistical analysis

Continuous and categorical variable data were reported 
in the form of a median with an interquartile range and 
a frequency with a percentage, respectively. The whole 
study cohort was randomly stratified into training cohorts 
(n=13,973) and validation cohorts (n=5,988) in a 7:3 ratio. 
The training cohort is used for feature selection and 
training of the model and the validation cohort is used 
to validate the performance of the model. In the training 
cohort, Cox regression models were used to select variables 
that had a significant association with the risk of sepsis. 
A multivariate stepwise Cox regression incorporated 
variables that were statistically significant in univariate 
Cox regression. Multivariate stepwise Cox regression is a 
popular method for detecting factors that are relevant to 
the prognosis of patients (21,22). Statistically significant 
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variables in multivariate stepwise Cox regression were 
incorporated into the final multivariate Cox proportional 
hazards model, and the corresponding nomogram was 
plotted. Finally, the performance of the model was validated 
using receiver operating characteristic (ROC) curves, time-
dependent ROC curves, calibration curves, and clinical 
decision curves.

R 4.0.5 software (R Foundation for statistical Computing, 
Vienna, Austria) was used to conduct all statistical analyses. 
The nomogram was depicted utilizing the “rms” package. 
The decision curves and calibration curves were depicted 
utilizing the “dcurves” package. The “survivalROC” and 
“riskregression” packages was used to plot ROC curves. P 
values less than 0.05 were deemed statistically significant.

Results

Baseline characteristics

A total of 42,120 participants were admitted with three 
common Gram-positive bacterial infections throughout the 
research period. After elimination based on the exclusion 
criteria, 19,961 eligible patients were finally recruited 
(Figure 1).

Table 1 shows the details of the baseline characteristics 
of those patients enrolled, and a detailed comparison of the 
demographics and predictive variables between the training 
and validation cohorts. A total of 7,244 patients were 
infected with Streptococcus spp., 5,982 with Staphylococcus spp., 
and 6,735 with Enterococcus spp. A total of 19,032 patients  

were diagnosed with sepsis, whereas 929 patients were 
not diagnosed with sepsis before discharge. No significant 
differences were detected between the training and 
validation cohorts in the distribution of three Gram-positive 
bacterial infections, the number of sepsis, and the time of 
occurrence of sepsis after admission. Most patients in the 
overall cohort were White (66.7%). The most common 
coexisting disease was hypertension [13,233 (66.3%)], 
followed by uremia [8,534 (42.8%)], and diabetes [6,810 
(34.1%)], whereas dementia, atrial fibrillation (AF), obesity, 
asthma, myocardial infarction, cirrhosis, burn, and chronic 
obstructive pulmonary disease (COPD) were present in 
28.0%, 21.9%, 18.7%, 14.8%, 12.7%, 7.8%, 6.7%, and 
6.6% of total patients, respectively. Tuberculous (3.1%), 
paralysis (1.6%), human immunodeficiency virus (HIV)/
aids (1.4%), stroke (0.8%), and connective tissue disorders 
(0.2%) were less common. Most patients used more than 
3 antibiotics [14,249 (71.4%)], whereas antifungal drug, 
vasopressors, and dialysis were used in 12.9%, 17.7%, and 
4.8% of total patients, respectively.

Nomogram construction and validation

A total of 8 predictive variables [the use of more than 
3 types of antibiotics, dementia, ethnicity, aspartate 
aminotransferase (AST), neutrophils, the use of antifungal 
drug, ventilation and need for vasopressors] were preserved 
in the final simplified model and utilized to build the 
nomogram using stepwise selection in the Cox proportional 
hazards regression model. Multivariable Cox proportional 

Data criterion:
Infected with one of the following three Gram-positive

bacteria on admission: Streptococcus spp., Staphylococcus spp., and Enterococcus spp.
(n=40,120)

Study patients (n=19,961)

Training set (n=13,973) Validation set (n=5,988)

Excluded:
(1) Duplicates removed (n=9,637)
(2) Missing data (n=3,964)
(3) Dead, discharged, or diagnosed 

with sepsis in 24 hours (n=6,558)

Figure 1 Flowchart of included patients.
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Table 1 Characteristics of patients included in the study and analysis of the differences between the training and validation cohorts

Characteristics Total patients (n=19,961) Validation cohort (n=5,988) Training cohort (n=13,973) P

Gram-positive bacteria

Streptococcus spp. 7,244 (36.3) 5,103 (36.5) 2,141 (35.8) 0.31

Enterococcus spp. 6,735 (33.7) 4,664 (33.4) 2,071 (34.6) 0.102

Staphylococcus spp. 5,982 (30.0) 4,206 (30.1) 1,776 (29.7) 0.544

Sepsis 929 (4.7) 644 (4.6) 285 (4.8) 0.67

Time (days)† 3.88 [2.28, 6.93] 3.88 [2.27, 6.95] 3.88 [2.30, 6.90] 0.917

Demographics

Gender (male) 8,868 (44.4) 6,211 (44.5) 2,657 (44.4) 0.931

Age (years) 60.00 [44.00, 73.00] 60.00 [44.00, 73.00] 60.00 [44.00, 73.00] 0.691

Ethnicity 0.835

Asian 710 (3.6) 502 (3.6) 208 (3.5)

Black 3,186 (16.0) 2,229 (16.0) 957 (16.0)

Other 2,745 (13.8) 1,939 (13.9) 806 (13.5)

White 13,320 (66.7) 9,303 (66.6) 4,017 (67.1)

Insurance 0.722

Medicaid 1,849 (9.3) 1,281 (9.2) 568 (9.5)

Medicare 7,772 (38.9) 5,458 (39.1) 2,314 (38.6)

Others 10,340 (51.8) 7,234 (51.8) 3,106 (51.9)

Complications

Cancer 4,386 (22.0) 3,056 (21.9) 1,330 (22.2) 0.608

Asthma 2,961 (14.8) 2,038 (14.6) 923 (15.4) 0.137

AF 4,372 (21.9) 3,084 (22.1) 1,288 (21.5) 0.39

Cirrhosis 1,561 (7.8) 1,091 (7.8) 470 (7.8) 0.944

Connective tissue 48 (0.2) 42 (0.3) 6 (0.1) 0.013

COPD 1,308 (6.6) 904 (6.5) 404 (6.7) 0.488

Dementia 5,583 (28.0) 3,902 (27.9) 1,681 (28.1) 0.845

Diabetes 6,810 (34.1) 4,728 (33.8) 2,082 (34.8) 0.209

Hypertension 13,233 (66.3) 9,242 (66.1) 3,991 (66.6) 0.497

Myocardial infarction 2,544 (12.7) 1,774 (12.7) 770 (12.9) 0.769

Obesity 3,724 (18.7) 2,624 (18.8) 1,100 (18.4) 0.509

Paralysis 329 (1.6) 225 (1.6) 104 (1.7) 0.56

Renal failure 19 (0.1) 11 (0.1) 8 (0.1) 0.367

Stroke 163 (0.8) 118 (0.8) 45 (0.8) 0.56

Tuberculous 622 (3.1) 442 (3.2) 180 (3.0) 0.588

Uremia 8,534 (42.8) 5,915 (42.3) 2,619 (43.7) 0.068

Table 1 (continued)
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Table 1 (continued)

Characteristics Total patients (n=19,961) Validation cohort (n=5,988) Training cohort (n=13,973) P

Burn 1,332 (6.7) 915 (6.5) 417 (7.0) 0.295

HIV 277 (1.4) 214 (1.5) 63 (1.1) 0.01

Treatment

Dialysis 951 (4.8) 652 (4.7) 299 (5.0) 0.338

Antibiotics ≥3 types‡ 14,249 (71.4) 9,939 (71.1) 4,310 (72.0) 0.231

Vasopressors 3,536 (17.7) 2,455 (17.6) 1,081 (18.1) 0.424

Antifungal drug 2,570 (12.9) 1,766 (12.6) 804 (13.4) 0.133

Antibiotic sensitivity 0.083

Intermediate 343 (1.7) 247 (1.8) 96 (1.6)

Resistant 10,549 (52.8) 7,340 (52.5) 3,209 (53.6)

Sensitive 2,885 (14.5) 1,989 (14.2) 896 (15.0)

Unknown 6,184 (31.0) 4,397 (31.5) 1,787 (29.8)

Ventilation 0.226

HFNC 84 (0.4) 62 (0.4) 22 (0.4)

Invasive 3,401 (17.0) 2,391 (17.1) 1,010 (16.9)

None 13,430 (67.3) 9,393 (67.2) 4,037 (67.4)

Noninvasive 155 (0.8) 122 (0.9) 33 (0.6)

Supplemental oxygen 2,544 (12.7) 1,764 (12.6) 780 (13.0)

Tracheostomy 347 (1.7) 241 (1.7) 106 (1.8)

Laboratory data

Neutrophils ≥70% 10,661 (53.4) 7,419 (53.1) 3,242 (54.1) 0.179

Platelet count 0.251

<100×109/L 858 (4.3) 598 (4.3) 260 (4.3)

>300×109/L 5,763 (28.9) 3,987 (28.5) 1,776 (29.7)

(100–300)×109/L 13,340 (66.8) 9,388 (67.2) 3,952 (66.0)

Creatinine 0.828

<0.5 mg/dL 336 (1.7) 233 (1.7) 103 (1.7)

>1.2 mg/dL 4,077 (20.4) 2,840 (20.3) 1,237 (20.7)

0.5–1.2 mg/dL 15,548 (77.9) 10,900 (78.0) 4,648 (77.6)

ALT ≥40 U/L 3,992 (20.0) 2,815 (20.1) 1,177 (19.7) 0.439

AST ≥40 U/L 4,514 (22.6) 3,155 (22.6) 1,359 (22.7) 0.872

Total bilirubin ≥1.5 mg/dL 1,587 (8.0) 1,138 (8.1) 449 (7.5) 0.129

Basophils (%) 0.40 [0.20, 0.60] 0.40 [0.20, 0.60] 0.40 [0.20, 0.60] 0.526

HCO3
− (mmol/L) 26.00 [23.00, 28.00] 26.00 [23.00, 28.00] 26.00 [23.00, 28.00] 0.152

Table 1 (continued)
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regression analysis in the training cohort revealed that 
using more than 3 types of antibiotics [adjusted hazard ratio 
(HR), 2.123; 95% confidence interval (CI): 1.381–3.264; 
P=0.0006], needing vasopressors (adjusted HR, 1.474; 95% 
CI: 1.226–1.772; P<0.0001), AST ≥40 U/L (adjusted HR, 
1.296; 95% CI: 1.101–1.525; P=0.0018), and neutrophil 
ratio ≥70% findings (adjusted HR, 1.524; 95% CI: 1.282–
1.811; P<0.0001), dementia (adjusted HR, 0.540; 95% CI: 
0.442–0.659; P<0.0001), need for antifungal drug (adjusted 
HR, 0.628; 95% CI: 0.520–0.759; P<0.0001), ventilation 
status and ethnicity were all independently related to an 
elevated risk of sepsis. Table 2 shows the associated HRs of 
the predictive variables in the training cohort.

In the total study cohort, the incidence of sepsis in 
patients was 4.9%, 4.5%, 4.6% and 4.7% at 3-day, 1-week, 
2-week, and 1-month, respectively. The nomogram for 
predicting 3-day, 1-week, 2-week, and 1-month sepsis 
risk is depicted in Figure 2. The nomogram was created 
by proportionately translating each regression coefficient 
in multivariable Cox analysis to a 0 to 100 points scale. 
Each covariate among the 8 variables that comprise the 

nomogram was given a score by drawing a matching vertical 
line straight down to the axis labeled points. Individual 
probabilities of 3-day, 1-week, 2-week, and 1-month 
sepsis may be calculated by summing the entire score and 
determining its position on the total points scale. For each 
variable included in the model, we plotted Kaplan-Meier 
survival curves based on their grouping. The frequency of 
sepsis can be seen in the risk table below the curve (Figure 3).

Area under the curve (AUC), calibration plots, and 
decision plots were utilized to examine the performance of 
this nomogram. In both the training and validation cohorts, 
we generated ROC curves for 3-day, 1-week, 2-week, 
and 1-month sepsis risk, with the AUC value displayed 
(Figure 4). The AUC for predicting 3-day, 1-week, 2-week, 
and 1-month sepsis risk in the training cohort was 0.857, 
0.774, 0.740, and 0.728, respectively (Figure 4A-4D), and 
was 0.855, 0.781, 0.742, and 0.742, respectively, in the 
validation cohort (Figure 4E-4H), showing that the model 
had strong discrimination. We also generated the ROC 
curves for 3-day, 1-week, 2-week, and 1-month sepsis risk 
for 3 Gram-positive bacterial infections in the test cohort 

Table 1 (continued)

Characteristics Total patients (n=19,961) Validation cohort (n=5,988) Training cohort (n=13,973) P

BUN (mg/dL) 16.00 [12.00, 23.00] 16.00 [12.00, 23.00] 16.00 [11.00, 23.00] 0.954

EO (%) 1.40 [0.60, 2.60] 1.40 [0.60, 2.60] 1.40 [0.60, 2.60] 0.785

Glucose (mg/dL) 106.00 [91.00, 135.00] 106.00 [91.00, 135.00] 106.00 [91.00, 135.00] 0.322

HCT (%) 37.70 [34.10, 41.10] 37.80 [34.20, 41.10] 37.60 [34.00, 41.00] 0.202

HGB (g/dL) 12.60 [11.30, 13.80] 12.60 [11.30, 13.80] 12.60 [11.30, 13.80] 0.237

MCH (%) 30.10 [28.60, 31.60] 30.20 [28.60, 31.60] 30.10 [28.60, 31.50] 0.206

MCHC (%) 33.40 [32.40, 34.30] 33.40 [32.40, 34.30] 33.30 [32.40, 34.30] 0.413

Monocytes (%) 5.50 [4.10, 7.30] 5.50 [4.10, 7.30] 5.50 [4.10, 7.30] 0.562

Potassium (mmol/L) 4.10 [3.80, 4.50] 4.10 [3.80, 4.50] 4.10 [3.80, 4.50] 0.793

RDW (%) 13.70 [13.10, 14.90] 13.70 [13.10, 14.90] 13.80 [13.10, 14.80] 0.781

RBC (×1012/L) 4.22 [3.79, 4.61] 4.23 [3.80, 4.61] 4.21 [3.78, 4.61] 0.36

Sodium (mmol/L) 139.00 [137.00, 141.00] 139.00 [137.00, 141.00] 139.00 [136.00, 141.00] 0.679

WBC (×109/L) 8.10 [6.30, 10.80] 8.10 [6.30, 10.80] 8.10 [6.30, 10.80] 0.919

SOFA 3.00 [2.00, 5.00] 3.00 [2.00, 5.00] 3.00 [2.00, 4.00] 0.288
†, the time of being diagnosed with sepsis or discharge; ‡, used more than 3 types of antibiotics. Data are presented as n (%) or median [IQR]. 
AF, atrial fibrillation; COPD, chronic obstructive pulmonary disease; HIV, human immunodeficiency virus; HFNC, high flow nasal catheter; 
ALT, alanine aminotransferase; AST, aspartate aminotransferase; HCO3

−, bicarbonate; BUN, blood urea nitrogen; EO, eosinophils; HCT, 
hematocrit; HGB, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red 
blood cell distribution width; RBC, red blood cell; WBC, white blood cell; SOFA, Sequential Organ Failure Assessment.
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Table 2 Univariate and multivariate step Cox regression analysis of the sepsis risk (training cohort)

Factors Levels
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Demographics

Age 1.011 (1.007–1.016) <0.0001

Ethnicity Asian – – – -

Black 0.643 (0.372–1.113) 0.1147 0.793 (0.458–1.373) 0.4074

Other 2.030 (1.244–3.313) 0.0046 1.984 (1.213–3.244) 0.0063

White 1.247 (0.778–1.998) 0.3596 1.235 (0.770–1.981) 0.3821

Gender Female – –

Male 1.212 (1.038–1.416) 0.0153

Insurance Medicaid – –

Medicare 1.252 (0.927–1.689) 0.1422

Others 1.200 (0.893–1.613) 0.2256

Complications

Asthma 0.835 (0.652–1.069) 0.1521

Burn 0.677 (0.485–0.944) 0.0214

Cancer 0.797 (0.661–0.960) 0.0171

Cirrhosis 1.142 (0.889–1.467) 0.2976

Connective tissue 1.433 (0.357–5.747) 0.6115

COPD 1.307 (0.996–1.716) 0.0536

AF 1.854 (1.579–2.178) <0.0001

Dementia 0.649 (0.532–0.790) <0.0001 0.540 (0.442–0.659) <0.0001

Diabetes 0.974 (0.828–1.145) 0.7489

HIV 0.365 (0.137–0.977) 0.0448

Hypertension 1.399 (1.170–1.673) 0.0002

Myocardial infarction 1.320 (1.072–1.624) 0.0088

Obesity 1.050 (0.859–1.282) 0.6350

Paralysis 0.993 (0.547–1.802) 0.9810

Renal failure 1.372 (0.193–9.758) 0.7519

Stroke 0.449 (0.112–1.798) 0.2577

Uremia 1.407 (1.200–1.650) <0.0001

Tuberculous 1.008 (0.675–1.503) 0.9703

Table 2 (continued)
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Table 2 (continued)

Factors Levels
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Treatment

Vasopressor 6.492 (5.534–7.616) <0.0001 1.474 (1.226–1.772) <0.0001

Ventilation status HFNC – – – –

Invasive 1.225 (0.653–2.300) 0.5266 1.159 (0.613–2.191) 0.6502

None 0.052 (0.026–0.102) <0.0001 0.068 (0.035–0.136) <0.0001

Noninvasive 0.294 (0.092–0.940) 0.0390 0.324 (0.101–1.037) 0.0576

Supplemental oxygen 0.401 (0.209–0.769) 0.0060 0.444 (0.230–0.854) 0.0150

Tracheostomy 2.851 (1.480–5.495) 0.0017 2.894 (1.493–5.610) 0.0017

Antibiotic sensitivity Intermediate – –

Resistant 0.953 (0.549–1.655) 0.8636

Sensitive 0.769 (0.427–1.385) 0.3822

Unknown 0.635 (0.359–1.125) 0.1195

Antibiotics ≥3 types† 6.493 (4.275–9.86) <0.0001 2.123 (1.381–3.264) 0.0006

Antifungal drug 1.331 (1.107–1.600) 0.0024 0.628 (0.520–0.759) <0.0001

Dialysis 2.908 (2.34–3.615) <0.0001

Laboratory data

ALT ≥40 U/L 1.294 (1.089–1.539) 0.0035

AST ≥40 U/L 1.541 (1.311–1.810) <0.0001 1.296 (1.101–1.525) 0.0018

Basophils 0.761 (0.610–0.950) 0.0160

BUN 1.006 (1.002–1.010) 0.0038

Creatinine <0.5 mg/dL – –

>1.2 mg/dL 0.916 (0.548–1.529) 0.7367

0.5–1.2 mg/dL 0.757 (0.459–1.246) 0.2734

Eosinophils 0.939 (0.900–0.979) 0.0034

Glucose 1.001 (1. 000–1.002) 0.2485

HCO3
− 0.972 (0.953–0.992) 0.0053

HCT 1.009 (0.996–1.021) 0.1815

Hemoglobin 1.012 (0.977–1.049) 0.4975

MCH 1.016 (0.990–1.041) 0.2282

MCHC 0.947 (0.903–0.993) 0.0239

Monocytes 0.976 (0.954–0.999) 0.0409

Neutrophils ≥70% 1.878 (1.582–2.228) <0.0001 1.524 (1.282–1.811) <0.0001

Table 2 (continued)



Journal of Thoracic Disease, Vol 15, No 9 September 2023 4905

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(9):4896-4913 | https://dx.doi.org/10.21037/jtd-23-1133

Table 2 (continued)

Factors Levels
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Platelet count <100×109/L – –

>300×109/L 0.762 (0.552–1.052) 0.0991

(100–300)×109/L 1.036 (0.772–1.391) 0.8141

Potassium 1.015 (0.907–1.134) 0.7996

RDW 1.000 (0.964–1.037) 0.9983

RBC 0.992 (0.893–1.102) 0.8804

Sodium 1.000 (0.981–1.019) 0.9918

Total bilirubin ≥1.5 mg/dL 1.516 (1.226–1.875) 0.0001

WBC 1.001 (0.996–1.006) 0.6889

SOFA 1.111 (1.088–1.136) <0.0001
†, used more than 3 types of antibiotics. HR, hazard ratio; CI, confidence interval. AF, atrial fibrillation; COPD, chronic obstructive 
pulmonary disease; HIV, human immunodeficiency virus; HFNC, high flow nasal catheter; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; HCO3

−, bicarbonate; BUN, blood urea nitrogen; HCT, hematocrit; MCH, mean corpuscular hemoglobin; MCHC, mean 
corpuscular hemoglobin concentration; RDW, red blood cell distribution width; RBC, red blood cell; WBC, white blood cell; SOFA, 
Sequential Organ Failure Assessment.
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Figure 2 A nomogram to predict the sepsis risk of patients with Gram-positive bacterial infections. AST, aspartate aminotransferase; 
HFNC, high flow nasal catheter.
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Figure 3 Kaplan-Meier survival curves plotted by grouping variables in the model. AST, aspartate aminotransferase; HFNC, high flow nasal catheter.
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(Figure 4I-4K). The model has good predictive performance 
in different Gram-positive bacteria. In the patients infected 
with Streptococcus spp., the model had AUCs of 0.909, 0.77, 
0.689, and 0.685 at 3-day, 1-week, 2-week, and 1-month, 
respectively. In the patients infected with Enterococcus spp., 
the model had AUCs of 0.818, 0.786, 0.765, and 0.796 at 
3-day, 1-week, 2-week, and 1-month, respectively. In the 
patients infected with Staphylococcus spp., the model had 

AUCs of 0.85, 0.778, 0.742, and 0.746 at 3-day, 1-week, 
2-week, and 1-month, respectively. In addition, we plotted 
time-dependent ROC curves in the training and validation 
cohorts. The results show that the AUC of the model is 
higher than 0.8 regardless of the prediction at any time 
point (Figure 4L,4M). The calibration plots also revealed 
consistency between the predicted probability of morbidity 
and actual observation, indicating that the model was 

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0.0 0.2 0.4 0.6 0.8 1.0
FP

0              25             50             75           100           125
Time, days

0              25             50             75           100           125
Time, days

Time-dependent ROC in training set Time-dependent ROC in validation set

1.0

0.9

0.8

0.7

0.6

0.5

A
U

C

0.8

0.4

0.0

TP

0.8

0.4

0.0

TP

0.8

0.4

0.0
TP

0.8

0.4

0.0

TP

0.8

0.4

0.0

TP

0.8

0.4

0.0

TP

0.8

0.4

0.0

TP

0.8

0.4

0.0

TP

0.8

0.4

0.0

TP

0.8

0.4

0.0

TP

0.8

0.4

0.0

TP

1.0

0.9

0.8

0.7

0.6

0.5

A
U

C

3-day: 0.85
1-week: 0.778
2-week: 0.742
1-month: 0.746

3-day: 0.818
1-week: 0.786
2-week: 0.765
1-month: 0.796

3-day: 0.909
1-week: 0.77
2-week: 0.689
1-month: 0.685

Model: 0.742
SOFA: 0.555

Model: 0.742
SOFA: 0.542

Model: 0.781
SOFA: 0.557

Model: 0.855
SOFA: 0.516

Model: 0.857
SOFA: 0.552

Model: 0.774
SOFA: 0.553

Model: 0.74
SOFA: 0.553

Model: 0.728
SOFA: 0.555

A B C D

E F G H

I J K

L M

Figure 4 Results of the ROC analysis of the model. (A-H) ROC curves of our model and SOFA score for predicting the sepsis risk at 3-day, 
1-week, 2-week and 1-month in the training (A-D) and validation (E-H) cohorts. (I-K) ROC curves for predicting the sepsis risk at 3-day, 
1-week, 2-week, and 1-month in validation cohorts for of patients infected with Streptococcus spp. (I), Enterococcus spp. (J), and Staphylococcus 
spp. (K), respectively. (L,M) Time-dependent ROC curves for the training and validation sets. X-axis is the follow-up time and Y-axis is the 
AUC value predicted by the model at each time point. TP, true positive; FP, false positive; SOFA, Sequential Organ Failure Assessment; 
ROC, receiver operating characteristic; AUC, area under the curve.
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Figure 5 Results of the decision curve analysis of the model. (A-H) Calibration curves of our model and SOFA score for predicting at 
3-day, 1-week, 2-week, and 1-month in the training (A-D) and validation (E-H) cohorts. (I-K) Calibration curves for predicting the sepsis 
risk at 3-day, 1-week, 2-week, and 1-month in validation cohorts for of patients infected with Streptococcus spp. (I), Enterococcus spp. (J), and 
Staphylococcus spp. (K), respectively. SOFA, Sequential Organ Failure Assessment.

well-calibrated (Figure 5). Clinical decision curve analysis 
suggested that most patients with Gram-positive bacterial 
infections could benefit from the prediction model no 
matter whether at 3-day, 1-week, 2-week, and 1-month 
(Figure 6).

Discussion

A novel nomogram model for predicting 3-day, 1-week, 
2-week, and 1-month probabilities of sepsis in patients 
admitted to the intensive care unit (ICU) and infected with 
three types of common Gram-positive bacterial infections 
(Streptococcus spp., Enterococcus spp., and Staphylococcus spp.) 
was developed and validated in this study using multivariate 
stepwise Cox regression. This study revealed three 
important results: (I) in multivariable analysis, the use of 
more than 3 types of antibiotics, dementia, ethnicity, AST, 
neutrophils, the use of antifungal drug, ventilation and 
need for vasopressors were independently related to the risk 
of sepsis; (II) the nomogram model demonstrated strong 
prediction capacity and risk stratification abilities; and (III) 
the nomogram model showed a lot of potential for guiding 

treatment decisions.
T h e  n o m o g r a m  m o d e l  d e m o n s t r a t e d  s t r o n g 

discriminative potential for early sepsis (AUC of 0.857 and 
0.855 in the development and validation cohorts on the 
third day, respectively). The nomogram has a simple visual 
interface where the “total points” is calculated based on 
the “points” of each variable. The “total points” vertically 
corresponds to the scale on the predictor below, which is the 
patient’s risk of developing sepsis. Thus, clinicians can easily 
identify high-risk patients. Additionally, the calibration 
plots revealed that the predicted 3-day, 1-week, 2-week, 
and 1-month sepsis probability closely matched the actual 
sepsis probabilities in both the development and validation 
cohorts, demonstrating the model’s calibration ability. 
The calibration curves of three different species of Gram-
positive bacteria in the validation cohort demonstrated that 
the nomogram model had high consistency in the prediction 
performance of different Gram-positive bacteria, with no 
obvious overestimation or underestimation of risk. Clinical 
usefulness is a crucial indicator in evaluating a prediction 
model’s applicability and benefits to patients in clinical 
settings. Hence, to validate the model’s clinical use, we 



Journal of Thoracic Disease, Vol 15, No 9 September 2023 4909

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(9):4896-4913 | https://dx.doi.org/10.21037/jtd-23-1133

0     10     20    30    40    50
Threshold probability, %

0     10     20    30    40    50
Threshold probability, %

0     10    20    30    40    50
Threshold probability, %

0     10    20    30    40    50
Threshold probability, %

0     10    20    30    40    50
Threshold probability, %

0     10    20    30    40    50
Threshold probability, %

0     10     20    30    40    50
Threshold probability, %

0     10     20    30    40    50
Threshold probability, %

0.020

0.015

0.010

0.005

0.000

N
et

 b
en

ef
it

0.025

0.020

0.015

0.010

0.005

0.000

N
et

 b
en

ef
it

0.06

0.04

0.02

0.00

N
et

 b
en

ef
it

0.06

0.04

0.02

0.00

N
et

 b
en

ef
it

0.100

0.075

0.050

0.025

0.000

N
et

 b
en

ef
it

0.100

0.075

0.050

0.025

0.000

N
et

 b
en

ef
it

0.15

0.10

0.05

0.00

N
et

 b
en

ef
it

0.20

0.15

0.10

0.05

0.00
N

et
 b

en
ef

it

Treat all

Treat none

Probability of 3-day

Treat all

Treat none

Probability of 3-day

Treat all

Treat none

Probability of 1-week

Treat all

Treat none

Probability of 1-week

Treat all

Treat none

Probability of 2-week

Treat all

Treat none

Probability of 2-week

Treat all

Treat none

Probability of 1-month

Treat all

Treat none

Probability of 1-month

A B C D

E F G H

Figure 6 Decision curves for predicting the sepsis risk at 3-day, 1-week, 2-week, and 1-month in the training (A-D) and validation cohorts 
(E-H).

utilized clinical decision curves to determine if nomogram-
assisted decisions would enhance patient outcomes. The 
results revealed that, in both the development and validation 
cohorts, nomogram-assisted decisions resulted in a larger 
net benefit as compared to treatment of all patients or none.

Having used more than 3 types of antibiotics may be 
associated with being critically ill. The Surviving Sepsis 
Campaign in 2016 recommends empiric broad-spectrum 
treatment with one or more antibacterial drugs for patients 
with sepsis or septic shock to cover all suspected infections 
(including bacterial and potentially fungal or viral coverage). 
One of the most essential reported aspects of the successful 
management of life-threatening infections causing sepsis and 

septic shock is the initiation of appropriate antimicrobial 
therapy (i.e., with activity against the causative pathogen 
or pathogens), and failure to initiate appropriate empiric 
therapy in patients with sepsis and septic shock is related 
to a significant increase in morbidity and mortality (23).  
Since then, based on sepsis guidelines, clinicians have 
frequently combined more than 2 or 3 types of antibiotics 
in clinical practice for suspected sepsis and septic shock. As 
a result, we can conclude that if patients received more than 
3 types of antibiotics from their physicians, they had been 
considered critically ill. Conversely, combination therapy 
of multi-antibiotics may enhance drug toxicity, aggravate 
organ damage, and even promote the development of sepsis. 
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In addition, two large observational series and a randomized 
controlled trial suggested that rapidity of treatment with 
antibiotics was the most important matter for patients who 
have septic shock, but whether it has benefits for patients 
who have sepsis without shock remained controversial 
(24,25). In our study, we also discovered that patients who 
were infected with bacteria and received more than 3 types 
of antibiotics were more likely to have sepsis. To make 
our clinical decisions more appropriate and limit the side 
effects of antibiotic combinations, we should obtain more 
information before deciding which antibiotics to use for 
patients with suspected sepsis but without shock, rather 
than choosing more than 3 types of antibiotics blindly and 
hurriedly.

We discovered that patients with dementia were less 
likely to develop sepsis in the ICU than those without 
dementia, which was consistent with a previous study. A 
large-sample study of 148,293 people found that patients 
with dementia had a lower risk of comorbidity burden and 
organ failure than those without dementia because of more 
frequent medical monitoring and that in cases of organ 
failure, the dementia cohort received less invasive treatment 
measures (26). However, many previous studies have 
indicated that organ dysfunction, comorbidity, and invasive 
treatment are important factors in the pathogenesis of sepsis 
(27-29). However, another study showed that dementia was 
a risk factor for in-hospital death in patients with sepsis. But 
the patients in this study had been diagnosed with sepsis 
and the outcome indicator was in-hospital death, which is 
different from our study design (30).

Furthermore, needing vasopressors may be associated 
with sepsis risk. The SOFA score comprises an evaluation of 
cardiovascular function (11). Patients with septic shock have 
chronic hypotension needing vasopressors to maintain mean 
arterial pressure (MAP) more than 65 mmHg and a blood 
lactate level greater than 2 mmol/L despite appropriate 
volume resuscitation (11). This is consistent with our 
findings.

We discovered that different races are linked with varying 
sepsis risks. Blacks were shown to have the lowest risk 
compared to Asians and Whites, which was similar to some 
recent studies. A large sample size retrospective analysis 
of 1,114,386 sepsis patients indicated that Blacks had 
significantly lower sepsis risk and hospital mortality than 
Whites (31). Another study in Michigan discovered that 
African Americans had the lowest hospital mortality, whereas 
Asian-Americans were in the middle and Whites had the 

highest hospital mortality among sepsis patients (32).  
However, a review concluded that sepsis occurrence was 
much higher among Black people compared to non-
Hispanic White people because Black people have less 
formal education, no insurance, and a lower income (33). 
An international, multicenter study may be required to 
explain the differences between these studies. Since our 
study population was from hospitals in the United States, 
further external validation is needed for the applicability of 
our conclusions to other regions.

Neutrophils are the most abundant type of white blood 
cells in humans and serve as the host’s first line of defense 
against invading pathogens. However, we discovered 
that a neutrophil ratio greater than 70% was correlated 
with an elevated risk of sepsis in patients infected with 
Gram-positive bacteria. The production of proteases 
and reactive oxygen species by neutrophils can lead to 
hyperinflammation in sepsis (34). The improper activation 
and placement of neutrophils inside the microvasculature 
induce multiple organ failures (35,36). For example, Park 
et al. found that neutrophil aggregates could lead to the 
generation of dead space in the pulmonary microcirculation, 
then lead to acute lung injury (ALI) (37). Marki et al. also 
found that elongated neutrophil-derived structures were 
10- to 100-fold more prevalent in the blood plasma of 
septic patients than in healthy donors (38). Recently, several 
studies have noted that an increase in plasma protease 
activity and protein hydrolysis coincided with recurrent 
bacterial infections, indicating that dysregulation of protein 
hydrolysis may lead to adverse outcomes (39,40). Another 
earlier study indicated that protein hydrolyzing enzymes 
stimulate neutrophil apoptosis. Combined, it seems likely 
that the increase in protein hydrolysis is a secondary 
response to the increase in neutrophils, both of which 
portend an increased risk of sepsis and a poor prognosis (41).

This study found several significant risk factors 
associated with the risk of sepsis, constructed a predictive 
nomogram for clinical use, and validated it by ROC curves, 
calibration curves, and clinic decision curves. In the present 
study, the included patients were not limited by age and 
sex, so the conclusions of this study apply to a wide range of 
populations. This study only included patients infected with 
three common Gram-positive bacteria, which restricted 
the types of bacteria studied, possibly reducing the impact 
of differences in pathogenicity among bacteria on the risk 
of sepsis and clarifying the appropriate population for this 
study. The factors included in this study were common 
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clinical complications and commonly used laboratory 
indicators, which increases the clinical practicability of the 
model.

There were some limitations to the present study. 
First, there is always the possibility of bias in retrospective 
studies. Consequently, the nomogram was built with a 
high sample size cohort to decrease bias. Second, despite 
the use of multivariable Cox regression models, residual 
confounding and unquantified factor confounding cannot 
be excluded. Third, some indicators of interest to us, such as 
calcitoninogen and interleukin-6 (IL-6), were not included 
in the data analysis due to the fact that some of the data in 
the public databases were missing too much. Finally, even 
though internal validation demonstrated that the nomogram 
model had high discrimination and calibration, we did not 
conduct external validation. Hence, we intend to conduct 
external validation utilizing additional ethnic communities 
and places with a bigger scale sample size.

Conclusions

In summary, we managed to build a predicted model and 
constructed a nomogram to predict the sepsis possibility 
in patients with some common types of Gram-positive 
bacteria, especially Streptococcus spp., Enterococcus spp., and 
Staphylococcus spp. This model performs well and might be 
employed clinically in the management of patients with 
Gram-positive bacteria.
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