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Background: Exposure misclassification based solely on the address at cancer diagnosis has been widely 
recognized though not commonly assessed.
Methods: We linked 1,015 mesothelioma cases diagnosed during 2011–2015 from the New York State 
Cancer Registry to inpatient claims and LexisNexis administrative data and constructed residential histories. 
Percentile ranking of exposure to ambient air toxics and socioeconomic status (SES) were based on the 
National Air Toxic Assessment and United States Census data, respectively. To facilitate comparisons over 
time, relative exposures (REs) were calculated by dividing the percentile ranking at individual census tract by 
the state-level average and subtracting one. We used generalized linear regression models to compare the RE 
in the past with that at cancer diagnosis, adjusting for patient-level characteristics.
Results: Approximately 43.7% of patients had residential information available for up to 30 years, and 
96.0% up to 5 years. The median number of unique places lived was 4 [interquartile range (IQR), 2–6]. The 
time-weighted-average RE from all addresses available had a median of −0.11 (IQR, −0.50 to 0.30) for air 
toxics and −0.28 (IQR, −0.65 to 0.25) for SES. RE associated with air toxics (but not SES) was significantly 
higher for earlier addresses than addresses at cancer diagnosis for the 5-year [annual increase =1.24%; 95% 
confidence interval (CI): 0.71–1.77%; n=974] and 30-year (annual increase =0.36%; 95% CI: 0.25–0.48%; 
n=444) look-back windows, respectively.
Conclusions: Environmental exposure to non-asbestos air toxics among mesothelioma patients may be 
underestimated if based solely on the address at diagnosis. With geospatial data becoming more readily 
available, incorporating cancer patients’ residential history would lead to reduced exposure misclassification 
and accurate health risk estimates.
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Introduction

Mesothelioma is a rare cancer [incidence rate is about 
1 per 100,000 persons per year in the United States 
(U.S.)] with long latency period of 20 to 30 years and 
poor prognosis (1-3). The median age of diagnosis is  
72 years for the malignant pleural mesothelioma, the major 
form of mesothelioma, and the 5-year relative survival 
rate is only 12% (4). Workplace asbestos exposure is the 
dominant contributor to mesothelioma, though para-
occupational (or take-home) exposure and environmental 
exposure to asbestos (e.g., residing in close proximity to 
asbestos sources) also play a critical role of mesothelioma 
development (5-9). Studies from mesothelioma registries 
in many countries have been instrumental in providing rich 
information, including specifically residential histories, 
to understand the impact of asbestos exposure at scale, 
and to investigate known and unknown asbestos exposure 
sources (8,10-12). A considerable portion (14–59%) of the 
mesothelioma cases lacks an identifiable source of asbestos 
exposure (13). While other non-asbestos exposures (e.g., 
tobacco smoke exposure), as well as lower socioeconomic 
status (SES), also contribute to the poor prognosis and 
survival (2,13-16), little is known about the epidemiology 
of non-asbestos related environmental exposure and SES 
factors among mesothelioma patients. Moreover, no 
study has reconstructed exposure history to non-asbestos 
related air toxics and SES based on residential history for 

mesothelioma patients.
It is well-recognized that the places we live throughout 

our lifetime are closely connected to our health (17-19).  
For cancer, exposures that are important to disease 
development may occur long before the manifestation of 
clinical symptoms and diagnosis (3,20,21). However, the 
conventional approach has been to link the exposure at 
the address at cancer diagnosis with cancer outcomes to 
study potential clustering of incidence cases, as well as 
to examine the potential risk factors (22,23). While this 
snapshot of address serves as a reasonable proxy for patient’s 
present socioeconomic, demographic, and environmental 
circumstances, it is subject to exposure misclassification, 
due to the underlying assumption of a constant exposure 
level throughout the entire time prior to patient’s cancer 
diagnosis.

To overcome this limitation, there has been a call for 
collecting and incorporating residential history in cancer 
epidemiological investigations (17,22,24-26). Researchers 
who have undertaken this task have typically done so 
through patient interviews or questionnaires (26-30).  
However, methodological and practical issues such as small 
sample size and recall bias have proven to be significant 
challenges (17). Some researchers were able to take 
advantage of the comprehensive national-level cancer 
registry and population health databases to obtain partial 
or complete residential history information (7,8,12,31-33), 
while others have used non-street-level address geographic 
information [e.g., coarse geography such as a county or 
zone improvement plan (ZIP) code] to estimate residential 
mobility (34-36).

In recent decades, the parallel advancement in electronic 
records keeping, geographic information system technology, 
and increasing computational power have accelerated the 
utilization of detailed residential history data (36-39).  
Indeed, studies have demonstrated the feasibility of using 
commercial databases to obtain multiple addresses of 
patients at scale (38-46). For example, residential history 
information has been used to increase the accuracy in 
estimating pesticide exposure among children linked to 
cancer in a population-based case-control study (42). 
Recently, studies have also suggested differential impact 
of SES on cancer survivorship between using the address 
at cancer diagnosis and the whole residential history post-
cancer diagnoses (44,45).

Despite of these advances, few studies have systematically 
detailed methods on reconstructing a chronological 
exposure profile linked to residential history by combining 
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multiple administrative and commercial data sources. 
In addition, extensive comparisons between alternative 
exposure measures estimated from patient’s residential 
history and that at cancer diagnosis address have been 
lacking. We addressed these research gaps in the current 
study using mesothelioma patients as an example. 
Specifically, we aimed to assess environmental exposure and 
SES across the life course utilizing residential histories of 
mesothelioma patients and to estimate the effect size of the 
exposure misclassification. We hypothesized that exposure 
to air toxics and SES at cancer diagnosis address would 
differ from those estimated from patients’ prior residential 
history. Quantification of the direction and magnitude of 
the exposure misclassification adds to the growing field of 
incorporating residential histories into cancer surveillance 
and epidemiological research. We present this article in 
accordance with the STROBE reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-23-
533/rc).

Methods

Study population

In this retrospective observational case-only study, our 
population consisted of 1,015 mesothelioma cases diagnosed 
in 2011–2015 from the New York State (NYS) Cancer 
Registry. We used three databases to reconstruct patient’s 
residential history. Patient’s street-level address at the time 
of cancer diagnosis was collected in the registry database 
along with patient demographic and cancer characteristics 
as part of the routine cancer surveillance. We also used 
address information at patient’s hospitalizations collected 
in the health insurance claims for the years 1982–2019 
available in the New York Statewide Planning and Research 
Cooperative System (SPARCS) (47). Finally, we used the 
commercial database from LexisNexis to obtain multiple 
street-level addresses for the same individual over time. 
Previous studies have shown LexisNexis’s ability to provide 
reliable residential history information (38,42,43,45).

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Institution Review Board at the 
NYS Department of Health (#1498055-1) and that at 
the Icahn School of Medicine at Mount Sinai (IRB-19-
02514). Informed consent was not required, as NYS Cancer 
Registry collects data under the Public Health Law Section 
2401 and uses them for cancer surveillance, public health 

planning and evaluation, and research.

Address processing

Out of 5,795 unique address texts [excluding addresses 
containing ZIP code only or postal office (PO) box], 
we successfully geocoded 5,696 (98.3%) valid address 
texts using three geocoders: the Automated Geospatial 
Geocoding Interface Environment system, which is a 
powerful geocoding platform for open use by cancer 
registries in the U.S. (48,49), Google maps, and the Census 
Geocoder. Then we deduplicated the geocoded address 
texts. That is when two unique address texts were geocoded 
to the same latitude and longitude coordinates (or within  
30 m), we regarded them as one address location. In 
addition, we included only geolocations where patients had 
resided up to their cancer diagnoses. Because the exposure 
data (details below) were only available at census tract level, 
we then mapped up each address to the corresponding 
census tract.

We used the first known date associated with a unique 
address as the starting time of this address, and used the 
start time of the next address in chronologically order as the 
end of the previous address. If only a single point address 
was available as the last address, we assumed a duration 
of 2.2 years, which was the median length of residency at 
an address among the study population. We conducted 
this process separately for each address data source, which 
allowed the direct comparison of residential history 
information (e.g., the total number of unique addresses) 
within each data source. We then compiled addresses from 
all three data sources into one, and updated the starting and 
ending time of an address based on the earliest and latest 
dates available, respectively.

Exposure data

For environmental exposure, we used estimates from the 
National Air Toxics Assessment (NATA) provided by the 
U.S. Environmental Protection Agency, which is a modeled 
lifetime cancer risk from inhalation of non-asbestos air 
toxins, and takes into account emission source types, 
meteorological conditions, and human activity patterns (50).  
In addition, the NATA data have the advantage of being 
a summary measure of exposure to a mixture of air toxics, 
which may better reflect the lifetime cancer risk. The 
national percentile ranking was available at census tract 
level for calendar years 1996, 1999, 2002, 2005, 2011, and 

https://jtd.amegroups.com/article/view/10.21037/jtd-23-533/rc
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2014. We matched the time of census tracts lived with the 
closest NATA years available (Figure S1).

For SES exposure, we used the Yost index percentile 
ranking at census tract level. Yost index is a composite SES 
indicator commonly used in cancer epidemiology. It is 
consisted of seven census variables, including measures of 
income, house value, rent, poverty, education, employment, 
and occupation (51,52). We calculated four sets of Yost 
index according to the published methods using the 1990 
and 2000 decennial census data, as well as the 5-year 
estimates from the 2009–2013 and 2014–2018 U.S. Census 
American Community Survey (51-53). Similar to air toxic 
exposure estimates, we matched the time of census tracts 
lived to the closest Yost index years available (Figure S1).

Approximately 2.4% of  the tracts  (n=125) had 
missing data for either air toxic exposure or SES. We 
ran an imputation analysis with all available cancer and 
socioeconomic data to fill in these missing data points (54).

Relative exposure (RE)

As NATA methods (e.g.,  the number and types of 
pollutants and models used) have changed overtime, a 
direct comparison of the NATA estimates (including the 
metric of cancer risk) across years was not appropriate (50). 
To overcome this inherent limitation of the NATA data, 
we exploited the concept of relative change, specifically, 
a relative measure in reference to the NYS average. The 
RE for non-asbestos air toxics (REcan) was calculated 
by dividing the NATA percentile ranking of individual 
census tracts by the average percentile ranking for NYS 
and subtracting one. Similarly, we calculated the RE for 
SES (REses), where a positive or negative value indicated 
a lower or higher SES than the NYS average, respectively. 
In addition, both NATA estimates and Yost index for SES 
served as composite indicators, rather than a specific air 
pollutant or a particular socioeconomic factor. For brevity, 
we referred to these two RE measures as REcan and REses, 
respectively, thereafter.

REcan and REses across patient’s residential history

We calculated the time-weighted-average (TWA) for 
REcan and REses based on the durations and RE levels 
associated with individual census tracts lived. If a patient 
lived simultaneously at multiple tracts (e.g., those who 
maintained multiple living quarters for various reasons), we 
evenly split the overlapping time among these tracts. We 

calculated the overall TWA and simple average REcan and 
REses from all tracts lived, as well as REcan and REses at 
the first known tract, tract with the longest residency, tract 
with the minimum RE, and the tract with the maximum 
RE, respectively. In addition, we calculated the yearly TWA 
REcan and REses for observational look-back windows 
spanning 5, 10, 15, 20, and 30 years prior to the patient’s 
cancer diagnosis year. For patients who lived in a single 
address during an entire year, the weight used in calculating 
the yearly TWA was essentially 1, while for patients who 
lived in multiple addresses in a year, the sum of the weights 
from these addresses summed to 1. Thus, the yearly TWA 
was based on overall tracts lived within a specific 1-year 
time frame, while the overall TWA was calculated using all 
tracts lived throughout patient’s residential history.

Statistical analyses

We summarized REcan and REses by patient characteristics 
with frequency and proportion for categorical variables and 
with median [interquartile range (IQR)] for continuous 
variables. Using Wilcoxon signed-rank tests, we compared 
REcan or REses estimated at diagnosis tract with six 
alternative measures estimated using (I) the first known 
tract; (II) tract with the longest residency; (III) tract with 
the minimum RE; (IV) tract with the maximum RE; (V) the 
simple-average from all tracts; and (VI) the overall TWA. 
In addition, standard mean differences (SMDs), a measure 
of effect size, were calculated. The relationships among 
REcan, REses, and other continuous variables were also 
examined using the Spearman’s rank correlation.

We compared the yearly TWA during the cancer 
diagnosis year with those during individual years prior to 
cancer diagnosis for a given look-back window. We used a 
generalized linear model with general estimated equation 
(GEE) to take into account the autocorrelation within 
individuals across repeated measures. Separate models were 
used for REcan and REses. The dependent variable was the 
yearly TWA, while the main independent or explanatory 
variable was years prior to cancer diagnosis. We treated time 
as a categorical variable, and the alpha level for statistical 
significance was Bonferroni adjusted to account for multiple 
testing. Alternatively, we also treated years to cancer 
diagnosis as a continuous variable in the model in order to 
estimate the annual change in REcan and REses. All models 
were adjusted for patient’s age at cancer diagnosis, sex, race, 
Hispanic ethnicity, cancer stage, and tobacco use status. The 
analyses were conducted using SAS (V9.4) and R (V4.0.2) in 

https://cdn.amegroups.cn/static/public/JTD-23-533-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-533-Supplementary.pdf
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RStudio (V2022.02.03).

Results

Overall patient characteristics

As shown in Table 1, the majority of the 1,015 mesothelioma 
patients were male (75.0%) and White (91.4%). At the 
time of cancer diagnosis, patients had a median age of 75 
(IQR, 65–81) years, and the majority (64.9%) of them were 
diagnosed with a distant-stage tumor.

We identified 4,602 unique address points among the 
entire study population from all three data sources (Table 1),  
of which 860 addresses (18.9%) were in common for all 
three data sources (Figure S2). We found that 3,793 (82.4%) 
addresses were in NYS, which spanned 2,140 census 
tracts. The remaining addresses were in other 41 states, 
encompassing 705 census tracts. The residential history of 
the study sample covered the period from 1953 to 2015. The 
median number of unique addresses lived by the patients 
was 4 (IQR, 2–6) addresses, and the median time lived in an 
address was 2.2 (IQR, 1.0–8.3) years. Approximately 14% 
of the patients only lived in one address (i.e., non-movers), 
and the median distance moved among the entire study 
population was 12.1 (IQR, 1.7–193.9) km (Table 1).

The overall TWA REcan of patients had a median of 
−0.11 (IQR, −0.50 to 0.30), and the overall TWA REses had 
a median of −0.28 (IQR, −0.65 to 0.25) (Table 1). There was 
a weak inverse correlation between the two TWA measures 
according to the Spearman’s correlation coefficient (ρ=−0.09, 
P=0.012, Figure S3). The total residential time was 
positively associated with the overall TWA REcan (ρ=0.12, 
P<0.001), while negatively associated with overall TWA 
REses (ρ=−0.39, P<0.001, Figure S3).

When the look-back time window increased from 5 to 
30 years prior to the cancer diagnosis, the proportion of 
patients with available residential history data decreased 
from 96.0% (n=974) to 43.7% (n=444) of the entire sample, 
while the number of unique addresses identified increased 
from 1,817 to 2,027 (Table 1). The distribution of patient-
level characteristics across subgroups defined by the 
retrospective observation time window remained largely 
similar to those found in the entire study sample (Table 1), 
with some notable differences. With a longer residential 
history available spanning from 5- to 30-year, the average 
moving distance increased from 12.5 to 19.4 km, while the 
proportion of non-movers decreased from 13.8% to 3.4%. 
In addition, those with up to a 30-year residential history 

had lower REcan and REses.

Comparisons between REcan and REses at the cancer 
diagnosis address and alternative measures from patient 
residential histories

REcan at cancer diagnosis tract differed significantly from 
those measured by the six alternative indicators (P<0.01, 
Figure 1). However, the effect size as measured by SMD 
ranged from small (0.04, Table S1) to moderate (0.50). Similar 
patterns were found for REses in nearly all comparisons 
(P<0.01, Figure 1), with small (0.03, Table S1) to moderate 
(0.77) SMD. We found moderate (ρ=0.77, Figure S4)  
to strong (0.92) positive correlations between REcan at 
diagnosis tracts and the other six alternative measures. A 
similar but slightly attenuated correlation were found for 
REses with ρ ranging from 0.63 to 0.86 (Figure S4).

Comparisons between yearly REcan and REses at cancer 
diagnosis and proceeding years

Figure 2 presents the comparisons of yearly TWA measures 
within a retrospective observation window ranging from 
5 to 30 years prior to the year of cancer diagnosis. REcan 
in the preceding years tended to be higher than that of the 
diagnosis year, as indicated by the positive beta coefficients 
[and their 95% confidence interval (CI)] from the regression 
model. However, the effect size was relatively small, 
with the upper 95% CI below 0.15% or 15% (Figure 2).  
In addition, REcan was not significantly elevated for all 
individual years prior to cancer diagnosis. We also found 
that the magnitude of the differences in the yearly TWA at 
cancer diagnosis and proceeding years tended to be larger 
at time points further away from the cancer diagnosis year 
(Figure 2). Finally, in the subgroup of patients (n=444) who 
had 30-year residential history prior to cancer diagnosis, 
significantly higher yearly REcan was only observed in the 
21–30 years prior to the cancer diagnosis year.

The trend of yearly REses over different observational 
time windows were similar in general, which showed limited 
differences (not statistically significant) over time (Figure 2).  
One exception was the subgroup of patients with 30-year 
residential history, where yearly REses during the 6–11 years  
prior to cancer diagnosis was found to be significantly 
higher than that during the diagnosis year.

When time was treated as a continuous variable, we 
found a similar trend of higher yearly REcan in years prior 
to patient’s cancer diagnosis (Figure 3). For example, for the 

https://cdn.amegroups.cn/static/public/JTD-23-533-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-533-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-533-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-533-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-533-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-533-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-533-Supplementary.pdf
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Table 1 Characteristics of the study population

Variables Overall
Years prior to cancer diagnosis

5-year 10-year 15-year 20-year 30-year

Total 1,015 (100.0) 974 (96.0) 952 (93.8) 913 (90.0) 839 (82.7) 444 (43.7)

Age at diagnosis (years) 75 [65–81] 75 [66–82] 75 [66–82] 75 [66–82] 76 [67–82] 76 [68–82]

Sex

Male 761 (75.0) 734 (75.4) 716 (75.2) 690 (75.6) 635 (75.7) 343 (77.3)

Female 254 (25.0) 240 (24.6) 236 (24.8) 223 (24.4) 204 (24.3) 101 (22.7)

Race

White 928 (91.4) 894 (91.8) 878 (92.2) 853 (93.4) 789 (94.0) 417 (93.9)

Black 51 (5.0) 49 (5.0) 47 (4.9) 42 (4.6) 39 (4.6) 22 (5.0)

Other 36 (3.5) 31 (3.2) 27 (2.8) 18 (2.0) 11 (1.3) 5 (1.1)

Non-Hispanic ethnicity 958 (94.4) 924 (94.9) 905 (95.1) 872 (95.5) 804 (95.8) 423 (95.3)

Stage 

Local 97 (9.6) 93 (9.5) 92 (9.7) 87 (9.5) 78 (9.3) 41 (9.2)

Regional 161 (15.9) 153 (15.7) 149 (15.7) 145 (15.9) 129 (15.4) 72 (16.2)

Distant 659 (64.9) 636 (65.3) 620 (65.1) 593 (65.0) 552 (65.8) 287 (64.6)

Unstaged/unknown 98 (9.7) 92 (9.4) 91 (9.6) 88 (9.6) 80 (9.5) 44 (9.9)

Tobacco product use

Current 116 (11.4) 111 (11.4) 105 (11.0) 95 (10.4) 86 (10.3) 42 (9.5)

Former 482 (47.5) 468 (48.0) 459 (48.2) 446 (48.8) 424 (50.5) 230 (51.8)

Never 334 (32.9) 319 (32.8) 312 (32.8) 298 (32.6) 263 (31.3) 131 (29.5)

Unknown 83 (8.2) 76 (7.8) 76 (8.0) 74 (8.1) 66 (7.9) 41 (9.2)

Number of unique addresses 4,602 1,817 2,365 2,782 2,959 2,027

Unique addresses lived per patient 4 [2–6] 1 [1–2] 2 [1–3] 2 [1–4] 3 [2–5] 4 [2–6]

Duration lived at each address in years 2.2 [1.0–8.3] 2.2 [1.0–8.5] 2.2 [1.0–8.7] 2.2 [1.0–8.9] 2.3 [1.1–6.7] 2.6 [1.1–9.8]

Lived only in one address 140 (13.8) 122 (12.0) 115 (11.3) 106 (10.4) 84 (8.3) 35 (3.4)

Average Euclidean distance (km) 
moved between addresses lived

12.1  
[1.7–193.9]

12.5  
[2.1–199.8]

12.7  
[2.3–202.0]

13.3  
[2.6–214.4]

14.9  
[2.9–238.5]

19.4  
[4.4–238.5]

TWA REcan −0.11  
[−0.50 to 0.30]

−0.11  
[−0.50 to 0.29]

−0.11  
[−0.49 to 0.29]

−0.13  
[−0.50 to 0.27]

−0.12  
[−0.49 to 0.26]

−0.01  
[−0.41 to 0.33]

TWA REses −0.28  
[−0.65 to 0.25]

−0.28  
[−0.65 to 0.24]

−0.28  
[−0.65 to 0.23]

−0.30  
[−0.66 to 0.21]

−0.33  
[−0.66 to 0.19]

−0.47  
[−0.74 to −0.004]

Data are presented as n, median [IQR], or n (%). REcan was based on the cancer risk from the NATA data, and REses was based on Yost 
index derived from the Census data. To match NATA and Yost index data at census tract level, we coded each address by its census 
tract. RE was used for comparability across time, which was calculated by dividing the NATA percentile ranking or Yost index percentile 
ranking at individual census tracts by the average percentile ranking for NYS and subtracting one. The relative measure was compared 
to the average level of exposures in NYS. We calculated TWA of REcan and REses for observational look-back windows spanning 5, 10, 
15, 20, and 30 years prior to the patient’s cancer diagnosis year. TWA, time-weighted-average; REcan, relative exposure for non-asbestos 
air toxics; REses, relative exposure for socioeconomic status; IQR, interquartile range; NATA, National Air Toxics Assessment; RE, relative 
exposure; NYS, New York State.
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5-year prior to cancer diagnosis time window (n=974), with 
each increase year proceeding the diagnosis year, the REcan 
increased by 1.24% (95% CI: 0.71–1.77%), and by 0.36% 
(95% CI: 0.25–0.48%) for the 30-year look-back window 
(n=444). It is important to note that because of the sample 
size difference (e.g., only 43.7% of the patients had a  
30-year residential history), a direct comparison of the 
findings across different look-back time windows (e.g., 
1.24% vs. 0.36%) may not be appropriate. The differences 
of yearly REses were not statistically significant for any of 
the five retrospective-observational-window scenarios.

Discussion

Using residential histories from multiple data sources, we 
reconstructed exposure history associated with non-asbestos 
related air toxics and sociodemographic status among 1,015 
mesothelioma cases reportable to NYS Cancer Registry 
between 2011 and 2015. We compared RE measures (REcan 
and REses) at the cancer diagnosis address with six other 
alternative measures from patient residential histories. 
Further, we investigated the longitudinal changes of 
patient’s RE measures and quantified the extent of exposure 
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Figure 1 Distributions of REcan (upper panel) and REses (lower panel) from seven different estimates based on patient residential history 
information, and the P values from comparisons (Wilcoxon signed-rank tests) of REcan and REses based on the address at cancer diagnosis 
to those from the remaining six alternative measures. The box plot showed the descriptive statistics of the REcan and REses values [i.e., 
median (the line inside the box), 25th and 75th percentiles (the width of the box, which was also the IQR), and 1.5× IQR from 25th and 75th 
percentiles (the width of the whiskers)]. We used Wilcoxon signed-rank tests to compare REcan and REses at the cancer diagnosis address 
with six alternative estimates. For example, REcan from the first address lived was compared with REcan measured at cancer diagnosis 
address and the P value was 4.6×10−9 (i.e., P<0.0001); and significant difference was also found between TWA REses using all addresses lived 
and REses based only on the address lived at cancer diagnosis (P=0.00012). RE, relative exposure; REcan, relative exposure for non-asbestos 
air toxics; REses, relative exposure for socioeconomic status; IQR, interquartile range; TWA, time-weighted-average.
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Figure 2 Comparisons between yearly REcan and yearly REses at cancer diagnosis and proceeding years, based on models with 
retrospective observation windows of 5-year (n=974), 10-year (n=952), 15-year (n=913), 20-year (n=839), and 30-year (n=444) prior to cancer 
diagnosis, respectively. We examined yearly REcan and yearly REses, respectively, across time defined by a given look-back observation 
window prior to patient’s cancer diagnosis, using linear model with GEE, which took into account the autocorrelation of multiple measures 
within individuals with repeated measures. The model adjusted for patient-level characteristics, including age at cancer diagnosis, sex, race, 
Hispanic ethnicity, cancer stage, and tobacco use status. The alpha level for statistical significance was Bonferroni adjusted to account for 
multiple comparisons, as REcan or REses from individual years prior to the cancer diagnosis were compared with that from the diagnosis 
year. CI, confidence interval; yr, years; REcan, relative exposure for non-asbestos air toxics; DX, diagnosis; REses, relative exposure for 
socioeconomic status; GEE, general estimated equation.
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misclassification using cross-sectional and longitudinal 
estimates.

We found that the study population tended to have a 
higher REcan in earlier addresses than that at the addresses 
at cancer diagnosis. This main finding confirmed the long-
suspected concern about misclassification of environmental 
exposure based only on a single address at the time of 
cancer diagnosis, though the direction and the magnitude 
of the misclassification have not been well studied. It is 
unsurprising that the assumption of constant exposure was 
violated, as our data showed that mesothelioma patients 
had lived in a median number of 4 unique addresses, and 
residential mobility increased with longer residential history 
studied. Residential mobility in the general U.S. population 
and cancer population before and after diagnosis have been 

previously documented (34-36,42,45,55). For example, in 
a population-based case-control study of bladder cancer 
patients diagnosed between 2000 and 2004 in Michigan, 
participants lived 9 addresses during an average of 65-year 
long residential history (27). In the Iowa Women’s Health 
Study, 32% of the participants moved at least once during 
19 years of follow-up between 1986 and 2004 (56).

Extending the existing literature, we further quantified 
the degree of the exposure misclassification between 
approaches with and without considering residential 
histories. Our analysis suggests that the identified 
misclassification may be limited, as the observed differences 
in REcan during years preceding the cancer diagnosis were 
no more than 15% higher than the RE during the diagnosis 
year, and yearly increment ranged from 0.2% to 1.8%, 
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Figure 3 Temporal changes of REcan and REses, shown as yearly changes and their 95% CIs, within each of the five different look-back 
observation windows prior to patient’s cancer diagnosis. We examined temporal changes of REcan and REses, respectively, within five 
different look-back observation windows prior to patient’s cancer diagnosis. The beta coefficient and their 95% CIs from the GEE models 
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as a continuous variable, while REcan and REses were the response variables, respectively. The models also adjusted for patient-level 
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based on the 95% CIs. In addition, we found the effect size, 
measured by SMD, ranged from small to moderate, when 
comparing REcan and REses at cancer diagnosis address 
and six alternative measures.

We also found moderate to strong positive correlations 
between REcan or REses at the diagnosis tract and 
alternative measures based on residential histories. This 
result was consistent with other findings. For example, 
Ling et al. [2019] found moderate to strong Spearman’s 
correlations (ρ=0.76–0.83) between pesticide exposures 
based on cancer diagnosis address, birth address, and 
residential addresses during the first year of life among a 
population-based case-control pediatric cancer population 
in California (42). Strong correlations between exposure 
estimates in successive addresses, with full residential 
histories or a single address were also reported for 
childhood leukemia cases in a nationwide Finnish case-
control study (33). In a large cohort study examining the 
association between cancer and nutrition in Sweden, the 
investigators found that the correlation between NOx 
concentrations at the enrollment address and the average 
concentration over the entire follow-up period (an average 
of 14.6 years) was 0.80 (57).

Our analysis showed that not all earlier residential times 
prior to the cancer diagnosis had statistically significant 
higher REcan than that at the cancer diagnosis year, and 
the magnitude of the difference in the yearly REcan at 
cancer diagnosis and proceeding years tended to be larger 
at time points further away from the cancer diagnosis 
year. Similar findings were reported by a simulation study 
based on data from the Health-AARP Diet and Health 
Study (58). Interestingly, among the subset of our study 
population with 30-year residential history records, we 
found that significantly elevated REcan occurred in the 
earliest decade, which was equivalent to an age group 
of 46–55 years (assuming a median age at diagnosis of  
76 years). Meanwhile, significantly elevated REses occurred 
in the 6–13 years prior to cancer diagnosis, which was 
equivalent to an age group of 65–70 years. These results 
suggest that the time window of high exposure for REcan 
may differ from that for REses. One explanation of this 
discrepancy is likely their differences in the spatial and 
temporal variability, as we would expect exposures that have 
a larger variation across space and time would suffer a larger 
misclassification bias when a single address rather than 
multiple addresses was used to estimate exposures. Indeed, 
studies have found that different exposure measures (e.g., 
different pollutants, greenspace, or agriculture land) with 

different spatiotemporal characteristics exhibited varied 
magnitudes of exposure misclassification associated with 
residential mobility (56,58,59).

Our results should be viewed in light of their limitations. 
First, our findings may be unique to the mesothelioma 
patients studied. In general, we found the current study 
population tended to live in areas where both REcan and 
REses were lower than the NYS average. As NYS is a large 
multicultural populous state, it remains to be confirmed 
that if the same trend would hold true for mesothelioma 
patients diagnosed in a different period in NYS or in other 
states, since migration patterns may differ over time and/
or among people residing in another state. In addition, 
patients with different cancer types may also have a different 
REcan and REses pattern than mesothelioma patients. 
Second, while we were able to identify multiple addresses 
for individual patients, their residential history may still be 
incomplete due to the inherent limitations in the mechanisms 
through which an organization/company collects the data. 
In addition, studies have shown that the availability of 
residential history varied by patient’s sociodemographic 
characteristics (39,40,42,46). Inclusion of other address data 
sources may improve the completeness of residential history, 
thus improve the estimate of the duration at each address 
and the subsequent exposure estimates. Third, our exposure 
assessment was limited to the availability of exposure data 
in terms of the time and geographic resolution. It is also 
important to note that we used a relative rather than an 
absolute measure of exposure to examine the exposure 
misclassification. In addition, Yost index was a composite 
measure based on seven individual census variables, and 
may not be a comprehensive measure of neighborhood SES 
(51,53). For two addresses, where one lived by a patient in 
1996 and the other in 2014, while both RE may be 10% 
higher than the corresponding NYS average level, the 
earlier address may have a higher absolute exposure, as the 
NYS average ranking was higher in 1996 than in 2014 (69th 
percentile vs. 51st percentile). The choice of using REcan in 
the current analysis was due to the incomparability of NATA 
data over time. Such a constraint can be potentially avoided 
by using exposure measures that are generated consistently 
over time. However, this kind of measure may not be readily 
available, especially if it has to be consistently measured over 
a long period spanning from the 1950s to the current decade 
as seen in our study. These imprecisions may have obscured 
the estimate of the effect size of the exposure misclassification 
to some degree. These issues may be potentially mitigated 
among younger patients or patients diagnosed in more 
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recent years, as data for environmental pollutants and 
socioeconomic risk factors, as well as the available residential 
history records, have become increasingly available with 
refined spatiotemporal resolutions.

Conclusions

We found that the assessment of exposure to non-asbestos 
air toxic based solely on the address at cancer diagnosis 
was underestimated among mesothelioma patients from 
a large population-based central cancer registry, and the 
misclassification increased at time points further away 
from the cancer diagnosis year. In addition, the type of 
exposure (e.g., air-toxic exposure vs. SES exposure) and the 
length of the residential history (e.g., 5- vs. 30-year) may 
affect the exposure misclassification. Overall, we found 
a relatively small effect size in exposure misclassification 
between estimates with and without incorporating patient’s 
residential history information. In addition, the availability 
of longitudinal exposure patterns based on patient residential 
history may have important implications, such as tracking 
the inducement and survival conditions for mesothelioma 
patients, investigating susceptible time window and latency 
period, studying disease development of mesothelioma and 
different cancer types. While the current study was a case-
only design and specific to mesothelioma which has a known 
etiology, our methods can be applied to future studies with 
comparison groups to further study mesothelioma patients, 
as have been shown in other studies based on population-
level mesothelioma registries where residential history 
information is available, as well as other cancer types  
(7-9,11,12,31-33). With increasingly available geocoding 
and geospatial analytical tools, as well as refined data on 
environmental and socioeconomic factors, utilization of 
patients’ residential history as opposed to single address at 
diagnosis will lead to improved exposure and health risk 
estimates. Moreover, the augmentation of residential history 
information into current cancer epidemiological studies 
will facilitate the investigation of the potential critical time 
window that are important to the natural history of cancer 
development. Such research advancement can benefit 
and should become an integral part of the modern cancer 
surveillance system.
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Table S1 SMD between REcan and REses at the cancer diagnosis address and six alternative measures from patient’s residential history

Variables SMD (95% CI) P value
RE at the 

diagnosis tract, 
mean (SD)

RE of the 
comparison group, 

mean (SD)

REcan

RE at the diagnosis tract—RE at the first tract 0.123 (0.036–0.21)* 0.006* −0.14 (0.51) −0.08 (0.43)

RE at the diagnosis tract—RE at the tract with the minimum RE 0.444 (0.356–0.532)* <0.001* −0.14 (0.51) −0.36 (0.45)

RE at the diagnosis tract—RE at the tract with the maximum RE 0.503 (0.415–0.591)* <0.001* −0.14 (0.51) 0.10 (0.44)

RE at the diagnosis tract—RE at the tract with the longest duration 0.056 (−0.031 to 0.143) 0.206 −0.14 (0.51) −0.11 (0.45)

RE at the diagnosis tract—simple-average RE 0.04 (−0.047 to 0.127) 0.363 −0.14 (0.51) −0.12 (0.41)

RE at the diagnosis tract—TWA RE 0.055 (−0.032 to 0.142) 0.218 −0.14 (0.51) −0.12 (0.42)

REses

RE at the diagnosis tract—RE at the first tract 0.083 (−0.005 to 0.17) 0.063 −0.21 (0.53) −0.16 (0.57)

RE at the diagnosis tract—RE at the tract with the minimum RE 0.572 (0.483–0.661)* <0.001* −0.21 (0.53) −0.49 (0.46)

RE at the diagnosis tract—RE at the tract with the maximum RE 0.769 (0.679–0.859)* <0.001* −0.21 (0.53) 0.22 (0.57)

RE at the diagnosis tract—RE at the tract with the longest duration 0.028 (−0.059 to 0.115) 0.526 −0.21 (0.53) −0.19 (0.55)

RE at the diagnosis tract—simple-average RE 0.076 (−0.011 to 0.163) 0.088 −0.21 (0.53) −0.17 (0.44)

RE at the diagnosis tract—TWA RE 0.047 (−0.04 to 0.134) 0.286 −0.21 (0.53) −0.18 (0.48)

*, statistically significant results. SMD, standardized mean difference; REcan, relative exposure for non-asbestos air toxics; REses, relative 
exposure for socioeconomic status; CI, confidence interval; RE, relative exposure; SD, standard deviation; TWA, time-weighted-average.

Supplementary

Address years 1953–1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Cancer risk 
years

NATA 1996

NATA 1999

NATA 2002

NATA 2005

NATA 2011

NATA 2014

Address years 1953–1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Social risk 
years

1990 Yost 
index

2000 Yost index

2009–2013 Yost index

2014–2018 
Yost index

Figure S1 Assignment of exposure data according to years of address/tract lived and the availability of NATA and Yost index data. To match 
NATA and Yost index data at census tract level, we coded each address by its census tract. The national percentile ranking of cancer risk 
was available at census tract level for calendar years 1996, 1999, 2002, 2005, 2011, and 2014. We calculated 4 sets of Yost index percentile 
ranking according to the published methods using the 1990 and 2000 decennial census data, as well as the 5-year estimates from the 2009–
2013 and 2014–2018 U.S. Census American Community Survey. We matched the time of census tracts lived with the closest NATA years 
and Yost index years available. NATA, National Air Toxics Assessment.
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Figure S2 Venn diagram showing the number of overlapped 
unique addresses captured among the three data sources. Out of 
4,602 unique census tracts, 860 addresses (18.9%) were captured by 
all three data sources. LexisNexis contributed to the largest address 
information, with 3,116 (67.7%) addresses were identified from this 
commercial database only, while 100 (2.2%) addresses were from 
the cancer registry only, and 118 (2.6%) from SPARCS only.

Figure S3 Correlations between REcan, REses, and patient 
characteristics. Cells with “X” indicate P value ≥0.05. REses, 
relative exposure for socioeconomic status; REcan, relative 
exposure for non-asbestos air toxics.
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Figure S4 Correlations between seven different measures of REcan and REses based on patient’s residential history. Cells with “X” indicate 
P value ≥0.05. RE estimated at DX address with those estimated for the First, address with the Longest, address with the minimum or 
maximum RE, as well as the simple Avg, and TWA of RE for all addresses lived. Avg, average; REses, relative exposure for socioeconomic 
status; Longest, longest residency; First, first known address; DX, diagnosis; REcan, relative exposure for non-asbestos air toxics; RE, 
relative exposure; TWA, time-weighted-average.


