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Background: Lung cancer is the most common malignant tumor in the world, and its prognosis is still not 
optimistic. The aim of this study was to establish an immune-related gene (IRG) prognostic index (IRGPI) 
for lung adenocarcinoma (LUAD) based on IRGs, and to explore the prognosis, molecular and immune 
features, and response to immune checkpoint inhibitor (ICI) therapy in IRGPI-classified different subgroups 
of LUAD.
Methods: Based on the LUAD transcriptome RNA-sequencing data in TCGA database, the differentially 
expressed genes (DEGs) were selected. Subsequently, DEGs were intersected with IRGs to obtain 
differentially expressed immune-related genes (DEIRGs). Weighted gene co-expression network analysis 
(WGCNA) identified hub genes in DEIRGs. Finally, univariate and multivariate Cox regression analyses 
were used to build an IRGPI model. Subsequently, TCGA patients were divided into high- and low-risk 
groups, and the survival of patients in different groups was further analyzed. Besides, we validated the 
molecular and immune characteristics, relationship with immune checkpoints, angiogenesis-related genes, 
and immune subtypes distribution in different subgroups. Meanwhile, we further validated the response to 
ICI therapy in different subgroups.
Results: The IRGPI was constructed based on 13 DEIRGs. Compared with the low-risk group, overall 
survival (OS) was lower in the high-risk group, and the high-risk score was independently associated with 
poorer OS. Besides, the high-risk score was associated with cell cycle pathway, high mutation rate of TP53 
and KRAS, high infiltration of M0 macrophages, and immunosuppressive state, and these patients had poorer 
prognosis but the TIDE score of the high-risk group was lower than that of the other group, which means 
that the high-risk group could benefit more from ICI treatment. In contrast, the low-risk score was related 
to low mutation rate of TP53 and KRAS, high infiltration of plasma cells, and immunoactive state, and these 
patients had better prognosis but the low-risk group less benefit from ICI treatment based on the results of 
TIDE score.
Conclusions: IRGPI is a prospective biomarker based on IRGs that can distinguish high- and low-risk 
groups to predict patient prognosis, help characterize the tumor immune microenvironment, and evaluate 
the benefit of ICI therapy in LUAD.
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Introduction

Lung cancer is the most common malignancy worldwide, 
and it caused nearly a quarter of the cancer-related deaths 
in 2021 (1). It is estimated that between 2015 and 2030, 
the median age-standardized mortality rates (ASMR) of 
lung cancer will rise by about 40% (2). The high morbidity 
and mortality of lung cancer make it one of the most 
serious public health problems globally. The most common 
subtype of lung cancer is lung adenocarcinoma (LUAD) (3). 
Although comprehensive treatment plans such as surgery 
and chemoradiotherapy have been adopted, especially in the 
last few years, the individual application of targeted drugs has 
significantly improved the objective response rate (ORR) of 
treatment, but the prognosis of LUAD is still not optimistic.

Immunotherapy is an effective therapy that has 
emerged in the area of cancer treatment in recent years, 
and has changed the treatment landscape of multiple 
solid malignancies (4), the most impressive of which is 
immune checkpoint inhibitor (ICI) therapy (5). The 
clinical advantages of ICI include a sustained anti-tumor 
immune response with a low rate of recurrence, and even 
be complete mitigation in some advanced malignancies (6).  
Therefore, ICI has been approved for the first-line 

treatment of certain cancers.
ICI shows powerful antitumor effects in some non-

small cell lung cancer (NSCLC) patients. The treatment 
of metastatic and advanced NSCLC was revolutionized by 
immunotherapy with programmed cell death 1 (PD-1) or 
programmed cell death-ligand 1 (PD-L1) antibodies (7-9). 
Currently, pembrolizumab and atezolizumab monotherapy 
are the preferred therapeutic options for LUAD patients 
with expression levels of PD-L1 ≥50% and negative for 
actionable molecular markers (10). The potential of these 
drugs to produce durable clinical responses to therapy has 
led to their rapid adoption as a standard of therapy (11,12). 
Nevertheless, in current clinical practice, the use of ICI 
incurs two key challenges; ICIs can cause serious side 
effects in many organs (13-15); ICI therapy is completely 
ineffective for many patients. Therefore, the development 
of a gold-standard biomarker to identify patients likely to 
benefit from ICI is challenging (16).

With the development of bioinformatics analysis, gene 
signatures identified from different types of genomes are 
increasingly accepted as new tumor marker candidates. 
For example, a prognostic model based on genes related 
to ferroptosis and metabolism is expected to provide new 
insights into the development and treatment of cancer 
(17-21). In the present study, we attempted to explore a 
prognostic marker for LUAD based on immune-related 
genes (IRGs). It has practical application value by detecting 
the expression of model genes in LUAD tissues and 
converting genes expression level into risk scores to predict 
patient prognosis. An IRG prognostic index (IRGPI) of 
LUAD was established by exploiting weighted gene co-
expression network analysis (WGCNA) using transcriptomic 
data and clinical outcomes. Univariate and multivariate Cox 
regression analysis were utilized to recognize differentially 
expressed immune-related genes (DEIRGs) associated 
with survival, and then to build IRGPI, a quantitative score 
that distinguishes between low and high risk of prognosis. 
At the same time, we use the GSE72094 cohort to verify 
the results, which showed that the results are consistent 
with those of The Cancer Genome Atlas (TCGA). Finally, 
the molecular and tumor microenvironment (TME) 
characterization of IRGPI was verified and its prognostic 
predictive ability in patients with immunotherapy was 
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Highlight box

Key findings
•	 Our research results suggested that the immune-related gene (IRG) 

prognostic index (IRGPI) is a prospective biomarker based on IRGs 
that can distinguish high- and low-risk groups to predict patient 
prognosis, help characterize the tumor immune microenvironment 
(TIME), and evaluate the benefit of immune checkpoint inhibitor (ICI) 
therapy in lung adenocarcinoma (LUAD).

What is known and what is new?
•	 The method of constructing prognostic models based on various 

genomes has been widely accepted.
•	 Prognostic models based on IRGs in LUAD have not been 

reported yet.

What is the implication, and what should change now? 
•	 IRGPI can distinguish high- and low-risk groups to predict patient 

prognosis, help characterize the TIME, and evaluate the benefit of 
ICI therapy in LUAD. The genes involved in building the model 
still need further study.
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validated, and contrasted with other immunotherapy 
biomarkers, angiogenesis-related genes (ARGs), tumor 
immune dysfunction and exclusion (TIDE), and tumor 
inflammation signature (TIS). We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-23-
1374/rc).

Methods

Data collection

Tr a n s c r i p t o m e  R N A - s e q u e n c i n g  d a t a  ( F P K M 
normalized), mutation information, and corresponding 
clinicopathological characteristics of LUAD patients were 
downloaded from TCGA’s Genomic Data Commons 
Data Portal (https://portal.gdc.cancer.gov/), which 
includes 522 patients and 594 samples (535 cancer 
samples and 59 normal samples) (accessed February 26, 
2022) (table available at https://cdn.amegroups.cn/static/
public/10.21037jtd-23-1374-1.xls). To further validate the 
reliability of the IRGPI risk score, an independent cohort 
of 442 LUAD simples, GSE72094, was obtained from the 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/), along with transcriptomic data and 
clinical outcomes (accessed March 18, 2022). All available 
data downloaded from the TCGA and GSE72094 cohorts 
were analyzed to maximize the power and generalizability 
of the results. The clinicopathological characteristics are 
summarized in Table 1.

IRGs were obtained from the InnateDB database 
(https://www.innatedb.ca/) and the immunology database 
and analysis portal (ImmPort; https://www.immport.org/
home) (accessed July 31, 2021). 1,226 immune genes in 
the InnateDB database and 1,793 immune genes in the 
ImmPort database were screened for further analysis. 

A total of 48 ARGs were downloaded from the Molecular 
Signatures Database (MSigDB; http://www.broad.mit.
edu/gsea/msigdb) to analyze the correlation with immune 
infiltration (accessed April 14, 2021).

The data used in this study are publicly available, 
and thus informed consent or ethical approval was not 
required. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

IRGs differential expression analysis 

The differentially expressed genes (DEGs) was evaluated 

by the limma package in R (R Foundation for Statistical 
Computing, Vienna, Austria) with a cutoff criterion |log2 
fold-change| >1 and false discovery rate (FDR) <0.05. Based 
on the ImmPort database and the InnateDB database, we 
identified 3,019 IRGs. We defined DEIRGs as overlapping 
genes between DEGs and IRGs. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were employed to identify the potential functions 
and pathways that the DEIRGs, and the functions and 
pathways significantly enriched in DEIRGs were visualized 
by the GOPlot R package.

Assessment of hub genes

The hub genes were identified by WGCNA. The 
topological overlap measure (TOM) was set to 1-TOM 
as distance of clustered genes and the optimal soft-
thresholding power was set to 4. Significantly different 
expression pattern modules between tumor and normal 
samples were selected for further analysis. Then, the 
intersection between the modules and DEIRGs was chosen.

Construction of IRGPI

To build a prognostic index, a univariate Cox regression 
analysis was performed to identify the relationship between 
IRGs expression and overall survival (OS). The genes 
that significantly affected OS were utilized to build the 
IRGPI by multivariate Cox regression analysis. risk score 
= (expIRG1 × coef1) + (expIRG2 × coef2) +... + (expIRGn 
× coefn). High- and low-risk groups of LUAD patients 
were divided by the median risk score (0.997). A Kaplan-
Meier (KM) survival analysis was performed to compare 
OS between the two groups. Furthermore, univariate and 
multivariate Cox regression analyses were utilized on IRGPI 
risk score and clinicopathological features including age, 
sex, and stage to evaluate the independent prognostic value 
of IRGPI. Knots for age were at 65. Samples with missing 
clinical data in univariate and multivariate Cox regression 
analyses were removed.

Characteristics analysis of TME and ARGs in different 
IRGPI subgroups

To evaluate the potential functions and pathways of the 
two IRGPI groups, gene set enrichment analysis (GSEA) 
was performed by the ClusterProfile R package (P value 
<0.05). Maftools R package was used to develop the somatic 

https://jtd.amegroups.com/article/view/10.21037/jtd-23-1374/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1374/rc
https://portal.gdc.cancer.gov/
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-1.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-1.xls
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.innatedb.ca/
https://www.immport.org/home
https://www.immport.org/home
http://www.broad.mit.edu/gsea/msigdb
http://www.broad.mit.edu/gsea/msigdb
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Table 1 Clinicopathological characteristics of the two lung adenocarcinoma cohorts included in this study

Patient characteristics Training cohorts Test cohorts (GSE72094)

No. of patients 522 442

Status, n (%)

Alive 334 (64.0) 298 (67.4)

Dead 188 (36.0) 122 (27.6)

Unknown 0 22 (5.0)

Survival time, days, median [range] 820 [3–2,077] 653 [0–7,248]

Age, years, median [range] 66 [33–88] 70 [38–89]

Age (years), n (%)

≤65 years 241 (41.2) 127 (28.7)

>65 years 262 (51.2) 294 (66.5)

Unknown 19 (3.6) 21 (4.8)

Sex, n (%)

Male 280 (53.6) 240 (54.3)

Female 242 (46.4) 202 (45.7)

Stage, n (%)

I 279 (53.4) 265 (60.0)

II 124 (23.8) 69 (16.5)

III 85 (16.3) 63 (14.3)

IV 26 (5.0) 17 (3.8)

Unknown 8 (1.5) 28 (6.3)

T, n (%)

1 172 (33.0) NA

2 281 (53.8) NA

3 47 (9.0) NA

4 19 (3.6) NA

Unknown 3 (0.6) NA

N, n (%)

0 335 (64.2) NA

1 98 (18.8) NA

2 75 (14.4) NA

3 2 (0.4) NA

Unknown 12 (2.3) NA

M, n (%)

0 353 (67.6) NA

1 25 (4.8) NA

Unknown 144 (27.6) NA
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mutation landscape in two IRGPI groups.
The Cell-type Identification by Estimating Relative 

Subsets of RNA Transcripts algorithm (CIBERSORT; 
HTTPS://cibersort.stanford.edu/) was performed to 
identify immune characteristics of LUAD and appraise 
the relative proportions of 22 types of immune cells. The 
associated proportions of clinicopathological factors and 
these immune cells were compared between the two IRGPI 
groups. Correlation analysis was carried out between IRGPI 
risk score and conventional or potential immunotherapy 
biomarkers, such as PD-1, cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4),  PD-L1,  AUNIP, 
NPM1, EXO1, CBX7, SFTPA1, and tumor mutation  
burden (TMB). 

To clarify whether there is a correlation between ARGs 
and IRGPI risk scores, correlation analysis was performed 
between IRGPI risk score and 48 ARGs obtained from 
MSigDB.

Comprehensive analysis of clinicopathological 
characteristics and ICI efficacy in different IRGPI 
subgroups

Distribution of clinicopathological features were compared 
in the two IRGPI subgroups and visualized by the 
ComplexHeatmap package. In addition, the distribution of 
immune subtypes was compared in the two IRGPI groups; 
the immune subtypes were based on extensive immune 
genomic analysis of more than 10,000 tumors using data 
aggregated by TCGA, which identified and characterized  
6 immune subtypes across multiple tumor types.

To explore the prognostic value of ICI therapy in 
different IRGPI groups, TIDE scores were computed 
online (http://tide.dfci.harvard.edu/) in two IRGPI groups. 
TIS is an 18-gene signature that demonstrates prospective 
results in predicting response to anti-PD-1/PD-L1 agents 
(Table S1). The capability of the IRGPI risk score was 
appraised by receiver operating characteristic (ROC) curves 
and area under the curve (AUC) values, which compared 
with the TIDE and TIS scores.

Statistical analysis

R (4.2.0 version; R Foundation for Statistical Computing) 
was employed for all statistical analyses. Continuous 
variables were compared between two IRGPI subgroups 
using an independent t-test and categorical data analysis was 
conducted using the χ2 test. The Wilcoxon test was used 

to verify TIDE scores groups. Univariate and multivariate 
survival analysis was performed using KM survival 
analysis with the log-rank test and Cox regression model, 
respectively. The effect of IRGPI and clinical features on 
prognosis were analyzed by univariate and multivariate 
Cox regression analysis. A P value <0.05 was considered 
statistically significant.

Results

Immune-related hub DEGs

A total of 8,109 DEGs were obtained by differential 
expression analysis (535 tumor and 59 normal samples), 
of which 6,245 genes were up-regulated and 1,864 genes 
were down-regulated (Figure 1A, table available at https://
cdn.amegroups.cn/static/public/10.21037jtd-23-1374-2.
xls). By intersecting these DEGs with the IRG downloaded 
from the InnateDB database and the ImmPort database, 
we obtained 681 DEIRGs, among which 423 genes were 
up-regulated and 258 genes were down-regulated in 
tumor samples compared with normal samples (Figure 1B,  
table available at https://cdn.amegroups.cn/static/
public/10.21037jtd-23-1374-3.xls).

WGCNA showed that the DEIRGs were strongly 
associated with LUAD. The scale-free topology criterion 
was used to determine the soft threshold. In the present 
study, the correlation coefficient was greater than 0.85. The 
optimal soft-thresholding power was 4 based on the scale-
free network (Figure 1C). According to the average link 
hierarchical clustering and optimal soft threshold capability, 
we identified four modules (Figure 1D,1E). A total of 681 
genes were assigned to the four modules, three of which 
were selected as significant modules (the blue, brown, and 
turquoise) (P<0.05). The genes contained in the three 
significant modules were obtained and intersected with the 
DEIRGs. Finally, 426 DEIRGs strongly associated with 
LUAD were obtained for further analysis.

Functional enrichment analysis of the IRG in the 
pathogenesis of LUAD

In order to further understand the role of the IRGs in 
the pathogenesis of LUAD, functional and pathway 
enrichment analyses of IRGs were performed. A total 
of 681 DEIRGs were conducted to determine 1,808 
GO terms and 59 KEGG pathways. All top ten terms of 
biological processes (BP), cellular components (CC), and 

HTTPS://cibersort.stanford.edu/
http://tide.dfci.harvard.edu/
https://cdn.amegroups.cn/static/public/JTD-23-1374-Supplementary.pdf
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-2.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-2.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-2.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-3.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-3.xls


Liu et al. Development and validation of an IRGPI for LUAD6210

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(11):6205-6227 | https://dx.doi.org/10.21037/jtd-23-1374

Normal NormalTumor Tumor
Type Type

10

5

0

−5

−10

5

0

−5

10 15 20 10 15 20

S
ca

le
-f

re
e 

to
po

lo
gy

 m
od

el
 fi

t, 
si

gn
ed

 R
2

H
ei

gh
t

Dynamic 
tree cut

Normal Tumor

MEblue 

MEbrown 

MEturquoise

MEgrey

1.0

0.5

0.0

−0.5

−1.0

M
ea

n 
co

nn
ec

tiv
ity

0.8

0.6

0.4

0.2

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

80

60

40

20

0

5 5
Soft threshold (power)

Scale independence

Gene dendrogram and module colors

Soft threshold (power)

Mean connectivity

Module-trait relationships

A B

C

D E

Figure 1 Identification of differentially expressed immune-related hub genes. (A) Heatmap of DEGs in LUAD. (B) Heatmap displaying 
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powers. (D) Gene tree diagram of the DEGs clustered according to different metrics. (E) Gene modules association with LUAD obtained 
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molecular function (MF) were illustrated (Figure 2A). Terms 
such as immunoglobulin production, humoral immune 
response, and the production of molecular mediators of 
the immune response were enriched in the BP category; 
immunoglobulin complex, external side of plasma 
membrane, and immunoglobulin complex, circulating were 
enriched in the CC category; signaling receptor-activator 
activity, receptor-ligand activity, and antigen-binding were 
enriched in the MF category. The full results of GO are 
listed in table available at https://cdn.amegroups.cn/static/
public/10.21037jtd-23-1374-4.xls. As for KEGG pathway 
analysis, the set of IRGs was mainly enriched in cytokine-
cytokine receptor interaction, viral protein interaction 
with cytokine and cytokine receptor, and the chemokine 
signaling pathway (Figure 2B). The full results of GO are 
listed in table available at https://cdn.amegroups.cn/static/
public/10.21037jtd-23-1374-5.xls. The results indicated 
that the DEIRGs were significantly associated with immune 
response.

Performance of IRGPI risk score in predicting the 
prognosis of LUAD

Univariate Cox regression analysis was used to screen 426 
immune-related hub genes in the three WGCNA-derived 
modules described above. Some 54 genes showed statistical 
significance for OS (P<0.01 were selected) (Figure 3A,  
Table S2). After narrowing the scope of OS-related hub 
genes by multivariate Cox regression analysis, 13 genes 
were picked for the construction of a prognostic index. The 
13 genes included CD79A, F2RL1, GMFG, INHA, NLRC4, 
AGER, GPI, ANGPTL4, LIFR, TRIM6, PLK1, C7, and C6. 
Subsequently, the IRGPI risk score was calculated using the 
weights of the 13 genes multiplied by the corresponding 
gene expression level (Table 2). Risk scores were calculated 
for each patient in the TCGA and GSE72094 cohorts, and 
patients were divided into high- and low-risk subgroups 
using the TCGA median of 0.997. Through t-distributed 
stochastic neighbor embedding (tSNE) and principal 
component analysis (PCA) analysis, we determined that 
the model divided the TCGA and GSE72094 samples well 
(Figure 3B,3C).

KM survival analysis showed that OS was significantly 
related with IRGPI risk score, the IRGPI low-risk patients 
had better OS than IRGPI high-risk patients (P<0.001, 
log-rank test; Figure 3D). Next, to assess the reliability 
of this risk model, we performed a survival analysis on an 
independent cohort (GSE72094, n=442). Of note, similar 

results to the TCGA cohort were achieved (P<0.001, log-
rank test; Figure 3E). The result illustrates that the IRGPI 
risk model has applicability for predicting the prognosis of 
LUAD patients and it could be a prospective indicator to 
evaluate the prognosis of LUAD patients. This result was 
also confirmed by univariate analysis (Figure 3F, Table S3). 
Furthermore, IRGPI is an independent prognostic factor 
adjusted by stage of LUAD patients via multivariate Cox 
regression analysis (Figure 3G, Table S4).

Then, to better apply the risk score model to the clinic, 
we integrated the risk score and other clinicopathological 
risk factors, and constructed a nomogram to predict the 
1-, 3-, and 5-year survival of patients (Figure 3H). The 
calibration curve showed that it has not deviated from the 
reference line and does not require recalibration (Figure 3I).

Molecular characteristics of two IRGPI subgroups

GSEA was performed to investigate the gene sets enriched 
in two IRGPI groups. The gene sets of the IRGPI-low 
group were enriched in systemic lupus erythematosus, 
asthma, and intestinal immune network for IGA production 
pathways (Figure 4A), whereas the gene sets of the IRGPI-
high group were enriched in the proteasome, DNA 
replication, cell cycle, pyrimidine metabolism, ribosome, 
and other related pathways (Figure 4B). The full results of 
GSEA are listed in table available at https://cdn.amegroups.
cn/static/public/10.21037jtd-23-1374-6.xlsx.

Subsequently, the somatic mutation landscapes of the two 
IRGPI subgroups were plotted to gain further insight into 
the tumorigenesis of LUAD. Compared with the IRGPI 
low-risk group, the mutation counts in the IRGPI high-risk 
group were significantly higher. The most common type 
of mutation was missense mutation, followed by nonsense 
deletion. The top 20 genes with the highest mutation 
rates in the two IRGPI subgroups were illustrated, and 
most of them in the IRGPI high-risk group had a higher 
mutation rate, except for RYR2, USH2A, XIRP2, NAV3, and 
COL11A1 (Figure 4C,4D).

Immune characteristics of two IRGPI subgroups

To explore the constitution of immune cells in the two 
IRGPI subgroups, the CIBERSORT algorithm was 
performed to compare the distribution of 22 types of 
immune cells in different IRGPI groups. The results 
illustrated that plasma cells, resting dendritic cells (DC), 
resting mast cells, memory B cells, and resting memory 

https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-4.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-4.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-5.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-5.xls
https://cdn.amegroups.cn/static/public/JTD-23-1374-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-1374-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-1374-Supplementary.pdf
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-6.xlsx
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-6.xlsx
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CD4 T cells were more plentiful in the IRGPI-low groups 
whereas M0 macrophages, activated DC, and resting 
natural killer (NK) cells were more abundant in the IRGPI-
high groups (Figure 5A, table available at https://cdn.
amegroups.cn/static/public/10.21037jtd-23-1374-7.xls). 
Next, we performed the single-sample GSEA (ssGSEA) 
score to investigate the enrichment level of 29 immune 
characteristics in each LUAD sample of different IRGPI 
groups. As a result, we found that there were more B 

cells, human leukocyte antigen (HLA), iDCs, mast cells, 
neutrophils, T helper cells, tumor-infiltrating lymphocytes 
(TIL), type II IFN response, CD8+ T cells, T-cell co-
inhibition, T-cell co-stimulation, activated DCs (aDCs), 
cytolytic activity, inflammation-promoting, plasmacytoid 
DCs (pDCs), and follicular helper T (Tfh) in the low-risk 
groups (Figure 5B). The results revealed that the IRGPI 
low-risk group had more active immune-related functions. 
Subsequently, we further identified the survival relationship 

https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-7.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-7.xls
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between immune and molecular function and IRGPI 
subgroups, and the results demonstrated that patients 
with more aDCs, B cells, CD8+ T cells, cytolytic activity, 
HLA, iDCs, inflammation-promoting, mast cells, pDCs, 
T-cell co-inhibition, T helper cells, Tfh, TIL, and type II 
IFN response correlation signals had a better prognosis  
(Figure 5C-5P).

Association between IRGPI subgroups and immunotherapy 
biomarkers

Some biomarkers such as PD-1, PD-L1, and CTLA-4, as 
well as TMB, have been used in clinical immunotherapy. In 
addition, an increasing number of potential biomarkers are 
being discovered, such as AUNIP, NPM1, EXO1, CBX7, 
and SFTPA1. 

We investigated the association between IRGPI scores 
and these biomarkers. The Pearson correlation coefficients 
between IRGPI risk scores and PDCD1 (PD-1) was −0.1 
with P=0.025 [CTLA-4: r=−0.2, P=9.5e−06; CD274 (PD-
L1): r=−0.023, P = 0.61; AUNIP: r=0.39, P<2.2e−16; NPM1: 
r=0.26, P=2e−09; EXO1: r=0.43, P<2.2e−16; CBX7: r=−0.47, 
P<2.2e−16; SFTPA1: r=−0.27, P=1e−09; TMB: r=0.13, 
P=0.0036] (Figure 6A-6I). The full results of TMB are 
listed in table available at https://cdn.amegroups.cn/static/

public/10.21037jtd-23-1374-8.xls. We found that, except 
for PD-L1, the correlation trends between the IRGPI 
scores and other biomarkers were the same as in previous 
studies, and the P value of the correlation was less than 0.05, 
indicating that the IRGPI score is strongly associated with 
this biomarker.

Association between IRGPI subgroups and ARGs 

The growth of lung cancer is dependent on angiogenesis, 
and a large amount of angiogenesis is correlated to the 
invasion and poor outcome of lung cancer. In addition, 
angiogenesis was found to play an important role in 
immunosuppression, leading to primary and secondary 
resistance to ICI. Therefore, combining analysis of 
angiogenesis and immunity can deepen our understanding 
of ICI. Based on our research, we sought to clarify whether 
there is a correlation between ARGs expression and IRGPI 
risk score. A total of 48 ARGs were obtained from MSigDB 
and we investigated the relationship between IRGPI scores 
and the expression of these genes. Pearson correlation 
coefficients and P values between IRGPI risk scores and 
these genes are presented in Table S5. Among them,  
24 genes were negatively correlated with IRGPI scores,  
9 were positively correlated, and the remaining genes had 
P values >0.05. The 9 ARGs with the smallest P value are 
listed in Figure 7A-7I (EMCN: r=−0.36, P<2.2e−16; SPHK1: 
r=0.35, P=1.2e−15; COL4A3: r=−0.33, P=1.6e−14; HTATIP2: 
r=0.29, P<2.1e−11; TNFSF12: r=−0.26, P=2.4e−09; 
SHH: r=−0.25, P<2.2e−08; FOXO4: r=−0.25, P<2.4e−08; 
NCL: r=0.23, P=3.6e−07; IL17F: r=−0.22, P=4e−07)  
(Figure 6A-6I ). We found that most of the ARGs were 
strongly associated with IRGPI risk scores.

Analyses of clinicopathological characteristics and other 
immune subtypes in different IRGPI subgroups

Figure 8A illustrates the distribution of clinicopathological 
characteristics of 535 LUAD patients in the TCGA cohort 
in two risk groups (table available at https://cdn.amegroups.
cn/static/public/10.21037jtd-23-1374-9.xls). We found a 
significant relationship in tumor stages and grades between 
the two IRGPI groups. We further observed tumor staging 
and found that the stage I patient count in the IRGPI-low 
group was significantly higher than that in the IRGPI-high 
group, whereas in stages II and III, the opposite was true 
(Figure 8B).

According to extensive immune genomic analysis, 

Table 2 The IRGPI risk score was calculated by the 13 immune-
related hub genes

ID Coef

CD79A −0.23544897047258

F2RL1 0.164033293483382

GMFG 0.229663457926312

INHA 0.0854504370539527

NLRC4 −0.379763670758073

AGER −0.106632985781127

GPI 0.290658464320619

ANGPTL4 0.142341274528789

LIFR −0.189665876861247

TRIM6 0.250033316508902

PLK1 0.249729746881706

C7 0.246389600680723

C6 −0.140902095752421

IRGPI, immune-related gene prognostic index.

https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-8.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-8.xls
https://cdn.amegroups.cn/static/public/JTD-23-1374-Supplementary.pdf
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-9.xls
https://cdn.amegroups.cn/static/public/10.21037jtd-23-1374-9.xls
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Figure 4 Molecular characteristics of two IRGPI groups. (A) Significant pathways of gene sets enrichment in IRGPI low-risk group. (B) 
Significant pathways of gene sets enrichment in IRGPI high-risk group. (C) Somatic mutation landscape of IRGPI low-risk group. (D) 
Somatic mutation landscape of IRGPI high-risk group. IRGPI, immune-related gene prognostic index; TMB, tumor mutation burden.

six immune subtypes were identified, which included 
wound healing (c1), interferon-γ (IFN-γ) dominant 
(c2), inflammatory (c3), lymphocyte depleted (c4), 
immunologically quiet (c5), and transforming growth 
factor-β (TGF-β) dominant (c6). The six immune subtypes 
have latent therapeutic and prognostic implications for 
cancer. In the present study, we found that the C3 had more 
IRGPI-low group patients than the other four subtypes 
(Figure 8C), which probably suggested that patients in C3 
group had the best prognosis.

Response analysis of ICI therapy in different IRGPI 
subgroups 

We performed a TIDE score to evaluate the latent clinical 
curative effect of ICI treatment between low- and high-
risk groups. In our results, we discovered that the low-risk 
group had higher TIDE scores than the high-risk group 
(Figure 9A), which implies that the high-risk group could 
benefit more from ICI treatment than the low-risk group. 
Moreover, we found that the high-risk group had higher 
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microsatellite instability (MSI-H) score (Figure 9B), higher 
T-cell exclusion score, and lower T-cell dysfunction score 
(Figure 9C,9D).

Based on the TCGA cohort, we validated the predictive 
capability of the IRGPI score for ICI therapy effect. 

Our data showed that the AUC of the ROC curve of the 
prognostic model reached 0.717 for 1-year OS, 0.728 for 
2-year OS, and 0.740 for 3-year OS (Figure 9E). In addition, 
compared with TIDE and TIS scores, IRGPI scores had 
more accurate prediction power (Figure 9F). The results 
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suggest that the IRGPI score probably plays an important 
role on predicting immunotherapy response.

Discussion

I m m u n o t h e r a p y  i s  o n e  o f  t h e  m o s t  s i g n i f i c a n t 

breakthroughs in cancer therapy, and it has been shown to 
be a valid therapy for patients with advanced, recurrent, and 
metastatic malignancy (22,23). However, merely a minority 
of patients can benefit from ICI treatment. Thus, a priority 
is to explore reliable biomarkers to select who can benefit 
most from immunotherapy.
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In our study, WGCNA and regression analysis were 
used to determine candidate 13 core IRGs affecting 
patient OS to build a IRGPI based on the DEIRGs in 
LUAD. The IRGPI score, calculated by the weighted level  
(Table 2), was a valid and independent prognostic factor. 
In short, LUAD patients with low IRGPI scores have 
better survival, whereas those with high IRGPI scores 
are associated with a worse survival in the TCGA and 
GEO cohort. We sought to summarize the functions of 
the 13 genes and find a mechanistic interpretation for 
the IRGPI. The CD79A (CD79a molecule) is encoded 
by the MB-1 gene, and its mutation results in a complete 
arrest of B-cell development (24). F2R like trypsin 
receptor 1 (F2RL1) is a G-protein-coupled receptor (25)  
that is significantly upregulated in ovarian, cervical, and 
lung cancers, and enhances tumor cell proliferation, 
migration, and invasion (26-29). Glia maturation factor 
gamma (GMFG) is a 17 kDa protein, which mediates 

monocyte, neutrophil, and T-lymphocyte migration (30-32).  
Inhibin subunit alpha (INHA) may suppress tumor 
activity in normal epithelial cells and switch to tumor-
facilitating activity in tumor, similar to TGF-β, and 
inhibin-α expression is elevated in most cancers (33,34). 
NLR family CARD domain containing 4 (NLRC4) is an 
essential component of the NLRC4 inflammasome, but the 
independent action of NLRC4-expressed inflammasome in 
macrophages is required to produce inhibition of melanoma  
progression (35). Furthermore, it was found from NLRC4-
mediated antitumor immunity that IL-1β is released 
from DCs after activation of the nucleotide-binding 
oligomerization domain (NOD)-like receptor family 
pyrin domain containing 3 (NLRP3) inflammasome 
could promote antitumor immune responses during 
chemotherapy (36). Advanced glycosylation end-product 
specific receptor (RAGE) is a multiligand receptor of the 
immunoglobulin superfamily that is related to innate and 
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adaptive immune reaction, immune cell migration, and 
chemotaxis and cytokine generation by interacting with 
‘alarmins’ HMGB1 and S100B (37). Furthermore, recent 
findings have demonstrated that targeting RAGE might 
offset the damage of muscle strength and mass and extend 

survival in tumor patients (38). Glucose-6-phosphate 
isomerase (GPI) is a member of the glucose phosphate 
isomerase protein family, which may be involved in cancer 
invasion and metastasis (39,40). Moreover, the expression of 
GPI was significantly upregulated in LUAD patients, which 
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was closely related to poor prognosis, and its mechanisms 
affecting LUAD progression may affect LUAD progression 
through regulation of cell cycle and immune infiltration (41).  
Angiopoietin like 4 (ANGPTL4) is an adipokine that 
adjusts lipid metabolism and influences tumor progression 
(42-44), and its triggering of tumor metastasis might occur 
through activation of integrin signaling (45). LIF receptor 
subunit alpha (LIFR) is a metastasis suppressor that inhibits 
invasion and metastasis in many kinds of tumors including 
hepatocellular carcinoma, lung cancer, and gastric cancer 
(46-48). Tripartite motif containing 6 (TRIM6) is a member 
of the TRIM family proteins. An improving number of 
studies have demonstrated its role in regulating invasion and 
metastasis (49,50), among which TRIM6 may promote CRC 
migration and invasion by regulating STAT3 activation 
status (51). Polo like kinase 1 (PLK1) is a highly conserved 
serine-threonine kinase that has been verified to be closely 
related to tumorigenesis and aberrantly overexpressed in 
many tumors, correlating with poor prognosis in some 
human cancers (52-54). In NSCLC, PLK1 overexpression 
induces epithelial to mesenchymal transition (EMT) and 
increases cell motility, and PLK1 is a powerful predictor 
of worse survival in patients with metastatic NSCLC (55). 
Although complement C7 is a significant part of the innate 
immune system, high expression of C7 may promote the 
development of breast cancer (56). Furthermore, plasma 
C7 levels have been shown to be able to accurately predict 
treatment response to pembrolizumab in NSCLC patients, 
suggesting that plasma C7 is a surrogate and supportive 
biomarker (57). Decreased complement C6 expression in 
hepatocellular carcinoma is related to poor outcome and 
increased immune cell infiltration. This finding indicates 
that C6 may be involved in immune cell infiltration (58). 
Consistent with previous studies, we found that F2RL1, 
GMFG, INHA, GPI, ANGPTL4, TRIM6, PLK1, and C7 
had positive weights, whereas CD79a, NLRC4, AGER, 
LIFR, and C6 had negative weights (Table 2). Thus, IRGPI 
was positively correlated with F2RL1, GMFG, INHA, GPI, 
ANGPTL4, TRIM6, PLK1, and C7, whereas IRGPI was 
negatively correlated with CD79a, NLRC4, AGER, LIFR, 
and C6. In conclusion, IRGPI is a biomarker closely related 
to active immunity and tumor promotion or suppression.

To comprehend the immunological properties of IRGPI 
subgroups in-depth, we subsequently studied genetic 
mutations in two IRGPI groups. Missense mutations were 
the most common mutation type, followed by nonsense 
deletion, as in a previous study (59). In our study, universally 
higher mutation rates in the IRG high-risk group were 

found. The largest differences in mutations between 
subgroups were in the TP53 and KRAS genes, which were 
more common in IRGPI-high samples than in IRGPI-low 
samples (48% vs. 39% and 29% vs. 21%, respectively). TP53 
is the most commonly mutated gene in human tumors and is 
associated with aggressiveness and poor prognosis in many 
cancers (60). KRAS mutations may contribute to a worse 
prognosis via strengthening tumor cell proliferation (61).  
It has been reported that TP53 mutation induced the 
expression of immune checkpoints and activated T-effector 
and IFN-γ signature in LUAD. Furthermore, the TP53/
KRAS co-mutated subgroup exhibited a unique increase in 
PD-L1 expression and the highest proportion of PDL1+/
CD8A+, demonstrating that patients with TP53 and KRAS 
mutations would be more responsive to ICI (62). This 
factor maybe a foundation for the response to ICI treatment 
for patients with high IRGPI score.

Next, we investigated the TME of two IRGPI groups. 
The component of some immune cells differs between two 
IRGPI groups. We found that memory B cells, plasma cells, 
resting memory CD4 T cells, resting DCs, and resting Mast 
cells were more enriched in the IRGPI-low group, whereas 
resting NK cells, M0 macrophages, aDCs, and resting mast 
cells were more enriched in the IRGPI-high group. Plasma 
cells have been reported to be related to improved survival 
in NSCLC (63). Dense infiltration of T cells, particularly 
resting memory CD4 T cells, has been shown to predict 
a good prognosis (64). In many tumors, M0 macrophages 
are associated with chronic inflammation and contribute to 
tumor growth and increased aggressiveness, and it is related 
to its prognosis (65-67).

Among known immunotherapy predictive biomarkers 
such as PD-L1, PD-1, CTLA-4, and TMB, as well as 
potential biomarkers predicted by the current studies, 
such as AUNIP, NPM1, EXO1, CBX7, and SFTPA1, 
increased AUNIP, NPM1, and EXO1 expression predicted 
worse OS in LUAD patients (68-70). In contrast, higher 
SFTPA1 and CBX7 expression predicted better outcome in 
LUAD patients (71,72). Comparing them with the IRGPI 
risk score, we found that the IRGPI score significantly 
correlated with these biomarkers, except for PD-L1. In 
general, PD-L1, a predictive biomarker for PD-1/PD-L1  
inhibitor, is commonly used to predict the prognosis of 
immunotherapy, and patients with PD-L1 positivity are 
more likely to benefit from anti-PD-1/PD-L1 treatments 
than patients with PD-L1 negativity (73). However, the 
implementation of PD-L1 is restricted by a large number of 
PD-L1 antibodies, assays, positivity thresholds, and scoring 
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systems currently in use (74). Of these, lack of consistency 
in testing and changeability in the thresholds used to delimit 
PD-L1 positivity are probably the predominant causes. 
In addition, some researchers believe that the PD-L1  
expression value detected by immunohistochemistry is 
more valuable than the intension and location of the PD-L1  
expression value tested by transcriptome data (75). 
Therefore, in-depth studies are required to clarify the 
association between PD-L1 and IRGPI. In addition, since 
the growth of lung cancer is dependent on angiogenesis, 
which is associated with the invasion and poor prognosis 
of lung cancer. Furthermore, angiogenesis was found to 
play an important role in immunosuppression, leading to 
primary and secondary resistance to ICI (76). So, we also 
analyzed the correlation of ARGs and the IRGPI risk score. 
We found that 24 ARGs were correlated positively with 
the IRGPI score, and 9 ARGs were negatively correlated, 
demonstrating that most ARGs were significantly associated 
with the IRGPI score. Therefore, the relationship between 
ARGs and IRGPI deserves further study.

Further observing the clinicopathological characteristics 
of two risk groups, we found a significant relationship 
between tumor stage and grade between the two risk groups. 
Tumor staging was further looked at, and it was found that 
the number of patients with stage I was significantly higher 
in the IRGPI-low group than in the IRGPI-high group, 
whereas in stages II and III, the opposite was true, indicating 
a better prognosis in the low-risk group. To further verify 
this conclusion, we compared six immune subtypes based 
on pooled TCGA data, as previously described. The six 
immune subtypes have potential therapeutic and prognostic 
implications for cancer. A previous study has shown that C3 
has the best prognosis, followed by C1 and C2, and C4 and 
C6 have the worst prognosis (77). In this study, we found 
that low-risk patients were significantly clustered in the C3, 
which supported our conclusion.

Finally, comparison with other diagnostic criteria of ICI 
treatment, including the TIDE and TIS scores (78,79), 
demonstrated that IRGPI has better predictive performance 
in many solid tumors. The TIDE was associated with T-cell 
dysfunction in high infiltration of cytotoxic T lymphocytes 
(CTLs) cancers and T-cell exclusion in low infiltration of 
CTLs cancers, thus representing two potential mechanisms 
of tumor immune escape (79). For ICI-treated patients, the 
TIDE has higher accuracy in predicting survival outcomes 
than current clinically commonly used biomarkers such as 
PD-L1 expression and TMB. In our research, IRGPI-low 
patients had higher CTL infiltration, TIDE, and T-cell 

dysfunction scores than the IRGPI-high patients. Therefore, 
their higher prognosis and lower ICI response may be due 
to higher CTL infiltration and T-cell dysfunction score (79). 
In contrast, the IRGPI-high subgroup had a higher MSI 
and T-cell exclusion score and a lower TIDE and T-cell 
dysfunction score. Although a higher T-cell exclusion score 
implies a higher likelihood of immune evasion, a lower 
T-cell dysfunction score may improve ICI responses (79). 
Overall, the high-risk group with lower TIDE score has a 
better immune microenvironment. In addition, it was found 
that the IRGPI score had reliable predictive performance 
for ICI treatment effect in the TCGA cohort and was better 
than the predictive capability of TIDE and TIS scores.

The model we constructed has certain advantages. 
By comparing with other recently released models, our 
model has higher reliability and stronger pertinence. ROC 
analysis shows that the predictive value of our prognostic 
model is better than other models, and for the predictive 
ability of 1-, 3-, and 5-year survival times, our calibration 
curve showed high accuracy between actual incidence 
and predicted incidence better than other models (80,81). 
And the deep combination of this model with immunity 
has significant advantages in predicting the efficacy of 
immunotherapy.

Although the IRGPI score had so many advantages, it 
still has certain limitations. First, the analysis was based 
on a public database, such as TCGA and GEO databases, 
which are valuable resource but has limitations, including 
potential heterogeneity in data quality and patient 
characteristics. secondly, the effect of ICI was evaluated 
using score, not clinical data, because it was based on 
a public database. Finally, the experiments were not 
conducted for in vitro or in vivo functional analysis of gene 
expression. In view of the deficiencies mentioned above, 
we will clinically measure the expression of 13 model 
genes in patients with LUAD to predict patient prognosis, 
and verify the predictive ability of the prognostic model in 
practice through long-term follow-up.

Conclusions

The IRGPI is a promising immune-related prognostic 
biomarker. It can distinguish high- and low-risk groups 
to predict patient prognosis, help characterize the tumor 
immune microenvironment (TIME). Our study revealed 
that the high-risk subgroup may be more responsive to ICI 
therapy, but further research is warranted to clarify this 
point.
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Table S1 TIS gene

CD3D

IDO1

CIITA

CD3E

CCL5

GZMK

CD2

HLA-DRA

CXCL13

IL2RG

NKG7

HLA-E

CXCR6

LAG3

TAGAP

CXCL10

STAT1

GZMB

Supplementary



Table S2 Results of univariate Cox regression analysis on DEIRGs

ID HR HR.95L HR.95H P value

CD79A 0.86080059 0.78353518 0.94568525 0.00178532

CD19 0.75625156 0.62924666 0.90889067 0.00289778

IL11 1.34825552 1.10071145 1.65147092 0.00388824

TNFRSF17 0.85799594 0.7693303 0.95688033 0.00592412

IRF4 0.79991728 0.68712038 0.93123079 0.00399343

TLR10 0.71322207 0.57526038 0.88427038 0.00206076

S100P 1.08079561 1.02304847 1.14180234 0.00554888

FURIN 1.27236439 1.10812385 1.46094785 0.00063566

F2RL1 1.23470183 1.07596442 1.41685782 0.0026753

BTK 0.72577271 0.60398157 0.87212267 0.00062654

GMFG 0.78440727 0.65644303 0.93731631 0.00753136

INHA 1.12609837 1.04189681 1.21710472 0.00274401

LGR4 1.34353181 1.11667157 1.6164804 0.00175162

ITGAL 0.77803916 0.65892153 0.91869048 0.00307409

NLRC4 0.72140479 0.56355554 0.92346687 0.00954405

CD300LF 0.79265715 0.67268372 0.93402788 0.0055196

FCN1 0.82231418 0.7087974 0.95401113 0.00984793

SIGLEC6 0.60300308 0.41148325 0.88366346 0.00947893

SFTPD 0.8925475 0.83509523 0.95395232 0.00081202

PTGDS 0.83810208 0.75227509 0.93372108 0.00135504

S100A16 1.34389688 1.14094771 1.58294619 0.00040231

WFDC2 0.8454004 0.7657211 0.93337096 0.00088366

CTSG 0.79900571 0.68493351 0.93207605 0.00430469

ARRB1 0.68598782 0.5584277 0.84268614 0.00032998

BIRC5 1.29086621 1.11877098 1.48943403 0.00046997

AGER 0.87709062 0.80460025 0.95611199 0.0028857

MIF 1.35591389 1.11082045 1.65508519 0.00276129

SEMA4B 1.33613511 1.12132384 1.59209763 0.00119334

CX3CR1 0.78857846 0.68484074 0.90803008 0.00096473

ROBO2 0.73498584 0.59159186 0.9131366 0.00542621

ANGPTL5 0.39634401 0.1976015 0.79497663 0.00915916

CAT 0.6945837 0.55994416 0.86159757 0.00091654

GDF10 0.78185635 0.67472786 0.90599393 0.00106408

GPI 1.56739547 1.22526599 2.00505734 0.00034769

IL33 0.84690107 0.75097485 0.95508048 0.00674248

KL 0.72919565 0.58858162 0.90340282 0.00385998

ADRB2 0.75041564 0.63201746 0.89099379 0.00104773

ANGPTL4 1.20400759 1.09833543 1.31984659 7.46E-05

IL5RA 0.51697987 0.31921832 0.83725829 0.00731745

LIFR 0.73568889 0.62497202 0.86601978 0.00022552

RXFP1 0.63021557 0.44959134 0.88340595 0.00737493

VIPR1 0.73808514 0.6229668 0.87447626 0.00044754

SHC3 0.71303584 0.56461184 0.90047725 0.00450715

OAS3 1.2625065 1.06094954 1.50235482 0.00862299

CCNA2 1.31663816 1.15690776 1.49842201 3.06E-05

TRIM6 1.3916876 1.17342874 1.65054282 0.00014617

CFTR 0.82948539 0.74459823 0.92405001 0.00068888

P2RY14 0.74043078 0.59887535 0.91544551 0.0055027

HSPD1 1.51961371 1.18790012 1.94395621 0.00086741

CASP12 0.32021171 0.14538294 0.70527899 0.00470378

PLK1 1.44304709 1.23761283 1.68258186 2.86E-06

C7 0.873539 0.79657181 0.957943 0.00406602

C6 0.78769405 0.67370242 0.92097325 0.0027702

PRKCE 0.64213367 0.48912356 0.84300917 0.00142409

DEIRGs, differentially expressed immune-related genes.
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Table S3 Univariate cox analysis on clinical features

ID HR HR.95L HR.95H P value

Age 1.00788965 0.99265116 1.02336207 0.31200078

Gender 0.90731131 0.67565578 1.21839231 0.51783346

Stage 1.63188632 1.41986259 1.87557091 5.32E-12

Risk score 1.66217011 1.51994871 1.81769914 8.57E-29

Table S4 Results of multivariate cox regression analysis

ID HR HR.95L HR.95H P value

Stage 1.49310342 1.28863008 1.73002156 9.58E-08

Risk score 1.59204609 1.44954654 1.74855424 2.48E-22



Table S5 Pearson correlation coefficients and p-values between IRGPI risk scores and ARGs

Angiogenesis R P value

EMCN −0.36 2.20E-16

SPHK1 0.35 1.20E-15

COL4A3 −0.33 1.60E-14

HTATIP2 0.29 2.10E-11

TNFSF12 −0.26 <0.0000000024

SHH −0.25 2.20E-08

FOXO4 −0.25 2.40E-08

NCL 0.23 3.60E-07

IL17F −0.22 4.00E-07

SPINK5 −0.22 9.70E-07

CXCL8 0.21 1.50E-06

NPR1 −0.21 1.70E-06

PLG −0.21 1.70E-06

ACVRL1 −0.2 4.00E-06

NOTCH4 −0.2 4.10E-06

RNH1 −0.19 1.20E-05

ROBO4 −0.19 1.80E-05

STAB1 −0.19 2.50E-05

BTG1 −0.17 1.00E-04

AMOT −0.17 0.00012

SERPINF1 −0.13 3.60E-03

PROK2 −0.12 5.50E-03

THY1 0.12 5.50E-03

TNNI3 0.12 6.50E-03

RUNX1 −0.12 6.80E-03

ERAP1 −0.11 0.01

PML 0.11 1.00E-02

ATP5IF1 −0.1 0.021

AGGF1 −0.1 0.024

PF4 0.1 2.50E-02

EGF 0.098 0.027

CDH13 −0.092 0.04

ANG −0.087 0.05

C1GALT1 0.087 0.051

ANGPTL3 −0.072 0.11

VEGFA 0.071 1.10E-01

IL18 0.063 1.60E-01

COL4A2 0.061 0.17

NF1 −0.056 2.10E-01

SCG2 0.049 2.80E-01

TGFB2 −0.048 2.80E-01

RHOB −0.048 2.90E-01

MYH9 0.043 3.40E-01

CHRNA7 −0.018 0.69

CANX 0.016 0.72

NPPB 0.012 8.00E-01

EPGN 0.0074 0.87

ANGPTL4 NA NA
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