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Background: RNA-binding proteins (RBPs) play a crucial role in regulating RNA turnover and are 
associated with cancer development. However, little is known about the role of RBPs in esophageal cancer 
(ESCA). The present study focuses on the association between RBP gene expression and survival in ESCA, 
addressing the clinical relevance of an RBPs-based prediction model for prognosis.
Methods: RNA-sequencing data and clinical information of patients with ESCA were obtained from 
The Cancer Genome Atlas (TCGA) database. We identified differentially expressed genes in ESCA and 
intersected them with RBP-encoding genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were performed with the identified differentially expressed 
RBPs. Then, a protein-protein interaction (PPI) network was constructed through the STRING database to 
determine the hub RBPs. Univariate Cox regression analysis and multivariate Cox regression analysis were 
applied to construct a novel prognostic model based on RBPs. Based on the R package “Caret”, we divided 
patients into the training set and validation set. The efficacy of the prognostic model was evaluated by the 
area under the receiver operating characteristic (ROC) curve. A nomogram was developed for the prediction 
of patient survival outcomes.
Results: A total of 158 ESCA patients from the TCGA database were included in our analysis. We 
screened out five prognostic RBPs (CLK1, CIRBP, MRPL13, TNRC6A, and TYW3) through univariate 
and multivariate Cox regression analysis. CLK1, CIRBP, TNRC6A and TYW3 were downregulated in 
tumor samples, while MRPL13 was upregulated. A prognostic model constructed with these five RBPs in 
the training data set accurately stratified ESCA patients into high- and low-risk groups. When the same 
prognostic model was applied to the test data set and entire cohort, the 5-RBP signature remained an 
independent prognostic factor in multivariate analysis. The areas under the time-dependent ROC curve of 
the prognostic model for predicting one-year survival in the training data set, test data set, and entire cohort 
were 0.789, 0.753, and 0.764, respectively, confirming that this model is a good prognostic model. The 
nomogram based on the five RBPs and clinical variables could improve individualized outcome predictions 
and highlight the importance of RBPs in the outcomes of patients with ESCA.
Conclusions: Our study provides a potential prognostic model for predicting the prognosis of ESCA 
patients. The prognostic nomogram could improve individualized outcome predictions for patients with 
ESCA, therefore providing novel insights into future diagnosis and treatment.
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Introduction

Esophageal cancer (ESCA), comprising squamous cell 
carcinoma and adenocarcinoma, is one of the most common 
cancer types worldwide and has the eighth highest incidence 
among malignancies in the United States, with an estimated 
21,560 new cases predicted to be diagnosed in 2023 (1). 
Moreover, ESCA accounts for 2.6% of cancer deaths, 
with 16,120 patients predicted to die from this disease in 
the United States in 2023 (1). Most ESCA patients have 
progressed to an advanced stage at the time of diagnosis. 
Despite the improvements in treatment for ESCA over the 
last decades, it remains one of the most fatal malignancies, 
with an overall 5-year survival rate of only approximately 
21% (1). The high mortality and low survival rate are 
the major challenges for the treatment of this disease. 
Therefore, it is still an important task in cancer research to 
explore novel biomarkers and new therapeutic targets.

RNA-binding proteins (RBPs) play important roles in 
maintaining physiological homeostasis and are key players 
in posttranscriptional events (2). RBPs are involved in 
the development and progression of various diseases, 
including cardiovascular disease, genetic disease, and 
neurodegenerative disorders (3,4). Perturbations in RBP-

RNA network activity have been regarded as being 
associated with cancer development (5). According to a 
previous study, RBPs are abnormally expressed in colorectal 
cancer, affecting the translation of mRNAs into proteins and 
leading to carcinogenesis (6). The prognostic model based 
on RBPs also shows good predictive efficacy in colorectal 
cancer (7,8). Several studies have established prognostic 
models for ESCA, such as m6A methylation-associated 
genes-based model, immune-related gene prognostic model 
and etc. (9,10). Also, a potential prognostic model was 
also established through the combination of differentially 
expressed mRNAs and target genes of differentially 
expressed microRNAs (11). However, no mature prediction 
model is being used in clinical practice. Considering the 
vital role of RBPs in cancer, the construction of prognostic 
regulatory networks based on RBPs has also gradually 
attracted attention (12,13).

As far as ESCA is concerned, little is known about 
the roles of RBPs in the pathology. In the present study, 
we performed a systematic functional study of RBPs to 
explore their role in ESCA. We proposed and validated 
an individualized prognostic model based on RBPs for 
the overall survival (OS) of ESCA patients. We identified 
a number of ESCA-related RBPs and thus enhanced our 
knowledge of the molecular mechanisms underlying the 
development of ESCA. These RBPs may serve as potential 
diagnostic and prognostic indicators for ESCA. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-1307/rc).

Methods

Data processing and functional enrichment analysis

RNA-sequencing (RNA-seq) data and clinical information 
of patients with ESCA (squamous cell carcinoma and 
adenocarcinoma) were obtained from The Cancer Genome 
Atlas (TCGA) (https://portal.gdc.cancer.gov/). Patients with 
incomplete follow-up information were excluded to reduce 
statistical bias in the subsequent analysis, and 158 primary 
ESCA and ten normal tissues were ultimately included in 
our study. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).
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The “limma” package in R software was used to identify 
the differentially expressed genes between tumor samples 
and normal samples from patients with ESCA (14). The 
differentially expressed RBPs that met the criteria of 
|log[fold change (FC)]| >0.5 and false discovery rate 
(FDR)-corrected P value <0.05 were identified as the 
significantly differentially expressed RBPs. In order to 
explore the biological functions of these genes, we applied 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis based on the 
“clusterProfiler” package of R. GO terms and KEGG 
pathways with an FDR-adjusted P value <0.05 were 
retained.

Protein-protein interaction (PPI) network construction 
and module screening

PPI networks are composed of proteins that interact with 
each other to participate in various aspects of life processes 
such as biological signal transmission, gene expression 
regulation, energy and material metabolism, and cell 
cycle regulation. To comprehend how proteins function 
in biological systems, it is crucial to conduct a systematic 
examination of the interactions of numerous proteins in 
biological systems (15). To obtain PPI information, the 
significantly differentially expressed genes were uploaded 
to the STRING database (http://www.string-db.org/) (16). 
The PPI network was constructed and visualized using 
Cytoscape 3.7.2 software (17).

Construction and validation of an RBP-related prognostic 
signature

The “Caret” package of R was employed to randomly 
dichotomize the entire cohort of ESCA patients into 
the training and test data sets (18,19). We performed 
univariate Cox regression analysis to select RBPs that 
were significantly associated with ESCA patient OS in 
the training data set. We then constructed a risk score 
using multivariate Cox regression analysis to evaluate the 
prognostic outcomes of patients in the training data set. 
The risk score formula was established as follows: risk scores 
= Vi × Ci (Vi is the expression value of a gene, Ci represents 
the regression coefficient of a gene), summed for each gene 
considered in the signature (20). All patients in the training 
data set, test data set, and entire data set were dichotomized 
into high- and low-risk groups by the median risk cutoff 
value. The “survivalROC” package of R was utilized to 

evaluate the value of the prognostic model for 1-year 
survival through the area under the curve (AUC) value of 
the receiver operating characteristic (ROC) curve (21).  
With the AUC ranging from 0 to 1, a higher value of AUC 
indicates better model prediction performance (AUC =0.5 
means random prediction) and AUC >0.7 means that the 
model has good predictive ability.

Statistical analysis

Cox regression analysis was performed using the “survival” 
package (22). Normalization and differential expression 
analysis were carried out using the “limma” package. All 
statistical analyses were implemented based on R software 
(version 3.6.3). An FDR-corrected P value <0.05 was 
considered statistically significant. 

Results

Differentially expressed RBPs in ESCA

To obtain the differentially expressed RBPs, we analyzed 
the expression of 1,542 RBPs (3) in 158 primary ESCA and 
ten nontumor tissues using the “limma” package in R; the 
expression patterns of the whole set of RBPs are shown 
in Figure 1A. After statistical analysis, 255 RBPs, namely, 
109 downregulated RBPs and 146 upregulated RBPs, 
were eventually identified using the criteria of |log(FC)| 
>0.5 and FDR-corrected P value <0.05 (Figure 1B, tables  
available at https://cdn.amegroups.cn/static/public/jtd-23-
1307-1.xlsx and https://cdn.amegroups.cn/static/public/jtd-
23-1307-2.xlsx).

Functional enrichment analysis of the differentially 
expressed RBPs

To investigate the functions and mechanisms of the 
identified RBPs, the differentially expressed RBPs were 
separated into up- and downregulated expression groups 
and further subjected to functional enrichment analysis. 
The results of GO functional and KEGG pathway 
enrichment analyses of these genes are summarized in 
Table 1. For the upregulated differentially expressed RBPs, 
the top enriched GO biological process terms were non-
coding RNA (ncRNA) processing, ribosome biogenesis, and 
ribosomal RNA (rRNA) metabolic process; the top enriched 
GO cellular component terms were spliceosomal complex, 
U2-type spliceosomal complex, and U2-type precatalytic 

https://cdn.amegroups.cn/static/public/jtd-23-1307-1.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1307-1.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1307-2.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1307-2.xlsx
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spliceosome; and the top enriched GO molecular function 
terms were catalytic activity acting on RNA, ribonuclease 
activity, and ribonucleoprotein complex binding (Table 1). 
The downregulated differentially expressed RBPs were 
significantly enriched in (I) the GO biological process 
terms related to the regulation of translation, regulation 
of cellular amide metabolic process, and regulation of 
mRNA metabolic process; (II) the GO cellular component 
terms ribosome, ribosomal subunit, and cytoplasmic 
ribonucleoprotein granule; and (III) the GO molecular 
function terms translation regulator activity, nucleic acid 
binding, translation regulator activity, translation repressor 
activity, and mRNA regulatory element binding (Table 1). 
Additionally, in the KEGG pathway enrichment analysis 
for the differentially expressed RBPs, it was discovered that 
the genes encoding the upregulated RBPs were significantly 
related to the spliceosome, RNA transport, and ribosome 
biogenesis in eukaryotes pathways and that those encoding 
the downregulated RBPs were significantly related to the 
pathways ribosome and progesterone-mediated oocyte 
maturation (Table 1). Most of these pathways were involved 
in RNA-related pathways, which were consistent with the 
function of these genes themselves.

PPIs among the differentially expressed RBPs

To explore the potential interactions among these 
differentially expressed RBPs in ESCA, we generated a PPI 
network consisting of 237 nodes and 2,305 edges using 
the Cytoscape 3.72 software and the STRING database  
(Figure 2A). The co-expression network was processed 
via the MCODE tool to identify possible key modules 

and the first key module acquired, which included 47 hub 
RBPs (Figure 2B). The RBPs in the first key module were 
highly enriched in the spliceosome, ribosome biogenesis 
in eukaryotes, mRNA surveillance pathway, and RNA 
transport pathways.

Construction of the RBP prognostic-related risk score 
model in the training data set

The entire cohort (n=158) of patients with complete survival 
information and RNA-seq expression profiles was randomly 
divided into training (n=80) and test (n=78) data sets based on 
the R package of “caret”. The information of patients with 
ESCA is summarized in a previous study and no differences 
in baseline characteristics in patients were found between the 
two groups (19). In the training set, we performed univariate 
Cox regression analysis based on the 47 hub RBPs. A total 
of 18 RBPs significantly associated with OS (P<0.05) were 
considered prognostic candidate hub RBPs for further 
analysis (Figure 3A). The five hub RBPs identified from 
multivariate Cox regression analysis were used to construct 
the prediction model (Figure 3B, Table 2). The risk scores 
for predicting the prognostic risk in ESCA patients were 
calculated with the following formula (see Methods section): 
risk score = (−0.7174 × ExpTNRC6A) + (0.1323 × ExpCLK1) 
+ (−0.1743 × ExpCIRBP) + (0.2425 × ExpTYW3) + (0.2258 
× ExpMRPL13). The expression of these five RBPs is shown 
in the online table (available at https://cdn.amegroups.cn/
static/public/jtd-23-1307-3.xlsx). In addition, the results of 
testing the proportional hazards (PH) assumption in the 
Cox regression model demonstrated that all the P values 
were higher than 0.05, which means that all data satisfied the 
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Figure 1 Differentially expressed RBPs in ESCA. (A) Heatmap; (B) volcano plot. N, normal; T, tumor; FC, fold change; FDR, false 
discovery rate; RBPs, RNA-binding proteins; ESCA, esophageal cancer.
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Table 1 Functional enrichment analysis of the differentially expressed RBPs

RBPs Category ID Term P value FDR

Up- 
regulated 
RBPs

Biological process GO:0034470 ncRNA processing 3.83e−32 5.09e−29

Biological process GO:0042254 Ribosome biogenesis 7.04e−27 4.68e−24

Biological process GO:0016072 rRNA metabolic process 5.21e−25 2.31e−22

Biological process GO:0031123 RNA 3'-end processing 5.71e−24 1.90e−21

Biological process GO:0006913 Nucleocytoplasmic transport 9.77e−24 2.60e−21

Cellular component GO:0005681 Spliceosomal complex 2.02e−19 2.91e−17

Cellular component GO:0005684 U2-type spliceosomal complex 3.01e−18 2.17e−16

Cellular component GO:0071005 U2-type precatalytic spliceosome 2.26e−17 1.09e−15

Cellular component GO:0071011 Precatalytic spliceosome 3.02e−17 1.09e−15

Cellular component GO:0071013 Catalytic step 2 spliceosome 5.78e−17 1.67e−15

Molecular function GO:0140098 Catalytic activity, acting on RNA 6.29e−26 8.67e−24

Molecular function GO:0004540 Ribonuclease activity 3.77e−13 2.60e−11

Molecular function GO:0043021 Ribonucleoprotein complex binding 5.14e−11 2.36e−09

Molecular function GO:0004518 Nuclease activity 1.10e−09 3.78e−08

Molecular function GO:0004521 Endoribonuclease activity 4.27e−08 1.18e−06

KEGG pathway hsa03040 Spliceosome 4.03e−19 1.74e−17

KEGG pathway hsa03013 RNA transport 6.10e−15 1.24e−13

KEGG pathway hsa03008 Ribosome biogenesis in eukaryotes 8.64e−15 1.24e−13

KEGG pathway hsa03015 mRNA surveillance pathway 2.45e−07 2.64e−06

KEGG pathway hsa03010 Ribosome 9.46e−04 8.17e−03

Down-
regulated 
RBPs

Biological process GO:0006417 Regulation of translation 1.81e−21 2.73e−18

Biological process GO:0034248 Regulation of cellular amide metabolic process 5.34e−20 4.03e−17

Biological process GO:1903311 Regulation of mRNA metabolic process 3.87e−18 1.95e−15

Biological process GO:0043484 Regulation of RNA splicing 2.96e−17 1.12e−14

Biological process GO:0006401 RNA catabolic process 3.71e−15 1.12e−12

Cellular component GO:0005840 Ribosome 2.22e−09 2.57e−07

Cellular component GO:0044391 Ribosomal subunit 8.03e−07 4.65e−05

Cellular component GO:0036464 Cytoplasmic ribonucleoprotein granule 2.00e−06 6.58e−05

Cellular component GO:0022626 Cytosolic ribosome 2.27e−06 6.58e−05

Cellular component GO:0035770 Ribonucleoprotein granule 3.02e−06 7.00e−05

Molecular function GO:0090079 Translation regulator activity, nucleic acid binding 4.12e−18 6.12e−16

Molecular function GO:0045182 Translation regulator activity 2.45e−17 1.82e−15

Molecular function GO:0000900 Translation repressor activity, mRNA regulatory element binding 1.40e−12 6.71e−11

Molecular function GO:0030371 Translation repressor activity 1.81e−12 6.71e−11

Molecular function GO:0008135 Translation factor activity, RNA binding 3.09e−12 9.17e−11

KEGG pathway hsa03010 Ribosome 8.98e−06 5.39e−04

KEGG pathway hsa04914 Progesterone-mediated oocyte maturation 1.28e−03 3.84e−02

RBPs, RNA-binding proteins; FDR, false discovery rate; GO, Gene Ontology; ncRNA, non-coding RNA; rRNA, ribosomal RNA; KEEG, 
Kyoto Encyclopedia of Genes and Genome.
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PH assumption (Table 3). We then dichotomized the ESCA 
patients into the high- and low-risk groups according to the 
median risk score. The Kaplan-Meier curves indicated that 
the high-risk group had poor OS prognoses compared to 
those of the low-risk group in the training data set (P<0.001; 
Figure 4A). Time-dependent ROC analysis was executed 
to further estimate the prognostic ability of the five-RBP 
signature. The ROC curves of the RBP signature model 
are shown in Figure 4B, indicating the AUC of 0.789 for 
1-year survival, indicating that the model has moderate 
diagnostic performance. The relative expression standards of 
the five RBPs for each patient are shown in Figure 4C. The 
distribution of risk grades between the low- and high-risk 
groups is depicted in Figure 4D, and the survival status and 
survival time of patients in the two different risk groups are 
shown in Figure 4E.

Validation of the RBP prognostic signature

To evaluate the robustness of the five-RBP signature, its 
prognostic value was further validated in the test data 
set and the entire data set. The prognostic risk scores of 
patients in the test cohort and in the entire data set were 
also calculated based on the expression values of the five 

prognostic RBPs, according to the previous formula (see 
Methods section). Moreover, each patient was classified as 
high- or low-risk by comparing this patient’s risk score with 
the median risk score calculated in the training data set. The 
Kaplan-Meier survival curves for patients dichotomized 
by the risk score also showed significant differences in 
survival between the two predicted risk groups in the test 
data set (P=1.792e−02; Figure 5A) and in the entire data 
set (P=3.131e−06; Figure 5B). The ROC curve of the OS-
related predictive signature was further generated in the test 
data set, in which it had an AUC of 0.753, and in the entire 
data set, in which it had an AUC of 0.764 (Figure 5C,5D). 
The distribution of patient risk scores, patient survival 
statuses, and expression levels of five prognostic RBPs in the 
test data set (Figure 5E) and the entire data set (Figure 5F) 
are also shown. CLK1, CIRBP, and MRPL3 were relatively 
highly expressed in low-risk patients. In addition, patients 
in high-risk groups had a higher death rate than those in 
low-risk groups.

Finally, multivariate Cox regression analyses were 
performed incorporating age, grade, stage (T, N, M), 
and risk score as covariables. The results revealed that 
the five-RBP risk score was significantly associated with 
OS in training, test and entire data set (Figure 6A-6C, 

A B

Figure 2 PPI network and module analysis. (A) Protein-protein interaction network of differentially expressed RBPs; (B) critical module 
from the PPI network. Green circles: downregulated RBPs; red circles: upregulated RBPs. RBPs, RNA-binding proteins; PPI, protein-
protein interaction.
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Figure 3 Univariate and multivariate Cox regression analyses to identify prognosis-related hub RBPs. (A) Univariate Cox regression; (B) 
multivariate Cox regression. RBPs, RNA-binding proteins; HR, hazard ratio; CI, confidence interval.

Table 2 Five prognosis-associated hub RBPs identified by multivariate Cox regression analysis

RBPs Coefficient HR Lower 95% CI Upper 95% CI P value

TNRC6A −0.7174 0.4880 0.3181 0.7488 1.02e−03

CLK1 0.1323 1.1414 1.0793 1.2071 3.58e−06

CIRBP −0.1743 0.8400 0.7498 0.9411 2.63e−03

TYW3 0.2425 1.2744 1.1289 1.4386 8.84e−05

MRPL13 0.2259 1.2534 1.0672 1.4722 5.93e−03

RBPs, RNA binding proteins; HR, hazard ratio; CI, confidence interval.
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Table 3 Proportional hazards assumption in Cox model

RBP Chisq P value

TNRC6A 1.06 0.3

CLK1 2.29 0.13

CIRBP 1.15 0.28

TYW3 1.37 0.24

MRPL13 1.3 0.26

Global 5.48 0.36

RBP, RNA-binding protein; Chisq, Chi-square test.

Figure 4 RBP prognostic signature of ESCA patients in the training dataset. (A) Kaplan-Meier curve plot showing that patients in the high-
risk group had significantly poorer OS prognoses than those in the low-risk group; (B) ROC curve of the OS-related prognostic signature; (C) 
expression heatmap; (D) risk score distribution; (E) survival status. ROC, receiver operating characteristic; AUC, area under the curve; RBP, 
RNA-binding protein; ESCA, esophageal cancer; OS, overall survival.

respectively), thus representing a potential prognostic 
marker for ESCA in the future.

Construction of a nomogram integrating the risk model 
with clinical parameters

To obtain a quantitative method for ESCA prognosis, 
we constructed a nomogram by integrating the five-RBP 
signature and clinical parameters (age, sex, stage T, N, 
M). Horizontal lines were drawn to determine the points 
assigned for the five-RBP risk score and each clinical 
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Figure 5 Validation of the five RBP prognostic signature. Kaplan-Meier curves in the test dataset (A) and entire dataset (B). The AUC of 
the 1-year survival curve in the test dataset (C) and entire dataset (D). The expression heatmap and distribution of risk scores and survival 
status in the test dataset (E) and entire dataset (F). ROC, receiver operating characteristic; AUC, area under the curve; RBP, RNA-binding 
protein.
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Figure 6 Multivariate Cox regression analysis of the relationships between different clinical characteristics and the prognosis of ESCA. (A) 
Training dataset; (B) test dataset; (C) entire dataset. HR, hazard ratio; CI, confidence interval; ESCA, esophageal cancer.

parameter. By calculating the total score of each patient by 
summing the points of all variables, we could estimate the 
1-, 2-, and 3-year survival probability of each ESCA patient 
(Figure 7). For example, a 60-year-old female patient staged 

I (T1, N0, M0) and she was high-risk based on the previous 
formula (see Material and Methods section). Her total score 
was about 90 points and the 2- and 3-year survival rate was 
about 86% and 75%, respectively. The establishment of the 
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nomogram made the five-RBP signature more convenient 
for clinical application.

Discussion

RBPs are involved in several aspects of RNA biogenesis, 
including splicing, localization, stability, and translation 
efficiency (3). Recent research has shown that RBPs are 
abnormally expressed in cancer tissues relative to adjacent 
normal tissues and that their expression is associated 
with the prognosis of patients (12,13). High-throughput 
bioinformatic analysis of thousands of paired tumor and 
normal samples from the TCGA database revealed a 
consistent pattern of alterations in RBP expression levels 
across several cancer types (23,24). In recent years, it has 
become apparent that the control of gene expression by 
RBPs is of vital importance in the majority of cellular 
signaling pathways, extending our understanding of its 
mechanism as clinical therapeutic targets (25). However, 
only a small fraction of RBPs have been deeply studied 
during the development of cancer (26-28). In this study, a 
total of 255 differentially expressed RBPs were identified 
between ESCA and normal esophageal tissues. We 
systematically explored the potential biological functional 
pathways and then constructed a PPI network based on 
these differentially expressed RBPs. Additionally, univariate 
Cox regression analysis, Kaplan-Meier survival analysis, 
multivariate Cox regression analysis, and ROC analysis 

were further used to explore their biological functions and 
clinical significance. These findings may contribute to 
the development of potential biomarkers and therapeutic 
targets for ESCA.

Our present study showed that the differentially 
expressed RBPs in ESCA were significantly enriched in 
the terms ncRNA processing, ribosome biogenesis, rRNA 
metabolic process, ribonucleoprotein complex binding, 
regulation of translation, regulation of cellular amide 
metabolic process, and regulation of mRNA metabolic 
process. Several studies have shown that the regulation 
of translation and RNA metabolic processes has been 
increasingly recognized to be involved in the development 
of several diseases (29,30). It has been reported that 
ncRNAs may become novel biomarkers and therapeutic 
targets for cancer progression (31). RBPs can interact 
with mRNAs and then form ribonucleoprotein complexes 
and regulate the expression of the mRNAs by increasing 
mRNA stability, a process that plays important roles in 
the development of many diseases. The RBP NONO has 
recently been found to promote breast cancer proliferation 
by posttranscriptional regulation of SKP2 and E2F8 (32). 
In addition, a study indicated that RBPs in the nucleus 
play key roles in regulating the mRNA alternative splicing 
process and result in alterations in the expression of tumor-
associated genes (33). KEGG pathway analysis suggested 
that aberrantly expressed RBPs regulate tumorigenesis and 
the development of ESCA by influencing the spliceosome, 

Figure 7 Nomogram for predicting the 1-, 2-, and 3-year OS probabilities of ESCA patients in the TCGA dataset. OS, overall survival; 
ESCA, esophageal cancer; TCGA, The Cancer Genome Atlas.
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RNA transport, and ribosome biogenesis. Our results 
improved the understanding of the molecular mechanism of 
ESCA initiation and progression.

After multivariate Cox regression analysis was performed 
in the training data set, five key RBP genes associated 
with prognosis were selected: CLK1, CIRBP, MRPL13, 
TNRC6A, and TYW3. Most of these genes have been 
shown to play crucial roles in the development and 
progression of tumors (34,35). CLK1 is involved in the 
development of gastric cancer and prostate cancer and 
might be a novel therapeutic target (36,37). CIRBP has 
been found in cancer and inflammation and is also regarded 
as a novel oncogene in cancer (38,39). It has been found 
that CIRBP can directly bind to p53 and then regulate 
ferroptosis and the growth of pancreatic cancer cells (40).  
Previous studies have identified MRPL13 as a novel 
candidate gene associated with breast cancer prognosis 
(41,42). A recent study indicated that the miR-30/CHD7/
TNRC6A pathway is potentially a novel diagnostic 
biomarker and therapeutic target for cancer (43). TNRC6A 
is also a downstream target of miR-185-5p and plays an 
important role in the proliferation and apoptosis of non-
small cell lung cancer (44). These results are consistent with 
our present findings that these hub RBPs play important 
roles in tumorigenesis and might be new therapeutic targets 
for ESCA.

Subsequently, a prognostic signature was constructed 
based on the five key RBPs, namely, CLK1, CIRBP, 
MRPL13, TNRC6A, and TYW3, and was further validated 
in the test and entire data sets. ROC curve analysis revealed 
that the RBP-related signature could improve the diagnosis 
and assessment of ESCA patients with poor prognosis. 
Through the nomogram that integrated the risk model with 
clinical parameters, the 1-, 2-, and 3-year OS probabilities 
of ESCA patients could be predicted more intuitively. 
This means that the prognostic model may have a certain 
value for adjusting the treatment plans of ESCA patients. 
In addition, the five key RBPs may play important roles 
in the progression of ESCA. The intervention of these 
five proteins or the exploration of new targeted drugs is 
expected to improve the prognosis of patients with ESCA. 
However, the molecular mechanism by which these RBPs 
contribute to esophageal carcinogenesis needs to be further 
explored.

Our present study indicated that the prognostic signature 
based on RBPs might be applied for the prediction of 
survival in ESCA patients, thereby potentially being used 
to assist clinical treatment and improve the outcomes of 

ESCA patients. However, there are still some limitations 
to the present study. First, our results were only based 
on the TCGA database and need to be further verified 
in prospective studies for clinical use. Second, additional 
investigations should be conducted to further explore the 
molecular mechanisms of these RBP hub genes in the 
development and progression of ESCA. Also, we did not 
investigate the potential function of RBPs in ESCA with 
different pathologies due to the limited sample size. We 
hope to increase the number of patients in future study 
to explore the application of the RBP-related signature 
in ESCA patients with different pathologies. Finally, 
prospective research should be performed to verify the 
outcomes.

Conclusions

We constructed and validated a novel prognostic signature 
based on RBPs that could serve as an independent 
prognostic factor for ESCA and improve individualized 
outcome predictions. Our results have shown great potential 
for the identification of new prognostic biomarkers and 
therapeutic targets for ESCA patients.
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