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Background: Lung cancer is the leading cause of morbidity and mortality among all cancer types, with 
lung adenocarcinoma (LUAD) being the most prevalent subtype. DNA damage repair (DDR)-related genes 
are closely associated with cancer progression and treatment, with emerging evidence highlighting their 
correlation with tumor development. However, the relationship between LUAD prognosis and DDR-related 
genes remains unclear.
Methods: RNA sequencing (RNA-seq) data and clinical information were obtained from The Cancer 
Genome Atlas (TCGA) database. The GSE31210 dataset, utilized for external validation, was retrieved from 
the Gene Expression Omnibus (GEO) database. Differentially expressed DDR genes were identified, and 
a DDR-related prognostic model was established and validated using Kaplan-Meier (KM) survival analysis, 
time-dependent receiver operating characteristic (ROC) curves, gene set enrichment analysis (GSEA), tumor 
mutational burden (TMB) analysis, and immune cell infiltration. A P value of less than 0.05 was considered 
statistically significant.
Results: A total of 514 patients with LUAD from TCGA database were divided into distinct subtypes to 
characterize the diversity within the DDR pathway. DDR-activated and DDR-suppressed subgroups showed 
distinct clinical characteristics, molecular characteristics, and immune profiles. Nine genes were identified 
as hub DDR-related genes, including CASP14, DKK1, ECT2, FLNC, HMMR, IGFBP1, KRT6A, TYMS, 
and FCER2. By using the expression levels of these selected genes, the corresponding risk scores for each 
sample was predicted. In the training group, KM survival analysis revealed that the high-risk group exhibited 
significantly diminished overall survival (OS) [hazard ratio (HR) =3.341, P=1.38e−08]. The corresponding 
area under the curve (AUC) values for the 1-year follow-up periods was 0.767, respectively. Upon validation 
in the external cohort, patients with higher risk scores manifested significantly reduced OS (HR =2.372, 
P=1.87e−03). The AUC values of the ROC curves for the 1-year OS in the validation cohort was 0.87, 
respectively. Moreover, advanced DDR risk score was correlated with increased TMB scores, a heightened 
frequency of TP53 mutations, an increased abundance of cancer-testicular antigens (CTAs), and a lower 
tumor immune dysfunction and exclusion (TIDE) score in patients with LUAD (P<0.05).
Conclusions: A nine-gene risk signature associated with DDR in LUAD was effectively developed, 
demonstrating its potential as a robust and reliable classification tool for clinical practice. This model 
exhibited the capability to accurately predict the prognosis and survival outcomes of LUAD patients.
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Introduction

Lung cancer, particularly non-small cell lung carcinoma 
(NSCLC),  is  the leading cause of  morbidity and 
mortality among all cancer types (1,2). NSCLC is 
commonly classified into histological subtypes, with 
lung adenocarcinoma (LUAD) being the most prevalent  
subtype (3). The development of LUAD is influenced 
by  va r ious  f ac tor s ,  inc lud ing  smok ing ,  a l coho l 
consumption, and metabolic disorders. Despite significant 
advancements in multimodal treatment approaches, 
such as immunotherapy, radiotherapy, and noninvasive 
surgical resection, the outcomes for patients with lung 
cancer remain unsatisfactory, with a 5-year relative overall 
survival (OS) rate of approximately 18% (3,4). This can be 
attributed to the limitations of the traditional histological 
classification of LUAD, given its high heterogeneity and 
complexity (5,6). Additionally, the existing staging system 
fails to accurately predict the prognosis of lung cancer, 
which can result in some patients with early-stage disease 
failing to receive appropriate adjuvant therapy after surgery, 

leading to cancer recurrence or metastasis (7,8). Therefore, 
there is a crucial need to identify more effective prognostic 
indicators for patients with LUAD.

DNA damage repair (DDR) genes play a pivotal role 
in maintaining the stability of the human genome, while 
the loss of DDR function can contribute to the initiation 
and progression of cancer (9,10). As a result, there is a 
growing appreciation for treatment strategies that target 
aberrant DDR function. One such example is poly (ADP-
ribose) polymerase (PARP), a nuclear enzyme involved 
in recognizing DNA damage, which has emerged as a 
therapeutic target for cancer treatment (11). DDR genes 
can be categorized into specific functional pathways 
based on their roles in DNA damage response (12). 
This categorization has provided valuable insights into 
underlying mechanisms and therapeutic analyses. DDR-
related genes are closely associated with cancer progression 
and treatment, with emerging evidence highlighting their 
correlation with tumor development (13,14). However, 
the prognostic significance of these genes in LUAD 
has not been thoroughly investigated. In this study, we 
conducted a comprehensive evaluation and developed a 
novel signature and nomogram based on DDR genes to 
predict the outcomes of LUAD. Despite this progress, 
there remains a limited understanding of the dysregulation 
and heterogeneity of DDR genes in LUAD, particularly 
in terms of transcriptomic and proteomic analysis. Recent 
studies by Gu et al. demonstrated the prognostic value of 
a 15-feature gene signature in improving outcomes for 
patients with LUAD (15). Wu et al. also investigated the 
survival benefits associated with high tumor mutational 
burden (TMB) or DDR gene mutations in patients with 
LUAD with high stromal or immune scores (16). These 
findings underscore the potential of DDR genes as not only 
oncogenes but also promising biomarkers for prognosis 
prediction and treatment in patients with LUAD.

In this study, we analyzed a dataset of gene expression in 
LUAD obtained from The Cancer Genome Atlas (TCGA) 
and identified nine DDR genes through screening. The 
identified DDR gene signature proved to be a reliable 
predictor of survival prognosis in patients with LUAD. 
Moreover, our DDR subtype signature demonstrated its 
potential as a robust and clinically applicable classification 
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tool in LUAD. These DDR genes hold additional promise 
as biomarkers for guiding immunotherapies in patients 
with LUAD. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-23-1746/rc).

Methods

Data collection

RNA sequencing (RNA-seq) data along with clinical 
information including age, clinical stage, mutations, copy 
number variations, days to death, vital status, and more, 
were obtained from TCGA database (https://portal.gdc.
cancer.gov/). Samples lacking clinical information were 
excluded from the analysis. Additionally, the GSE13213 
dataset retrieved containing 117 LUAD samples from the 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) was utilized for external validation. 
To analyze the expression levels, count per million (CPM) 
read values were calculated using the edgeR software 
package (17). Ethics approval was deemed unnecessary 
for this phase of the study given that TCGA and GEO 
databases are publicly accessible resources. The study was 
conducted in accordance with the Declaration of Helsinki 
(revised in 2013).

Identification of differentially expressed DDR genes

Initially, the list of DDR-associated genes was retrieved 
from the Molecular Signatures Database (https://www.gsea-
msigdb.org/gsea/msigdb). Ensemble IDs were transformed 
into gene symbols, selecting median values in cases where a 
gene had multiple symbols. To assess the expression levels 
of DDR genes in each sample, we conducted cluster analysis 
using the ConsensusClusterPlus package. This analysis 
facilitated the grouping of samples based on the expression 
patterns exhibited by DDR genes (18).

Establishment and validation of a prognostic model

The cancer samples of messenger RNA (mRNA)-seq in 
LUAD were randomly divided into two equal groups: a 
training group and a test group. A regression model was 
built according to the training group, and the test group 
and the total samples were used to verify the model results. 
The glmnet R package (The R Foundation for Statistical 
Computing, Vienna, Austria) was used to perform least 
absolute shrinkage and selection operator (LASSO) Cox 

regression for the purpose of identifying prognostic 
genes. To prevent overfitting, 10-fold cross-validation 
was employed to determine the penalized regularization 
parameter λ in the model. Based on the constructed model, 
the risk score for each LUAD sample was calculated. 
Additionally, the survival R package was used to conduct 
univariate Cox regression analysis of OS (19). Using the 
median of the risk score, we divided the patients with 
LUAD into two groups: a high-risk and low-risk group. 
Subsequently, receiver operating characteristic (ROC) curve 
analysis was conducted separately in the training dataset, 
testing dataset, and the entire dataset to assess the accuracy 
of the DDR signature. The differences between the high-
risk and low-risk groups were evaluated through Kaplan-
Meier (KM) curve analysis and the log-rank test. A P value 
of less than 0.05 was considered statistically different.

Functional and pathway enrichment analysis

Gene set enrichment analysis (GSEA) is a computational 
method used to identify sets of genes that are statistically 
enriched for a specific observable variable. In this study, 
we conducted GSEA using gene expression data obtained 
from TCGA and the Gene Oncology (GO) or Kyoto 
Encyclopedia of Genes and Genomes (KEGG) databases 
(20,21). The objective was to determine if particular gene 
sets exhibited enrichment based on their expression levels. 
Additionally, GSEA was performed using the gsva R 
package (22). We analyzed the differentially regulated genes 
between the high-risk and low-risk groups. A P value of less 
than 0.05 was considered statistically significant.

Relationship between the DDR signature and immune 
infiltration

The wilcox.test function in R was used to compare the 
differential expression of immune checkpoint genes between 
different groups of patients with LUAD. To visualize the 
mutational profiles of the low-risk and high-risk groups, the 
maftools package in R was employed (23). Cancer-testicular 
antigen (CTA) levels were obtained from the CTdatabase 
(http://www.cta.lncc.br/) (24), and the number of CTAs in 
each patient was calculated. Differential analysis of CTA 
numbers was performed using the wilcox.test function 
in R. Additionally, the response of patients with LUAD 
to immune checkpoint blockade (ICB) was predicted 
on pretreatment genomics using the tumor immune 
dysfunction and exclusion (TIDE) program (http://tide.dfci.
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harvard.edu/). A P value of less than 0.05 was considered 
statistically significant.

Statistical analysis

The RNA-seq data, along with clinical information 
pertaining to LUAD samples, were acquired from the 
Genomic Data Commons Portal or the GEO database. 
Statistical analyses were performed using GraphPad Prism 
9.0 and R packages. Differences between the high-risk and 
low-risk groups were evaluated through KM curve analysis 
and the log-rank test. ROC curve analysis was separately 
conducted on the training, testing, and entire datasets to 
assess the accuracy of the DDR signature. All statistical 
procedures were carried out using R software (v4.0; The R 
Foundation for Statistical Computing). The Student’s t-test 
and paired t-test were applied for independent and paired 
groups, respectively. Continuous variables were presented 
as mean ± standard deviation. Statistical significance was 
established for a P value below 0.05.

Results

DDR gene alteration profiles in LUAD

To investigate the heterogeneity of DDR gene expression in 

LUAD, a total of 514 patients with LUAD were included in 
the analysis. Based on the expression profiles of 429 DDR 
genes, these patients were divided into distinct subtypes 
to characterize the diversity within the DDR pathway. 
Through consensus clustering and consideration of clinical 
features, two DDR subgroups were identified (Figure 1). 
Cluster 1 consisted of 227 patients, accounting for 44.2% of 
all LUAD cases and was designated as the DDR-suppressed 
subgroup, exhibiting comparative downregulation of 
DDR genes. In contrast, cluster 2 comprised 287 patients, 
representing 55.8% of all LUAD cases and was designated 
as the DDR-activated subgroup, showing significant 
upregulation of most DDR-related genes.

DDR gene-based subtypes exhibited distinct clinical 
characteristics

The two subgroups exhibited contrasting clinical outcomes. 
KM plots revealed that patients classified into the DDR-
activated subtypes had poorer OS [hazard ratio (HR) =1.516, 
P=5.9e−03; Figure 2A] and disease-free survival (DFS) 
(HR =1.312, P=6.92e−02; Figure 2B). Furthermore, we 
investigated clinical parameters between the two subgroups 
and found that the DDR-activated subgroup was associated 
with more diverse factors. Specifically, we observed a higher 
incidence of advanced M stage (0.01≤P<0.05, Figure 2C),  
higher  grade N stage (0 .01≤P<0.05,  Figure  2D ) ,  
advanced  patholog ic  s tage  (P<0 .01 ,  Figure  2E ) ,  
and progressive T stage (0.01≤P<0.05, Figure 2F) in the 
DDR-activated subgroup. Additionally, we observed a 
higher frequency of females and older individuals in the 
DDR-suppressed subgroups (P<0.01, Figure 2G), while 
patients in the DDR-activated subgroup were significantly 
younger compared to those in cluster 1 (P<0.01, Figure 2H). 
These results indicated that the expression level of the DDR 
gene has a significant impact on the clinical parameters and 
prognosis of patients with LUAD.

DDR genes-based subtypes show distinct molecular 
characteristics

We conducted gene set variation analysis (GSVA) analysis 
to explore DDR-related pathways. The results revealed 
that the DDR-suppressed subgroups exhibited a higher 
frequency of involvement in the base excision repair 
pathway (P<0.01), Fanconi anemia pathway (P<0.01), 
homologous recombination pathway (P<0.01), and 
mismatch repair pathway (P<0.05). However, no significant 

Consensus matrix k=2

1
2

Figure 1 Clustering result plot. Group 1: cluster 1 (n=227, 44.2% 
of all LUAD), designated as the DDR-suppressed subgroup; group 
2: cluster 2 (n=287, 55.8% of all LUAD), designated as the DDR-
activated subgroup. LUAD, lung adenocarcinoma; DDR, DNA 
damage repair.
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difference was observed between the two groups in the non-
homologous end-joining and nucleotide excision repair 
pathways (Figure 3).

When examining genomic alterations, we conducted 
a comparison of gene mutation differences between the 
two DDR subtypes using maftools. The analysis revealed 
a tumor median mutation burden of 3.39 mutations per 
megabase (MB) (Figure 4A), with a significantly higher 

TMB observed in the DDR-activated subgroups (P<0.01, 
Figure 4B). This finding suggests a potentially enhanced 
response to immunotherapy in the DDR-activated 
subgroups. Among the top 10 genes with the highest 
frequencies of driver mutational genes in patients from 
the training cohort were TP53, TTN, CSMD3, RP1L1, 
XIRP2, STAB2, MMRN1, DCHS2, MTCL1, and LRP2 
(Figure 4C). Notably, given the significance of TP53, we 
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Figure 2 Clinical prognosis analysis. (A) DDR-activated subtypes exhibited poorer OS. (B) DDR-activated subtypes exhibited poorer DFS. 
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Figure 3 GSEA of the DDR subtype-specific pathways. **, 
0.01≤P<0.05; ***, P<0.01; ns, not significant. GSEA, gene set 
enrichment analysis; DDR, DNA damage repair.

Figure 4 Genomic alterations between the DDR-activated and DDR-suppressed subgroups. (A) Tumor median mutation burden of  
3.39/MB. (B) The TMB was significantly higher in cluster 2 (n=283) compared to cluster 1 (n=225) (P<0.01). (C) Mutual exclusion/co-
occurrence analysis of mutations in each cohort. (D) Landscape of mutation profiles in the LUAD samples. The waterfall plot displays 
the mutation information for each gene in each sample. The data were analyzed based on TCGA data portal. ***, P<0.01. TMB, tumor 
mutational burden; MB, megabase; OR, odds ratio; CI, confidence interval; DDR, DNA damage repair; LUAD, lung adenocarcinoma; 
TCGA, The Cancer Genome Atlas.
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further investigated and found a higher frequency of TP53 
mutations in the DDR-activated subgroup, which correlated 
with a poor prognosis (189/283 vs. 52/225, P<0.01)  
(Figure 4C). Missense mutations were the most prevalent 
type among these mutations (Figure 4D).

DDR subtypes were characterized by different immune 
profiles

Immune cell infiltration has a significant impact on tumor 
progression and the response to immunotherapy. Therefore, 
we investigated the differences in immune cell infiltration 
between the DDR-activated and DDR-suppressed 
subgroups. Our analysis revealed that naive B cells (P<0.01), 
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resting dendritic cells (P<0.01), resting mast cells (P<0.01), 
monocytes (P<0.01), plasma cells (P<0.05), and resting 
memory CD4 T cells (0.01≤P<0.05) were significantly 
upregulated in the DDR-suppressed subgroup (Figure 5A). 
On the other hand, M0 macrophages, M1 macrophages, 
activated memory CD4 T cells, CD8 T cells, follicular 
helper T cells, resting natural killer (NK) cells (all P values 
<0.01), and neutrophils (0.01≤P<0.05) were significantly 
upregulated in the DDR-activated subgroup (Figure 5A). 
Furthermore, we observed a significant upregulation of 
programmed death-ligand 1 (PD-L1; CD274) in the DDR-
activated subgroup [log2fold change (log2FC) =−1.161, 

P=4.36e−22<0.01] (Figure 5B). This result is consistent with 
the prediction of TMB for immunotherapy mentioned 
above.

Construction and validation of the prognostic DDR-related 
gene pair signature

Differentially expressed DDR-related genes were identified 
based on the mRNA-seq count data and sample clustering 
information in LUAD. We observed 604 upregulated genes 
in the DDR-activated subgroup and 933 downregulated 
genes in the DDR-suppressed subgroup (Figure 6A,6B). 
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Furthermore, a comparison of differentially expressed 
DDR-related genes between the two subgroups was 
performed, with the results being presented in Figure 6C.

After the differentially expressed genes were screened, 
univariate Cox regression analysis was performed for each 
gene according to its expression level in LUAD the mRNA-
seq expression data (CPM) and clinical information of 
the samples. Finally, a total of 223 differentially expressed 
DDR-related genes were found to be significantly associated 
with the OS of patients with LUAD in the training set 
(P<0.001; table available at https://cdn.amegroups.cn/static/
public/jtd-23-1746-1.xlsx). To mitigate overfitting, LASSO 
regression was applied, and lambda.min (λ.min) was selected 
as the optimal regularization parameter, ensuring a more 
accurate model. Figure 7A,7B show the results of LASSO 
regression and cross-validation. The genes whose regression 
coefficient was not equal to 0 in LASSO regression analysis 
were then selected as marker genes. We observed that λ.min 
=0.095. From this analysis, nine genes were identified as 
hub DDR-related genes: CASP14, DKK1, ECT2, FLNC, 
HMMR, IGFBP1, KRT6A, TYMS, and FCER2 (Figure 7C). 
These hub genes were considered independent prognostic 
indicators of tumor prognosis. By using the expression 
levels of these selected genes, the corresponding risk scores 
for each sample was predicted (Figure 7D). Higher risk 
scores were associated with worse survival outcomes for the 
patients (Figure 7E,7F).

To validate the robustness of the constructed model, the 

patients were divided into high-risk and low-risk groups 
based on the median cutoff (Figure 8). In the training 
group, KM survival analysis revealed that the high-risk 
group exhibited significantly poorer OS compared to the 
low-risk group (HR =3.341, P=1.38e−08, Figure 8A). The 
area under the curve (AUC) values for the 1-, 3-, and 
5-year follow-up periods were 0.767, 0.699, and 0.665, 
respectively, indicating the predictive ability of the model 
(Figure 8B). To further assess the prognostic performance 
of the model, individual risk scores were calculated using 
the aforementioned method, and patients in TCGA testing 
set and the entire TCGA set were classified accordingly. 
The predictions of the signature in these datasets were 
consistent with the previous findings. Specifically, the high-
risk patients in all cohorts and the test group exhibited a 
significantly shorter OS compared to those in the low-risk 
group (Figure 8C,8E). The AUCs of the ROC curves for 
the 1-, 3-, and 5-year OS are presented in Figure 8D,8F and 
further supported the predictive ability of the model. The 
clustering heat map of marker genes (Figure 8G) indicated 
that patients with higher risk scores of FCER2 showed lower 
risk score status and superior survival. However, CASP14, 
DKK1, ECT2, FLNC, HMMR, IGFBP1, KRT6A, and TYMS 
exhibited opposing results.

In the external validation cohort (GSE13213), consistent 
with the previous findings, patients with higher risk scores 
exhibited significantly shorter OS compared to those with 
lower risk scores (Figure 9A). The AUC values of the ROC 
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curves for the 1-year OS in the validation cohort were 0.87, 
respectively, indicating the favorable predictive ability of 
our model (Figure 9B). In addition, our verification results 
revealed significant correlations between the risk score and 
gender, T stage, age, and pathologic stage (Figure 9C-9E).

Advanced DDR risk score was correlated with poor clinical 
factors and lower OS in patients with LUAD

We investigated the association between the DDR risk 
score and clinical factors in patients with LUAD. The 
high-risk group exhibited poor clinical characteristics, 
including advanced M stage (P<0.01, Figure 10A), advanced 
N stage (P<0.01, Figure 10B), lower pathologic stage 
(P<0.01, Figure 10C,10D), and advanced T stage (P<0.01,  

Figure 10E,10F). Additionally, higher risk scores were 
observed in male patients (P<0.01, Figure 10G) and showed 
a negative correlation with age (correlation =−0.028, 
P=0.531). Tumor purity was found to have a positive 
correlation with the risk values (correlation =0.098, 
P=0.0277, Figure 10H,10I). Univariate Cox regression 
analysis revealed significant associations between the risk 
score and various clinical variables, including risk (HR 
=2.1, P=4.23e−15), age (HR =1.01, P=0.299), sex (HR 
=1.05, P=0.753), T stage (HR =1.52, P=8.91e−06); N stage 
(HR =1.7, P=1.39e−09), M stage (HR =2.13, P=0.00583), 
and pathologic stage (HR =1.66, P=8.08e−13, Figure 10J). 
Subsequently, multivariate Cox regression analysis revealed 
that the DDR risk score could serve as an independent 
prognostic factor (HR =1.96, P=1.33e−15, Figure 10K).
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DDR signature is a promising predictor for 
immunotherapy

Firstly, the differential expression of immune checkpoint 
genes was demonstrated. Notably, ADORA2A, BTLA, 
CD200, LAIR1, and TIGIT were significantly up-regulated 
in the low-risk score subgroup. CD274, CD276, IDO1, and 
PVR were significantly up-regulated in the high-risk score 
subgroup (Figure 11). The TMB of each sample in TCGA-
LUAD was then calculated by maftools. The median TMB 
was 3.4/MB (Figure 12A). TMB scores were significantly 
higher in the high-risk group (P<0.01, Figure 12B), 
indicating a better response to immunotherapy. The top 
10 genes with the highest frequencies of driver mutations 
are shown in Figure 12C,12D. TP53 had a more frequent 
mutation in the high-risk group, indicating a poorer 
prognosis. The difference in the number of CTA between 
different risk groups was tested using wilcox.test. The result 
showed a higher CTA number in the high-risk group than 
the low-risk group (P<0.01, Figure 13). Moreover, the low-
risk group had a higher TIDE score compared to the high-
risk group (P<0.01, Figure 14). Taken together, patients with 
a high-risk score may have a better immunotherapy effect.

Discussion

DDR plays a crucial role in the development of various 
cancers by regulating multiple pathways involved in the 
interaction between tumor and immune cells (25-28). DNA 
damage can occur through endogenous events, such as 
oxidative damage, replication fork collapse, or errors that 
naturally occur during DNA replication or immune cell 

maturation, as well as exogenous factors such as ultraviolet 
rays, ionizing radiation, or chemical reagents. DNA repair 
is a pivotal mechanism for preserving genome stability and 
repairing DNA lesions. Deficiencies in the DNA repair 
pathway can influence tumor development, metastasis, and 
prognosis (14,29,30). The objective of this study was to 
investigate the predictive function of a DDR gene-related 
signature in the prognosis and immunotherapy response  
of LUAD.

Distinct clinical and molecular characteristics were 
observed in association with different DDR signatures. 
Specifically, patients belonging to the DDR-activated 
subgroup exhibited aggressive clinical manifestations, 
including advanced stage, poor differentiation, and an 
unfavorable prognosis. In contrast, the DDR-suppressed 
subgroup showed a higher frequency of alterations in base 
excision repair, Fanconi anemia pathway, homologous 
recombination, and dislocation repair. TMB is an important 
indicator that affects the treatment response and prognosis 
of lung cancer. Our results demonstrated that the DDR-
activated subgroup had a significantly higher amount of 
variations in TMB compared to the DDR-suppressed 
subgroup. The TP53 gene, a critical DNA repair factor 
implicated in various cancers, has been reported to be 
more frequently mutated in the DDR-activated subtype 
(31,32). Notably, we found a higher frequency of troponin 
(TNN) variants in the DDR-activated subgroup, which has 
been associated with poor OS, increased immunogenicity, 
and altered immunotherapy prognosis in LUAD (33). 
Furthermore, CSMD3 was identified as being higher 
expressed in the DDR-activated subgroup. Previous 
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studies have highlighted the involvement of CSMD3 gene 
mutations in immune response regulation and tumor 
prognosis (34,35).

We further investigated the immune microenvironment 
in LUAD and discovered that different DDR subtypes 
were associated with distinct immune profiles. In the DDR-
suppressed subgroup, there was a notable increase in plasma 
cells, T lymphocytes, and activated memory CD4 cells, with 
mast cells being particularly abundant. Tumor-invading 
mast cells have been linked to resistance to anti-PD-1 
therapy (36). Conversely, the DDR-activated subgroups 
exhibited heightened expression of M0 macrophages, M1 
macrophages, activated memory CD4 T cells, CD8 T cells, 
follicular helper T cells, resting NK cells, and neutrophils. 
This immune cell composition could potentially enhance 
immune responses and improve patient outcomes (37-39). 
For certain patients with lung cancer, the use of immune 
checkpoint inhibitors (ICIs) has demonstrated improved 
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long-term efficacy. Currently, several drugs are available to 
delay or prevent resistance to ICIs, and a high expression 
of PD-L1 serves as a significant indicator for ICI treatment 
(40-43). Notably, in our study, PD-L1 (CD274) expression 
was significantly elevated in the DDR-activated subgroup. 
These findings suggest that DDR subtypes exhibit distinct 
differences in immune cell infiltration, indicating potential 
variations in immunotherapy responses between the 
subtypes.

According to previous research, DDR genes have 
prognostic potential in various cancer types (44-46). In 
our study, we selected nine DDR-related genes (CASP14, 
DKK1, ECT2, FLNC, HMMR, IGFBP1, KRT6A, TYMS, 
and FCER2) to create a signature for identifying DDR 
subtypes in patients with LUAD, with the aim of clinical 
application. Patients were classified into different DDR 
types based on this signature in both the training and 
validation cohorts. To assess the accuracy of the model, 
patients were further divided into high-risk and low-risk 
groups. KM survival analysis demonstrated that the high-
risk group had a poorer prognosis compared to the low-risk 
group. Moreover, univariate and multivariate Cox regression 
analyses indicated a significant negative correlation between 
the risk score derived from the DDR signature and other 
clinicopathological parameters in predicting survival. 
Additionally, the high-risk group exhibited lower TIDE 
scores, higher numbers of CTAs, and higher TMB scores, 
suggesting that patients with a high-risk score may have 
a more favorable response to immunotherapy (47,48). 

However, further randomized trials involving patients 
with LUAD receiving immunotherapy are necessary to 
validate the predictive performance of the DDR signature 
in terms of immunotherapy response. In summary, the 
risk score derived from the DDR signature can serve 
as a stable and independent indicator for prognosis and 
potential immunotherapy effect. It holds important clinical 
significance as an effective tool for classifying patients 
with LUAD. However, further research and validation are 
required to fully elucidate the clinical implications and 
utility of the risk score in guiding treatment decisions for 
patients with LUAD.

Conclusions

Our study contributes to the understanding of DDR 
heterogeneity and the identification of DDR subtypes 
in patients with LUAD. The distinct characteristics of 
DDR subtypes offer valuable insights into the clinical 
management and decision-making of LUAD. We have 
successfully developed a nine-gene risk signature associated 
with DDR in LUAD, which demonstrated its potential as 
an effective and stable classification tool for clinical practice. 
Moreover, our DDR subtype signature holds promise as 
a biomarker for guiding immunotherapy in patients with 
LUAD. Overall, these findings have significant implications 
for LUAD patient care and highlight the importance of 
considering DDR subtypes in personalized treatment 
approaches.
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