
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2023;15(12):6898-6914 | https://dx.doi.org/10.21037/jtd-23-1628

Original Article

Mechanistic analysis of Th2-type inflammatory factors in asthma

Yingjiao Qin#, Chang Liu#, Qi Li, Xiangdong Zhou, Jie Wang

Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center of 

Respiratory Diseases, Haikou, China

Contributions: (I) Conception and design: J Wang; (II) Administrative support: X Zhou; (III) Provision of study materials or patients: Y Qin;  

(IV) Collection and assembly of data: Q Li, C Liu; (V) Data analysis and interpretation: J Wang; (VI) Manuscript writing: All authors; (VII) Final 

approval of manuscript: All authors.
#These authors contributed equally to this work as co-first authors.

Correspondence to: Jie Wang, MD; Xiangdong Zhou, MD. Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical 

University, Hainan Province Clinical Medical Center of Respiratory Diseases, 31 Longhua Road, Haikou 570102, China. 

Email: WJ_Jerry_1983@163.com; zxd999@263.net.

Background: The main pathological features of asthma are widespread chronic inflammation of the 
airways and restricted ventilation due to airway remodeling, which involves changes in a range of regulatory 
pathways. While the role of T helper type 2 (Th2)-related inflammatory factors in this process is known, 
the detailed understanding of how genes affect protein functions during airway remodeling is still lacking. 
This study aims to fill this knowledge gap by integrating gene expression data and protein function analysis, 
providing new scientific insights for a deeper understanding of the mechanisms of airway remodeling and for 
further development of asthma treatment strategies.
Methods: In this study, the mechanism of Th2-related inflammatory factors in tracheal remodeling 
was studied through differentially expressed gene (DEG) screening, enrichment analysis, protein-protein 
interaction (PPI) network construction, machine learning, and the construction of a line graph model.
Results: Our study revealed that S100A14, KRT6A, S100A2, ABCA13, UBE2C, RASSF10, PSCA, PLAT, 
and TIMP1 may be the key genes for airway remodeling; epithelial-mesenchymal transition (EMT)-related 
genes GEM, TPM4, SLC6A8, and SNTB1 may be involved in airway remodeling due to asthma; IL6 may 
affect the occurrence of airway remodeling by binding to UBE2C protein or by regulating GEM genes, 
respectively; IL6 and IL9 may affect the occurrence of airway remodeling by regulating the downstream 
Toll-like receptor (TLR) signaling pathway and thus IL6 and IL9 may influence the occurrence of tracheal 
remodeling by regulating downstream TLR signaling pathways.
Conclusions: This study further mined the asthma gene microarray database through bioinformatics 
analysis and identified key genes and important pathways affecting airway remodeling in asthma patients, 
providing new ideas to uncover the mechanism of airway remodeling due to asthma and then seek new 
therapeutic targets.
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Introduction

Asthma is a heterogeneous disease characterized by chronic 
inflammation of the airways and has a wide global impact, 
with about 300 million asthma patients worldwide (1). 
There are about 30 million asthma patients in China, and 
the number of asthma patients has been increasing year by 
year in recent years due to the increasing environmental 
problems (2). As a chronic disease of the respiratory system, 
asthma has a long duration and severe symptoms, which 
can have a serious impact on the quality of life of patients. 
If not properly treated, it may be fatal. Asthma ranks 16th 
among the leading causes of human disability and 28th 
among the leading causes of economic burden of disease, 
which not only seriously affects the quality of life of patients 
but also expends significant medical resources and money. 
Thus, it is crucial to investigate the pathogenesis of asthma 
and find effective means of prevention and treatment. 
The pathogenesis is currently thought to include airway 

hyperresponsiveness, airway remodeling, and airway 
inflammation (3,4), however, the exact pathogenesis of 
asthma is still unclear (5,6).

Widespread chronic inflammation of the airways 
and airway remodeling leading to airway obstruction 
have been considered the main pathological features of 
asthma (7,8). Repeated damage and repair due to chronic 
inflammation of the airways was originally thought to be 
the direct cause of airway remodeling. Airway remodeling 
comprises a combination of multifaceted physiological 
changes  character ized by epithel ia l  detachment , 
subepithelial fibrosis, smooth muscle hypertrophy, cupped 
cell proliferation, and angiogenesis, and the cytokines, 
growth factors, inflammatory mediators, and chemokines 
released from these cells play an important role in airway 
reconstruction (9). The signaling pathways leading to this 
series of changes are also exceptionally complex, and it 
is now generally accepted that the chronic inflammatory 
response of the airway due to an imbalance in the immune 
system is the main initiating factor for this series of changes. 
Previous literature has reported T helper type 2 (Th2)-
associated inflammatory factors including IL4, IL5, IL1, 
IL8, and IL25 are involved in airway remodeling, mediating 
epithelial fibrosis, mucus chemotaxis, and inflammatory 
infiltration of eosinophils and macrophages (10); however, 
the exact mechanism of action remains elusive.

The primary objective of this study is to gain a deeper 
understanding of the potential molecular mechanisms of 
Th2 type airway inflammation and airway remodeling in 
asthma. To achieve this goal, we will focus on studying 
Th2 type inflammation-related factors, leveraging 
bioinformatics techniques and big data mining to delve into 
their roles in the mechanisms of airway remodeling. By 
choosing mice exposed to chlorine gas as the experimental 
model, we aim to further uncover the intricate details 
of airway remodeling in the pathology of asthma. Our 
research is anticipated to provide new molecular targets 
for the prevention and treatment of asthma. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-1628/rc).

Methods

Data sources

The GSE41861, GSE63142, and GSE109365 datasets were 
downloaded from the Gene Expression Omnibus (GEO) 
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database. GSE63142 contains 56 bronchial epithelial 
samples from asthmatic patients and 27 bronchial epithelial 
samples from non-asthmatic patients. GSE41861 contains 
91 bronchial epithelial samples from asthmatic patients 
and 47 bronchial epithelial samples from non-asthmatic 
patients. The GSE109365 dataset contains five samples of 
stenotic airways from mice exposed to chlorine for 4 days 
and five samples of normal airways from mice not exposed 
to chlorine. All datasets were subjected to background 
elimination to remove missing, low-expressed, and non-
corresponding gene probes (11), with 15,171 genes 
annotated in the GSE41861 dataset, 19,565 genes annotated 
in the GSE63142 dataset, and 22,487 genes annotated in 
the GSE109365 dataset.

Screening of differentially expressed genes (DEGs)

Gene expression analysis was performed using the R 
language (The R Foundation for Statistical Computing, 
Vienna, Austria) on the GSE63142 and GSE109365 
datasets, which contained gene expression data from the 
normal control (NC) group (27 cases) and the asthma group 
(56 cases), and the GSE109365 dataset, which contained 
gene expression data from the NC group (5) and the 
treatment group (5 cases). Analysis was performed based 
on the “limma” package in R software (The R Project for 
Statistical Computing, Vienna, Austria) to visualize DEGs 
between the two groups. The DEGs were visualized using 
the packages “pheatmap”, “ggplot2”, and “tidyverse” in R 
language. Pearson correlation coefficients were calculated 
to determine the correlation between genes and genes, and 
|R| >0.2 and P<0.05 were used to filter the correlation 
conditions.

Enrichment analysis of DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses of DEGs were performed 
using the org.Hs.eg.db, enrichplot, and clusterProfiler 
packages  in  R language .  In  the  KEGG pathway 
analysis, enrichment pathways were identified based on 
hypergeometric distribution (P<0.05).

Protein-protein interaction (PPI) network construction

The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database is an online database for 
detecting known or predicted protein interactions. Our 

screened DEGs were imported into STRING for PPI 
network analysis, and PPI was obtained by selecting the 
criterion of medium confidence >0.7.

Feature gene calculation and screening

In this study, the random forest (RF) classifier was used to 
rank the importance of the target genes and to obtain the 
genes that were relatively important for the establishment 
of the classification model. The number of RF decision 
trees (ntree) =500. The analysis process was implemented by 
programming in R language (12).

Predicting the proportion of different immune cell 
infiltrations in samples from asthma patients

The Cell-Type Identification by Estimating Relative 
Subsets  of  RNA Transcripts  (CIBERSORT) (13) 
deconvolution algorithm was used to estimate the 
proportion of different immune cells in asthmatic tissues 
and to analyze the variability of immune cells in normal and 
asthmatic bronchial tissues. The CIBERSORT algorithm 
does not determine the immune cell content solely on the 
basis of single gene expression; it does so by identifying 
547 immune-related genes and subsequently deconvoluting 
the 547 genes. The algorithm is based on the identification 
of 547 immune-related genes and the subsequent 
deconvolution of 547 genes to calculate 22 immune cell 
contents.

Columnar line graph model construction and validation

The R software was used to obtain the visualized column 
line graphs, and each variable was given a score according 
to its level of influence on tracheal remodeling, and then 
the scores of each variable were summed to obtain the 
total score, and finally the R software was used to calculate 
the predicted probability of tracheal remodeling in the 
patient by converting the relationship between the total 
score and the probability of tracheal remodeling. The 
higher the score, the higher the probability of tracheal 
remodeling.

The internal validation of the column line graph model 
was achieved using bootstrap self-sampling 1,000 times, 
and the difference was considered statistically significant 
at P<0.05. The model was validated in the original cohort 
and the validation cohort, respectively, and the validation 
methods included discrimination validation, graph calibration 
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validation, and decision curve analysis (DCA) (14).

Docking prediction based on the ZDOCK server

The Research Collaboratory for Structural Bioinformatics 
Protein Data Bank (RCSB PDB; https://www.rcsb.org/) 
database was utilized to retrieve the protein structures of 
IL6, UBE2C, and TIMP1, which had been selected by 
X-ray detection for best score and resolution were selected. 
Thus, protein structures including 1ALU, 4YII, and 3MA2 
respectively corresponding to IL6, UBE2C, and TIMP1 
in PDB format were downloaded. ZDOCK server (version 
3.0.2; https://zdock.umassmed.edu/) is a Fast Fourier 
Transform-based protein docking program created and 
managed by Zhiping Weng’s lab (ZLAB) at the University 
of Massachusetts Medical School (15). It works by searching 
all possible binding modes in the translational and 
rotational space between the two proteins and evaluating 
each pose using an energy-based scoring function. We 
input the PDB files and conducted two jobs: (I) the 1ALU-
4YII pair and (II) the 1ALU-3MA2 pair, of which protein 
1ALU remains stationary while others are moved. Further, 
the ZDOCK server helped to process the top 10 predicted 
docking files with best ZDOCK scores (15). We uploaded 
the best docking structure to the online tool Proteins, 
Interfaces, Structures and Assemblies (PDBePISA; https://
www.ebi.ac.uk/msd-srv/prot_int/pistart.html) to visualize 
the predicted protein complexes and assess the significance 
of their interfaces. The disulfide bonds, covalent bonds, salt 
bridges bonds, and hydrogen bonding were detected.

Ethical statement

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013).

Statistical analysis

R software version 3.6.1 was used for statistical analysis. 
Count data were expressed as number of cases or 
percentages using the χ2 test, and Fisher’s exact probability 
method was used when necessary. Quantitative data were 
expressed as mean ± standard deviation (SD) if they met 
normal distribution, and t-test was used for comparison 
between groups. Spearman correlation analysis was used 
to evaluate the strength of association between risk factor 
indicators and the scoring system. The visualized line 
graphs of the regression model were plotted, and the 

concordance index (C-index) was calculated to evaluate 
the effectiveness of the application of the line graphs. 
Calibration curves were used to analyze the differences 
between the line graphs and the ideal model. The difference 
was considered statistically significant at P<0.05.

Results

Identification and enrichment analysis of DEGs

DEGs were analyzed by the “limma” package in R language 
software for 56 asthmatic and 27 non-asthmatic bronchial 
epithelial samples in the GSE63142 dataset. A total of  
182 DEGs [|log2fold change (FC)| >0.5 and P<0.05] were 
screened, of which 97 were up-regulated and 85 were down-
regulated (Figure 1A).

Subsequently, KEGG and GO analysis of these 
182 DEGs revealed that they are mainly involved in 
multicellular organismal homeostasis, negative regulation of 
proteolysis, apical part of cell transport vesicle, G protein-
coupled receptor binding, neuroactive ligand-receptor 
interaction, cytokine-cytokine receptor interaction, and 
chemokine signaling pathway (Figure 1B-1E).

Screening of tracheal remodeling-related genes

Similarly, DEGs were analyzed by the “limma” package 
in the R language software for five mouse stenotic trachea 
samples exposed to chlorine gas for 4 days and five mouse 
normal trachea samples not exposed to chlorine gas in the 
GSE109365 dataset. A total of 381 DEGs (|log2FC| >1.5 
and P<0.05) were screened, of which 210 were up-regulated 
and 171 were down-regulated (Figure 2A).

Subsequently, the DEGs in the GSE109365 dataset 
were intersected using the DEGs in the GSE63142 
dataset, with eight up-regulated (UBE2C, TFF1, TIMP1, 
KRT6A ,  PSCA ,  S100A14 ,  S100A2 ,  and  PLAT) and 
3 down-regulated (GSTA3, ABCA13, and RASSF10)  
(Figure 2B). The expression of these 11 genes in the 
GSE109365 dataset was further evaluated (Figure 2C,2D). 
Based on the above, our study reveals that these are 
potential candidate targets for further research. However, 
we acknowledge that further functional studies are required 
to determine their exact roles in airway remodeling.

Screening of key genes for tracheal remodeling

To further obtain key genes for tracheal remodeling 

https://www.rcsb.org/
https://zdock.umassmed.edu/
https://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
https://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
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Figure 1 Identification and enrichment analysis of DEGs. (A) Volcano map of DEGs in the GSE63142 dataset. Different colors represent 
multiples of gene differences, with red indicating increased gene expression (the redder the higher) and green indicating decreased gene 
expression (the greener the lower). (B) BP. (C) CC. (D) MF. (E) KEGG. FC, fold change; BP, biological process; CC, cellular component; 
MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
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Figure 2 Screening of tracheal remodeling-related genes. (A) Volcano map of DEGs in the GSE109365 data set. Red represents an 
increase in gene expression [logFC >1.5], and green represents a decrease in gene expression [logFC <−1.5]. (B) The intersection of DEGs 
in GSE63142 and GSE109365 data sets was taken. (C) Heat map analysis of the expression of 11 genes in the GSE63142 dataset. (D) 
Histogram analysis of the expression of 11 genes in the GSE63142 dataset. **, P<0.01; ***, P<0.001. FC, fold change; DEGs, differentially 
expressed genes.

with clinical translational significance, we performed the 
calculation of signature genes using machine algorithms. 
First, this study compared the advantages and disadvantages 
of the support vector machine (SVM) algorithm and RF 
algorithm, and it was found that the RF algorithm has better 
accuracy (Figure 3A-3C). Therefore, the RF algorithm was 

chosen for the calculation of feature genes in this study. The 
RF algorithm (16) was used for feature gene calculation for 11 
DEGs, and 11 genes (S100A14, KRT6A, S100A2, ABCA13, 
UBE2C, RASSF10, PSCA, PLAT, TIMP1, GSTA3 and TFF1) 
were selected as candidate feature genes (Figure 3D,3E).
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Figure 3 RF algorithm for screening tracheal remodeling differential trait genes. (A,B) Comparison of the accuracy of RF algorithm and 
SVM algorithm for 11 tracheal remodeling-related genes. (C) Comparison of the specificity and sensitivity of RF algorithm and SVM 
algorithm for 11 tracheal remodeling-related genes. (D,E) RF method was used to screen 11 signature genes (S100A14, KRT6A, S100A2, 
ABCA13, UBE2C, RASSF10, PSCA, PLAT, TIMP1, GSTA3 and TFF1). RF, random forest; SVM, support vector machine.

UBE2C, RASSF10, PSCA, PLAT, and TIMP1 to construct 
the prediction model of tracheal remodeling, and R 
software was used to visualize the model to obtain the 
nomogram. The nomogram showed that S100A14, KRT6A, 
S100A2, ABCA13, UBE2C, RASSF10, PSCA, and PLAT had 
high score weight, whereas IMP had the lowest predicted 
score. When the total score reached 180, the risk of tracheal 
remodeling was indicated, and when the total score reached 

280, the probability of tracheal remodeling was as high as 
90% (Figure 4A).

In the next step, the calibration curve was used to evaluate 
the calibration degree of the nomogram model; “value” 
indicated the original curve, “ideal” indicated the ideal 
standard curve, and “bias-corrected” indicated the calibration 
curve. The results showed that the calibration curve was 
close to the ideal standard curve in both the original and 
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Figure 4 Construction of nomogram prediction model for the risk of trachea remodeling caused by asthma. (A) Nomogram predicting the 
risk of tracheal remodeling. (B) ROC curve and calibration curve analysis of nomogram model. (C) DCA curve analysis of nomogram model. 
(D) Clinical impact curve analysis of nomogram model. ROC, receiver operating characteristic; DCA, decision curve analysis.

validation cohorts. This indicated that the nomogram of this 
study has good calibration ability (Figure 4B).

A total of nine genes were taken as state variables, and the 
predicted risk values obtained from nomogram were taken 
as test variables. The “rmda” program package was used 

to draw the clinical DCA curve of the nomogram model. 
According to the DCA curve, the nomogram model had 
high accuracy and good clinical applicability (Figure 4C). 
Further analysis of the clinical impact curve also suggested 
that it had good clinical application value (Figure 4D).
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Correlation analysis of Th2-type airway inflammatory 
factors and key genes of tracheal remodeling

We downloaded 10 Th2-type inflammation-related factors 
from the Molecular Signatures Database (MSigDB; https://
www.gsea-msigdb.org/gsea/msigdb/) (Table S1), namely 
IL1, IL4, IL5, IL6, IL9, IL10, IL13, IL25, IL33, and TSLP. 
The GSE63142 dataset was used to compare the differential 
expression of these ten airway inflammatory factors in 
bronchial epithelial samples from asthmatic patients and 
non-asthmatic patients. In comparison with non-asthmatic 
patients, two DEGs were screened, IL6 was down-regulated 
in bronchial epithelial samples from asthmatic patients, 
whereas IL9 was up-regulated in bronchial epithelial 
samples from asthmatic patients (Figure 5A).

Next, we analyzed the relationship of IL6 and IL9 genes 
with nine airway remodeling-related genes. The analysis 
showed that IL6 had mild strength of association (|R| 
>0.2) with RASSF10 and PSCA (Figure 5B); whereas IL9 
had mild strength of association (|R| >0.2) with PSCA 
(Figure 5C). Based on the above, our data revealed a low 
correlation between IL6 and IL9 genes and these nine 
airway remodeling-related genes, suggesting that there may 
not be a regulatory relationship between them.

Next, we used the PPI website to make binding 
predictions for IL6, IL9, S100A14, KRT6A, S100A2, 
ABCA13, UBE2C, RASSF10, PSCA, PLAT, and TIMP1. It 
was shown that IL6 can bind to IL9, UBE2C, and TIMP1 
and is located at the central node of binding (Figure 5D). 
Further molecular docking also suggested the possible 
binding of IL6 to UBE2C (Figure 5E), yet IL6 may not bind 
to TIMP1 (Figure 5F).

Based on the above, our findings revealed that Th2-type 
airway inflammatory factors may interact with UBE2C to 
induce airway remodeling induced by asthma.

Correlation analysis of Th2-type airway inflammatory 
factors IL6 and IL9 with epithelial-mesenchymal 
transition (EMT)-related genes

Among the series of physiological changes leading to airway 
remodeling, changes in the airway epithelium are initiating 
and central (17). EMT is a process in which epithelial 
cells are de-adhered and transformed into migratory 
mesenchymal cells. Studies have shown that the expression 
of c-Myc, Snail, and collagen in the tracheal epithelium 
also increases significantly during EMT, which leads to 
basement membrane thickening and abnormal proliferation 
of myocytes. Therefore, EMT may be involved in airway 

remodeling during asthma.
Based on the above, this study analyzed the differential 

expression of EMT genes in bronchial epithelial samples of 
asthmatic patients and non-asthmatic patients, and a total of 
54 DEGs were screened out (Figure 6A). Due to the large 
number of genes, we used the machine learning algorithm 
to calculate the characteristic genes. By comparison, the 
RF algorithm had better accuracy (Figure 6B-6D). The 
RF algorithm (16) was used to calculate the characteristic 
genes of 54 DEGs, and four genes (GEM, TPM4, SLC6A8, 
SNTB1) were selected as candidate characteristic genes 
(Figure 6E,6F). Next, this study analyzed the relationship 
between IL6 and IL9 genes and the four EMT-related genes. 
It was revealed that IL6 and GEM had moderate correlations 
(|R| >0.6) (Figure 6G); the correlation intensity of IL9 
and TPM4 was weak (|R| >0.2) (Figure 6H). Therefore, 
this study revealed that IL6 can regulate the occurrence of 
airway remodeling by regulating GEM gene and affecting 
EMT. Targeting EMT may become a new direction for the 
treatment of airway remodeling.

Correlation analysis of Th2-type airway inflammatory 
factors IL6 and IL9 with the immune microenvironment 
in asthmatic patients

We applied the GSE41861 dataset to compare the immune 
cell infiltration in bronchial tissues of asthmatic and non-
asthmatic patients. Monocytes, dendritic cells resting, mast 
cells resting, and mast cells activated showed differences 
in infiltration distribution compared with epithelial tissue 
samples from non-asthmatic patients (Figure 7A,7B), 
and these results suggest that these immune cells may be 
involved in the immune damage.

In the next step, Th2-type airway inflammatory factors 
IL6 and IL9 were correlated with the infiltration distribution 
of immune cells. The results showed that IL6 correlated 
significantly (|R| >0.5) with the infiltration distribution of 
the five immune cells (Figure 7C). Further analysis showed a 
mild correlation between IL6 and monocytes and mast cells 
activated (Figure 7D,7E). These data suggest that IL6 may 
influence the progression of asthma patients by regulating 
the infiltration distribution of monocytes and mast cells 
activated, respectively.

Identification and validation of regulatory mechanisms of 
IL6 and IL9

To confirm the downstream regulatory mechanisms of 

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
Qin Y, Liu C, Li Q, Zhou X, Wang J. Mechanistic analysis of Th2-type inflammatory factors in asthma. J Thorac Dis 2023. doi: 10.21037/jtd-23-1628
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Figure 6 Identification and analysis of EMT-related DEGs. (A) Heat map analysis of EMT-related DEGs in GSE63142 dataset. (B) Comparison 
of the accuracy of RF algorithm and SVM algorithm, the study suggests that the accuracy of RF algorithm is higher than that of SVM. (C,D) 
Comparison of the specificity and sensitivity of RF algorithm and SVM algorithm. (E,F) RF method was used to screen four signature genes 
(GEM, TPM4, SNTB1, SLC6A8). (G) Correlation analysis of IL6 with GEM, TPM4, SNTB1, and SLC6A8 genes. (H) Correlation analysis of IL9 
with TPM4, SLC6A8, SNTB1, and GEM genes. *, P<0.05; **, P<0.01; ***, P<0.001. Con, normal control; RF, random forest; SVM, support vector 
machine; abs (cor), correlation coefficient; EMT, epithelial-mesenchymal transition; DEGs, differentially expressed genes.
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GSE63142 dataset. (B) Enrichment analysis of IL9 gene in GSE63142 dataset. (C) Construction of ceRNA network of IL6 and IL9 genes. 
KEGG, Kyoto Encyclopedia of Genes and Genomes; ceRNA, competing endogenous RNA.

the IL6 and IL9 genes, this study performed gene set 
enrichment analysis (GSEA) of the IL6 and IL9 genes using 
the GSE63142 dataset. Through enrichment analysis, this 
study revealed that IL6 may regulate cytokine-cytokine 
receptor interaction, chemokine signaling pathway, Toll-
like receptor (TLR) signaling pathway, hematopoietic cell 
lineage, and antigen processing and presentation affected 
tracheal remodeling induced by asthma (Figure 8A). IL9 
may regulate cytokine-cytokine receptor interaction, 

the JAK-STAT signaling pathway, chemokine signaling 
pathway, and natural killer cell-mediated cytotoxicity and 
TLR signaling pathways affect tracheal remodeling induced 
by asthma (Figure 8B). These results suggest that the IL6 
and IL9 genes may affect airway remodeling by regulating 
these pathways.

To explore the upstream regulatory mechanisms of 
the IL6 and IL9 genes, this study applied the TargetScan 
(https://www.targetscan.org/vert_80/), miRanda (https://

https://www.targetscan.org/vert_80/
https://www.microrna.org/
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www.microrna.org/), and miRDB (https://mirdb.org/) 
databases to analyze the upstream microRNAs (miRNAs) 
and long non-coding RNAs (lncRNAs) of IL6 and IL9. 
A total of 18 IL6-related miRNAs and six IL9-related 
miRNAs were intersected by the three databases. Next, 
lncRNA prediction was performed for miRNAs upstream 
of IL6 and IL9 using the spongeScan database (http://
spongescan.rc.ufl.edu/), and a total of 22 lncRNAs were 
predicted. Competing endogenous RNAs (ceRNAs) 
network construction was demonstrated for these predicted 
miRNAs and lncRNAs in combination with Cytoscape 
software (https://cytoscape.org/) in this study, which showed 
that miR-515-5p was the core node gene (Figure 8C), and 
miR-607 was the common upstream regulator of IL6 and 
IL9. Based on this, we identified miR-515-5p as a core node 
gene and miR-607 as a common upstream regulator of 
IL6 and IL9. This implies that the expressions of IL6 and 
IL9 could be reciprocal, but further research is needed to 
confirm this.

In order to confirm the downstream regulatory mechanism 
of IL6 and IL9, GSEA of IL6 and IL9 was performed using 
GSE63142 dataset. Through enrichment analysis, it was 
revealed that IL6 may regulate cytokine-cytokine receptor 
interaction, chemokine signaling pathway, TLR signaling 
pathway, hematopoietic cell lineage, and antigen processing- 
and presentation-affected tracheal remodeling induced by 
asthma (Figure 8A). IL9 may regulate cytokine-cytokine 
receptor interaction, the JAK-STAT signaling pathway, 
chemokine signaling pathway, and natural killer cell-mediated 
cytotoxicity and TLR signaling pathways-affected tracheal 
remodeling induced by asthma (Figure 8B). These results 
suggest that IL6 and IL9 may affect airway remodeling by 
regulating these pathways.

Discussion

Bronchial asthma, as a common disease of the respiratory 
system, is characterized by chronic inflammation of the 
airways and airway remodeling as the main pathological 
features (18,19). Airway remodeling serves as an important 
pathological cause of airway narrowing and airflow 
limitation. Studies have shown that airway remodeling 
occurs in early asthma, when symptoms of airway 
inflammation are not evident (20). This suggests that 
mechanisms of airway remodeling due to non-inflammatory 
factors are also present during the development of asthma. 
Current studies on mechanisms of airway remodeling have 
been limited to airway inflammation (21,22), and there are 

relatively few studies on mechanisms of airway remodeling 
from non-airway inflammatory aspects (23).

In the present study, we focused on the role and 
mechanisms of Th2-associated inflammatory factors IL1, 
IL4, IL5, IL6, IL9, IL10, IL13, IL25, IL33, and TSLP 
in airway remodeling in bronchial tissues. In this study, 
we compared the messenger RNA (mRNA) expression of 
Th2-type inflammatory factors IL1, IL4, IL5, IL6, IL9, 
IL10, IL13, IL25, IL33, and TSLP in asthmatic and non-
asthmatic epithelial tissues and showed that IL6 and IL9 
showed differential expression in asthmatic epithelial 
samples, with IL6 being down-regulated and IL9 being 
up-regulated, suggesting that these two factors may have 
opposite functions. However, it is important to note that 
these inflammatory factors act as secreted proteins on 
themselves or surrounding cells, and intracellular mRNA 
expression may not truly reflect their protein levels; further 
protein-level assays may be required. Previous research 
has suggested that TGF-β1, IL13, and IL17 are regarded 
as critical regulatory factors. These factors can modulate 
the function of airway epithelial cells, smooth muscle cells, 
fibroblasts, and immune cells, and may lead to structural 
and functional changes in the airways (24,25). In recent 
years, the roles of IL6 and IL9 in airway remodeling have 
received increasing attention. IL6 is believed to promote 
airway myofibroblast and matrix synthesis through the 
proliferation of airway smooth muscle cells and the 
regulation of Th17 cell differentiation (26,27). Meanwhile, 
IL9 is thought to promote airway myofibroblast and 
matrix synthesis, as well as the survival and activation of 
eosinophils, thereby promoting airway myofibrosis, fibrosis, 
and inflammatory responses (28,29). In this study, an inverse 
expression of IL6 and IL9 was observed in asthma epithelial 
samples. This may involve complex biological molecular 
mechanism differences and needs further experimental 
validation.

Immunological theory suggests that the development 
of asthma is associated with an imbalance in the T helper 
type 1 (Th1)/Th2 factor ratio (30), and that Th cells 
can be divided into Th1 and Th2 cells depending on the 
cytokines secreted, with Th1 acting as an inducer of cellular 
immunity against infections caused by viruses and bacteria, 
and activating macrophages to cause delayed metaplasia 
and acting on Th2 cells to avoid over-immunization 
(31,32); Th1 and Th2 are in a dynamic balance to 
maintain the stability of the body’s defense function, and 
the predominance of either of them can lead to immune 
dysfunction (33,34).

https://www.microrna.org/
https://mirdb.org/
http://spongescan.rc.ufl.edu/
http://spongescan.rc.ufl.edu/
https://cytoscape.org/
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Currently, molecular markers related to tracheal 
remodeling have not been reported. Therefore, in this 
study, we analyzed DEGs by using mouse stenosis tracheal 
samples and mouse normal tracheal samples, and then 
intersected the asthma-related DEGs to obtain 11 genes. In 
order to further obtain the key genes of tracheal remodeling 
with clinical significance, the characteristic genes of tracheal 
remodeling-related molecules were calculated by machine 
learning algorithm. This enabled us to screen for clinically 
transforming tracheal remodeling related molecules, 
including both inflamed tracheal stenosis and non-inflamed 
tracheal stenosis.

As the outermost cell in the trachea, the tracheal 
epithelium assumes a barrier role as well as a role in the 
presentation and amplification of immune factors in 
the environment, and its EMT is generally considered 
the initiating factor in the onset of subsequent tracheal 
remodeling (35,36). EMT in the tracheal epithelium not 
only leads to a decrease in the tight junctions of some 
epithelial cells, thus reducing the epithelial barrier capacity 
and leading to airway hyperstress, but also leads to airway 
subepithelial fibrosis, increased extracellular matrix (ECM) 
secretion and abnormal value added by smooth muscle 
cells. EMT, as a transitional state between the epithelial and 
mesenchymal phenotypes, is a key inducer of airway fibrotic 
remodeling (37,38).

In this study, to clarify whether IL6 and IL9 can influence 
airway remodeling in asthmatic patients by regulating 
airway remodeling-related genes and EMT-associated 
genes, we performed correlation analysis of IL6 and IL9 
with airway remodeling-related genes and EMT-associated 
genes. Our study revealed that IL6 and UBE2C may bind to 
each other, and IL6 has a regulatory relationship with GEM. 
These results suggest that Th2-type airway inflammatory 
factors can influence airway remodeling by binding to or 
regulating target factors. It is important to note that IL6 is 
a chemokine (39) that usually binds to the cell membrane 
or IL6R (40,41), whereas UBE2C is present intracellularly 
and belongs to the E2 family of enzymes in the ubiquitin-
proteasome pathway (42), which are not conditioned to 
bind in terms of spatial location. We hypothesized that IL6 
could enter the cell and bind to UBE2C protein through 
vesicles during tracheal remodeling in asthmatic patients; 
or the binding is completed intracellularly before IL6 is 
secreted out of the cell, forming a protein complex.

To further explain the molecular mechanism of IL6 
and IL9 in regulating tracheal remodeling, the ceRNA 

network of IL6 and IL9 was constructed in this study. In 
this network, we identified a total of 24 miRNAs and 22 
lncRNAs. For the downstream regulatory mechanisms of 
IL6 and IL9, GSEA was performed in this study. TLRs 
are a class of relatively conserved transmembrane proteins 
that exist in nature and are widely found in various cells 
such as immune cells and epithelial cells in the human 
body, including airway epithelial cells. It was found that 
the TLR2/TLR4 signaling pathway abnormally activates 
neutrophils, monocytes, and CD4+ Th2 lymphocytes 
in the airways, producing large amounts of IL4, IL5, 
and IL13, upregulating IgE, and increasing airway 
hyperresponsiveness, contributing to acute asthma attacks 
(43,44). Further analysis showed that variants of rs3804099 
and Arg753Gln in TLR2 and rs4986791 and Asp299Gly 
in TLR4 increase the risk of asthma and increase asthma 
susceptibility in the general population (45). These studies 
suggest that the TLR signaling pathway plays an important 
role in asthma development, and therefore, the study of 
the TLR signaling pathway is a new direction for asthma 
prevention and treatment.

Conclusions

In summary, this study further mined the asthma gene 
microarray database through bioinformatics analysis and 
identified key genes and important pathways affecting 
airway remodeling in asthma patients, providing new ideas 
to uncover the mechanism of airway remodeling due to 
asthma and then seek new therapeutic targets.
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Table S1 Th2 inflammation-related factors downloaded from the 
MSigDB website

IL1

IL10

IL13

IL25

IL33

IL4

IL5

IL6

IL9

TSLP

Th2, T helper type 2; MSigDB, Molecular Signatures Database.
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