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Background: Programmed cell death ligand 1 (PD-L1) blocking therapy has transformed the treatment of 
lung adenocarcinoma (LUAD), which has significantly changed the landscape of immunotherapy. We aimed 
to explore specific cell subpopulations to understand tumor progression and identify markers of response to 
PD-L1 blocking therapy.
Methods: Bulk, fluorescence-activated cell sorting (FACS), and single-cell RNA (scRNA) sequencing were 
used to profile CXCL13, EPSTI1, and CDK1. The gene set variation analysis (GSVA) R package was utilized 
for score calculation, and prognostic analyses included receiver operating characteristic (ROC) curves, Cox 
proportional hazard models, and meta-analysis. Additionally, we analyzed tumor microenvironment (TME), 
genomics, compound perturbations, and clinical indicators. The high-dimensional analysis captured the 
intrinsic characteristics of the subpopulation. Furthermore, subpopulation differential genes were used for 
enrichment analysis of transcription factors and compounds.
Results: Literature and website analyses supported the essential role of CXCL13, CDK1, and EPSTI1 in 
immunotherapy. This led us to focus specifically on LUAD by representing a pan-cancer profile of immune-
sensitive genes. Logically, the high-characteristic population may consist of samples positive for CXCL13, 
EPSTI1, and CDK1. The three-gene signature was a favorable indicator of immunotherapy response in the 
Stand Up to Cancer-Mark Foundation (SU2C-MARK) LUAD cohort but showed a poor prognosis before 
treatment in the Lung Cancer Explorer (LCE) database. Further mechanistic exploration revealed specific 
mutations associated with the three-gene signature in SU2C-MARK LUAD, such as STK11. In The Cancer 
Genome Atlas (TCGA)-LUAD cohort, the high-scoring group exhibited a higher tumor mutational burden 
(TMB) and global methylation but a lower fraction genome altered (FGA) and estimated tumor purity. 
Moreover, dasatinib demonstrated sensitivity in the high-scoring group. The co-localization of the CXCL13, 
EPSTI1, and CDK1 subpopulation was validated through spatial transcriptome and immunohistochemical 
databases. Assessment of the subpopulation depicted high-resolution intercellular communication. 
Maintenance of specific pathways, such as TNF, CD74, and CD44, contributed to immunotherapy 
sensitivity. Finally, the subpopulation-enriched targets and drugs were confirmed through ConnectivityMap 
(CMAP) analysis and multi-omics, respectively.
Conclusions: In this study, positive samples for CXCL13, EPSTI1, and CDK1 exhibited poor prognostic 
significance in treatment-naïve LUAD cases but demonstrated benefits from PD-L1 blockade and dasatinib 
therapies.
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Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized 
cancer treatment for a variety of solid tumors, including 
non-small cell lung cancer (NSCLC) (1). Although 
biomarkers associated with efficacy have been identified, 
such as programmed cell death ligand 1 (PD-L1) expression 
and tumor mutational burden (TMB), most patients with 
NSCLC do not achieve positive outcomes with ICIs. 
Targeted therapies have significantly improved prognosis 
in oncogenic-driven subgroups, but also pose challenges 
for immunotherapy (1,2). Thus, there is a need to identify 
intratumoral immune infiltration related to ICIs response.

Single-cell RNA (scRNA) analysis has recently been 
utilized to clarify high-resolution tumor microenvironment 
(TME) profiles (3,4). Paradoxically, CXCL13, considered 
one of the best ICIs markers, is highly expressed in 
neoantigen-associated T cells but is strongly linked to 
pathologically unresponsive NSCLC patients receiving  
ICIs (5). At the same time, widespread expression of 
CXCL13  improves antitumor immune responses in 
NSCLC, implying that fluorescence-activated cell sorting 
(FACS)-sorted CXCL13 subpopulations are promising 
candidates (5,6).

Recent transient single-cell kinetic results have 
demonstrated the enrichment of PD-L1 blockade-

induced proliferative CD8+ T exhausted cells in cancer 
nests (7). CDK1 plays a critical role in regulating T cell 
proliferation, making it a potential candidate for screening 
the CXCL13 subpopulation (8). However, a challenge 
arises as both CDK1 and CXCL13 are expressed in cancer 
cells (6). Further studies are needed to obtain a more 
immunologically characterized subpopulation. Based on 
previous data and the immunotherapy-related website 
ICBatlas (9,10), EPSTI1 has been identified as a favorable 
indicator of ICI response, and may have the potential to 
describe complex subpopulations. Furthermore, it is more 
practical to use streamlined signatures in clinical settings. 
To prioritize tumor-type applications, we represented three 
genes in the pan-cancer profile and compared them with 
pathways that determined response to pembrolizumab (11).

In this study, we have defined the immuno-sensitive 
niche as CXCL13, EPSTI1, and CDK1 positivity. Our 
hypothesis suggests that high expression of the three-gene 
signature may predict the presence of a subpopulation. 
After identifying subgroups according to the signature, 
our analysis focused on prognosis, pan-cancer, and high-
dimensional transcriptome. Meanwhile, the signature-
pathway association was established by correlation analysis. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-23-1164/rc).

Methods

Data acquisition and processing

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). We collected 
four publicly released scRNA datasets with primary 
NSCLC (Table S1) (12-15). Among these datasets, 
E-MTAB-6149 and the West China Hospital dataset were 
specifically referred to as NSCLC, whereas the others were 
regarded as lung adenocarcinoma (LUAD). We allocated 
E-MTAB-6149 as the training set, and used the remaining 
datasets for validation. In addition, four datasets, namely 
GSE154826, GSE179994, GSE111907, and GSE184398, 
which contained FACS information, were utilized for further 
analysis (14-17). Compound perturbation datasets including 
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Cancer Cell Line Encyclopedia (CCLE), Genomics of 
Drug Sensitivity in Cancer (GDSC), ConnectivityMap 
(CMAP), and our data regarding the dinaciclib/alvocidib-
treated NCI-H1944 cell line, were described in detail in 
our previous study (9). For the comprehensive analysis of 
bulk RNA sequencing, we included the stage IB–IIIA naive 
cohort The Cancer Genome Atlas (TCGA)-LUAD (n=320) 
and the ICIs-treated cohort called Stand Up to Cancer-
Mark Foundation (SU2C-MARK) LUAD (n=47) (9,18).

We gathered the information of 102 LUAD cases 
that passed the quality test and 47 of them contained 
mutations and overall survival data in the SU2C-MARK 
data. For TCGA-LUAD, common clinical features 
were incorporated, including TMB, global methylation, 
estimated tumor purity, and fraction genome altered (FGA). 
In addition, expression profiles, genomic, and clinical 
information were downloaded from Lung Cancer Explorer 
(LCE; https://lce.biohpc.swmed.edu/lungcancer/), Xena 
(https://xena.ucsc.edu/), and cBioPortal (https://www.
cbioportal.org/) websites (19-21). We used our re-analyzed 
data, which included only stage IB–IIIA patients and 
excluded those who underwent preoperative chemotherapy. 
To perform a meta-analysis, we obtained 12 separate 
cohorts from LCE, each consisting of three genes, from 
the pool of 27 previously described cohorts with more than 
100 samples. Here, the TCGA-LUAD data came from 
LCE website to maintain consistency. Using the maftools 
R package, we analyzed and visualized the whole-exome 
sequencing data from the SU2C-MARK cohort (22). 
Frequent and differential mutations between the two groups 
were compared.

Seurat R package (23) was used to load and visualize 
the scRNA datasets.  Quality control measures were 
implemented to retain only cells that met the criterion 
of having unique molecular identifier of more than 200. 
T-distributed stochastic neighbor embedding (t-SNE) 
was used to depict annotated clusters and marker genes. 
Specifically, “None” is for unidentifiable clusters from 
other studies. Moreover, we used the CellPhoneDB python 
package to infer intercellular ligand-receptor pairing from 
scRNA (24). The type labels of all cells were randomly 
shuffled 1,000 times to establish the mean expression levels 
of ligands and receptors within each interaction cluster. 
Differentially expressed genes (DEGs) in the bulk data were 
considered as those with a greater than two-fold change, 
within the scRNA FindMarkers function settings as follows: 
only.pos = TRUE, min.pct =0.35, logfc.threshold =0.5, test.
use = ‘MAST’.

Identification and abundance assessment of CXCL13+ 
EPSTI1+ CDK1+ subpopulation

We defined subpopulation positivity as the concurrent 
expression of CXCL13, EPSTI1, and CDK1 in a single 
sample, with values exceeding 0. In other words, a positive 
cell needed to express all three markers. Then, the relative 
abundance of each subpopulation was evaluated on each 
sample using the above three genes and by the R package 
gene set variation analysis (GSVA) (function: method = 
‘ssgsea’, kcdf = ‘Gaussian’, abs.ranking = TRUE) (25). 
Supplemental explanation: Gaussian model was applied to 
logarithmic scale data, setting the absolute ranking to obtain 
the maximum variation of the score. For the application of 
the single-sample gene set enrichment analysis (ssGSEA) 
algorithm, each data needed to be implemented separately, 
and the scores were not directly comparable across queues. 
Rating groupings were ranked by median value unless 
otherwise noted.

Survival and meta-analysis

We performed Cox proportional hazards model for survival 
analysis and calculated 95% confidence intervals (CIs). The 
R package survminer was conducted to plot the Kaplan-
Meier survival by the log-rank test. The receiver operating 
characteristic (ROC) curve and cross-queue prognosis were 
visualized via R package pROC and meta, respectively. Only 
overall survival was considered in this study.

Comprehensive analysis from online website

We explored the correlation of genes in the TME in terms 
of bulk and scRNA through sites Tumor-Immune System 
Interactions and Drug Bank (TISIDB; http://cis.hku.hk/
TISIDB/) and Tumor Immune Single Cell Hub (TISCH; 
http://tisch.comp-genomics.org/), respectively (26,27). 
The ICBatlas (http://bioinfo.life.hust.edu.cn/ICBatlas/) 
and SpatialDB (http://www.spatialomics.org/SpatialDB/) 
websites were used to explore the transcriptome in the 
context of pan-cancer ICIs and spatial distribution, 
respectively (10,28). In addition, gene expression in cancer 
and adjacent normal tissues, and signature correlation were 
stored in Gene Expression Profiling Interactive Analysis 
(GEPIA2; http://gepia2.cancer-pku.cn/) (29). DEGs were 
used to access potential upstream transcription factors 
through ChEA3 (https://maayanlab.cloud/chea3/), which 
was based on experimental data (30). Finally, the pathology 
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and sublocalization at the protein level were analyzed using 
the Human Protein Atlas (HPA) website (https://www.
proteinatlas.org/) (31). Note that antibodies including 
anti-CXCL13 (HPA052613), anti-EPSTI1 (HPA017362), 
and anti-CDK1 (CAB003799) in lung tumors and normal 
tissues have been studied.

Statistical analysis

The R software (The R Foundation for Statistical 
Computing, Vienna, Austria) was used to write all codes for 
the analyses. A heatmap was created to show the degree of 
correlation and difference. The variables between groups 
were compared using the non-parametric test (Wilcoxon 
test or Kruskal-Wallis test). Statistical significance was 
determined at a P value <0.05 and adjusted for Bonferroni 
testing.

Results

EPSTI1 is co-expressed with CXCL13 and CDK1

The clinical significance of proliferating T cells is unclear. 
For the CXCL13+ CDK1+ subpopulation, which contained 
proliferating T cells and other components, we are 
primarily concerned with immunogenicity, which is also 
similar to the concern of lymph nodes (6). The flowchart 
of our search for markers that could further delineate the 
CXCL13+ CDK1+ subpopulation is displayed in Figure 1A. 
According to Lambrechts et al.’s descriptions, T cells with 
high CDK1 expression are typically proliferative, leading 
to the conclusion that CXCL13+ CDK1+ T cells are also 
highly proliferative (Figure 1B) (12). Then, several markers 
including CXCL13, IFNG, CDK1, and interferon (IFN)-
stimulated genes (ISGs) (e.g., MX1, IRF7, and EPSTI1) 
were examined (Figure 1C) (32). We screened candidate 
genes associated with the CXCL13+ CDK1+ subpopulation 
according to the following two criteria: significant 
enrichment in immune-related function and down-
regulation of cyclin-dependent kinase (CDK) inhibitors 
(table available at https://cdn.amegroups.cn/static/public/
jtd-23-1164-1.xls, Figure 1D). The final two genes identified 
were HAVCR2 (a known checkpoint) and EPSTI1.

Identification of EPSTI1 as an indicator of 
immunosensitivity

We aimed to identify markers relevant to ICIs, CXCL13, 
and EPSTI1 for the top 35 genes regarding immuno-

sensitivity according to the ICBatlas website analysis (10).  
However, the role of EPSTI1 in cancer immunity compared 
to that of CXCL13  is not yet fully understood. To 
investigate further, we utilized pan-cancer data and observed 
that EPSTI1 exhibited fewer genetic alterations in NSCLC  
(Figure 2A) (21). Importantly, when we separated the 
immunotherapy samples into responders and non-
responders, the ICBatlas website demonstrated that 
the discrepancy in EPSTI1 expression among NSCLC 
type was the most significant (10); EPSTI1 expression 
could effectively distinguish between responders and 
non-responders [area under the curve (AUC) =0.8182;  
Figure 2B]. Thus, we delved deeper into the intrinsic 
mechanism by which EPSTI1 facilitates immune sensitivity. 
Firstly, EPSTI1 expression was positively correlated with 
most immune cells in pan-cancer (Figure 2C). Meanwhile, 
EPSTI1 was more likely to activate the immune through 
the antigen presentation process (Figure S1A-S1C). 
Additionally, previous literature revealed that EPSTI1 was 
regulated by IFN-α (33), which aligns with our finding that 
EPSTI1 was positively linked to the type I IFN pathway 
member (e.g., MX1; Figure 2D) (32). Overall, our analysis 
showed that EPSTI1 is an immuno-sensitive marker, 
especially in NSCLC.

Pan-cancer profile of the CXCL13+ EPSTI1+ CDK1+ 
subpopulation

Based on the E-MTAB-6149 T cells dataset, we classified 
the subpopulation order into CXCL13, EPSTI1, and CDK1  
(Figure 1C) (12). The expression of CXCL13, EPSTI1, 
and CDK1 can partially indicate the abundance of the 
CXCL13, EPSTI1, and CDK1 positive subpopulation. In 
one-third of all cancer types, such as breast carcinoma, the 
tumor tissues had notably higher gene expression levels 
compared to adjacent normal tissues (Figure S2A-S2C) (29).  
Therefore, our next analysis focused on the tumor 
tissue. Transcriptional features have been evaluated in 
the pembrolizumab trials; the three-gene signature has 
exhibited a robust correlation with IFN-γ, T-cell-inflamed, 
proliferation, and glycolysis in pan-cancer (Figure 3A) (11).  
This means that the generated signature is a key measure 
of previous pathways. Furthermore, we utilized the 
GSVA R package to estimate the CXCL13, EPSTI1, and 
CDK1 positive subpopulation’s relative abundance (25). 
Theoretically, populations with pathology-associated 
regions have a higher gene signature. Our analysis 
demonstrated that LUAD had a high abundance, ranking 
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7th across all cancer types (Figure 3B). This finding was 
further supported by the GSE184398 cohort (Figure 3C). 
In contrast to whole cells, diminished scores were observed 
in the cancer portion of LUAD (Figure 3C), signifying that 
the CXCL13, EPSTI1, and CDK1 positive subpopulation 
may be related to immune rather than cancer cells. But in 
T myeloid-derived suppressor cells (MDSCs), and Treg 
cells, the subpopulations were not particularly significant  
(Figure S3A-S3C). The results of FACS sequencing 
implied that the CXCL13, EPSTI1, and CDK1 positive 
subpopulation was mainly present in the non-epithelial 
fraction of LUAD, which we further confirmed in the high-

resolution scRNA datasets (Figure S4A-S4D). As expected, 
the CXCL13, EPSTI1, and CDK1 positive subpopulation 
was mainly composed of proliferating T cells (48–82%; 
Figure S4B-S4D). Notably, the proportion of epithelium 
was higher in lung squamous carcinoma (LUSC) than 
in LUAD [basal: 11.5% vs. alveolar type II (ATII): 1.6%;  
Figure S4A], which was consistent with recent descriptions 
of proliferative cancer epithelium in LUSC (13). Overall, 
we demonstrated three-signature associated pathways, and 
identified tumor categories that prioritized the validation 
of niche, a TME that influenced prognosis and drug  
resistance (1).

Figure 1 IFN genes are co-expressed with CDK1 and CXCL13, and regulated by CDK inhibitors. (A) EPSTI1 screening process by single-
cell, bulk RNA sequencing with information on FACS and CDKs inhibitor treatments. (B) tSNE plot showing location distribution of 
cells in the E-MTAB-6149 cohort (left: named by T cell type; right: named by CXCL13 and CDK1 expression). (C) tSNE plot showing the 
relative position of CXCL13, IFNG, and CDK1 (top), and ISGs including MX1, IRF7, and EPSTI1 (bottom) according to the expression 
values in the E-MTAB-6149 cohort. (D) Volcano plotting differential genes enriched in CXCL13+ CDK1+ subpopulation (left: GSE111907 
with FACS; right: transcriptome of NCI-H1944 cell line after CDKs inhibitor treatments). The X-axis presents log fold change and the Y-axis 
indicates a negative log10 P value. CDK, cyclin-dependent kinase; tSNE, t-distributed stochastic neighbor embedding; IFN, interferon; 
FACS, fluorescence-activated cell sorting; ISGs, IFN-stimulated genes.
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Comprehensive analysis from the three-gene signature in 
LUAD

Given the possible confounding effect of the proliferative 
features of LUSC, our analysis was changed to LUAD. 
Using the GSVA R package, we found that high score of 

three-gene signature was associated with a better prognosis 
for ICIs after selecting optimal the cut-off point [hazard 
ratio (HR) =0.423; 95% CI: 0.188–0.952; Figure 4A] (25). 
Separated by the high frequency of mutations in the high- 
vs. low-scoring group, STK11 mutations were mainly in 

Figure 2 Genetic and immune characteristics from EPSTI1. (A) Bar graph showing pan-cancer mutations and chromosomal alterations 
in EPSTI1 on the cBioPortal website (https://www.cbioportal.org/), with the ratio of alterations on the vertical axis and the tumor on the 
horizontal axis. (B) ROC curve demonstrating the sensitivity of EPSTI1 expression to differentiate ICIs-responders in GSE126044. (C) Pan-
cancer correlation from EPSTI1 expression and immune cells on TISIDB website (http://cis.hku.hk/TISIDB/). (D) NSCLC scRNA-based 
correlation from EPSTI1 expression and highly positively correlated genes on TISCH website (http://tisch.comp-genomics.org/). CNA, 
copy number alteration; AUC, area under the curve; ROC, receiver operating characteristic; ICIs, immune checkpoint inhibitors; TISIDB, 
Tumor-Immune System Interactions and Drug Bank; NSCLC, non-small cell lung cancer; scRNA, single-cell RNA; TISCH, Tumor 
Immune Single Cell Hub.
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the low-scoring group (Figure 4B). Meanwhile, SYCP2 
mutations were predominantly detected in the low-scoring 
group, whereas CSMD3, KIAA1109, USH2A, ANKRD30B, 
CPXM2, NBEA, TG, TRPM1, and TP53 mutations were 
significantly enriched in the high-scoring group (Figure 4C). 
We speculated that it may be related to genes with increased 
TMB, such as CSMD3 and USH2A (34). Meanwhile, the 
score may reflect the immunogenicity of the mutation, as 
lower scores have a higher proportion of STK11 (2).

Furthermore, in stage IB–IIIA TCGA-LUAD, the high-
scoring group had higher TMB, and global methylation, but 
lower tumor purity and FGA than the low-scoring group 
(Figure 4D). Also, only dasatinib was significant in cross-
validated by CCLE and GDSC datasets (log fold change 
>0.7; Figure 4E). Next, the correlation between scores and 
factors was studied. Importantly, the prognostic significance 
of LUAD was consistent across multiple datasets, indicating 

that the results of our meta-analysis could be considered 
reliable (19). We used the random effects model to validate 
that high scores were a factor in unfavorable prognosis, after 
detecting no significant heterogeneity across the datasets 
(HR =1.21; 95% CI: 1.05–1.4; Figure 4F). Immune-related 
S3 and squamous clusters with a poorer prognosis were 
found to have a higher score (Figure 4G) (9,35). Combined 
with our results, a subset of the population with a poorer 
prognosis may be suitable for ICIs.

CXCL13+ EPSTI1+ CDK1+ spatial presentation, cellular 
communication and regulation

We assumed that a high abundance of the signature 
population contained the CXCL13, EPSTI1, and CDK1 
positive subpopulation, and therefore would benefit from 
ICIs. The human protein database suggested that CXCL13 

Figure 3 Pan-cancer correlation and scoring of three genes. (A) Correlation between signatures in pan-cancer from the GEPIA2 website 
(http://gepia2.cancer-pku.cn/). Box plot showing ssGSEA score for CXCL13, EPSTI1, and CDK1 in (B) primary pan-cancer TCGA cohort, 
and (C) primary pan-cancer GSE184398 cohort without FACS (top) and with CD45-FACS (bottom). Additionally, ranking is based on 
median value. IFN, interferon; TCGA, The Cancer Genome Atlas; GEPIA2, Gene Expression Profiling Interactive Analysis; ssGSEA, 
single-sample gene set enrichment analysis; FACS, fluorescence-activated cell sorting.
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and EPSTI1 would be suitable for cytoplasmic staining 
in 1 LUAD sample (Figure S5A) (31). Meanwhile, CDK1 
and EPSTI1 were both positively expressed in normal lung 
tissue (Figure S5B). According to the spatial transcriptome 
results, CXCL13, EPSTI1, and CDK1 were co-localized in 
breast carcinoma (Figure 5A) (28). Considering that CDK1 
expression was widespread, we had detected the presence 
of the CXCL13, EPSTI1, and CDK1 positive subpopulation 
in at least two tumor species, which had been supported by 
pan-cancer profiles (Figure 3B,3C, Figure S3).

CITE-seq is the technology to simultaneously measure 
cell surface proteome and the transcriptome from the 
single-cell level (14). We supposed that there would be an 
immune-specific subpopulation that was highly matched 
to the CD45-positive sorted dataset. The subpopulation 
was defined as described in the Methods section, and the 
CXCL13, EPSTI1, and CDK1 positive subpopulation showed 
active communication of myeloid cells (Figure 5B), despite 
that half of the subpopulation was proliferating T cells 
(Figure S4C). Moreover, the ligand-receptor pairing analysis 
showed that TNF, CD74, and CD44 signals were the most 
significant, and that DC3 regulated proliferating T cells 
through multiple pathways (table available at https://cdn.
amegroups.cn/static/public/jtd-23-1164-2.xls, Figure 5C).

We wanted to explore the role of the CXCL13, EPSTI1, 
and CDK1 positive subpopulation in the context of both 
immune and T-cell FACS sequencing. Although not 
statistically significant, we observed a decrease in the 
proportion of proliferating T cells in the GSE179994 cohort 
after treatment, which supported the previous description 
(P=0.19; Table S2, Figure 5D) (15). A comparison of the 
CXCL13, EPSTI1, and CDK1 positive subpopulation 
before and after treatment revealed that GALNT2, 
VCAM1, LRRN3, and CLDND1 were significantly reduced  
(Figure 5E). Importantly, smoking-associated characteristics 
involving LRRN3 and CLDND1 were decreased post-
treatment, and LRRN3 was predominantly expressed in the 
CXCL13, EPSTI1, and CDK1 positive subpopulation (36).  
Then, we performed transcription factor and CMAP 
enrichment analyses using 121 highly-expressed genes from 
the CXCL13, EPSTI1, and CDK1 positive subpopulation 
before chemo-immunotherapies (table available at https://
cdn.amegroups.cn/static/public/jtd-23-1164-3.xls) (37). 
Among the ChEA3 predicted top 10 transcription factors, 
FOXM1 was validated by CMAP analysis (table available at 
https://cdn.amegroups.cn/static/public/jtd-23-1164-4.xls, 
Figure 5F) (30,37). Meanwhile, CDK inhibitors were found 
to reduce the above features (table available at https://cdn.

amegroups.cn/static/public/jtd-23-1164-4.xls). Similarly, 
we used the proteome from lung cancer cell lines to infer 
compound perturbations (38). Since only a small number 
of target genes were considered significant, the fold change 
related to compound treating was averaged to simplify. Most 
compounds tended to reduce the above subpopulation-
related characteristics, and compounds PD184352 (MEK I), 
Staurosporine (Pan Kinase), and BrefeldinA (ER Stress II) 
were noted for all five cell lines (Figure 5G).

Discussion

In this study, we showed that EPSTI1 is a positive target of 
CDK inhibitors, which is one of the characteristics of IFN, 
and further elucidated the role of EPSTI1 in the cancer 
immunity. Importantly, the CXCL13, EPSTI1, and CDK1 
positive subpopulation can be used as a marker to screen for 
patients who will benefit from ICIs for LUAD.

The positive expression of CXCL13, EPSTI1, and CDK1 
positive samples in LUAD may lead to poor prognosis, 
but patients can benefit from ICIs. Populations with high 
score of the three-gene signature have high TMB but low 
chromosomal variation, and high methylation levels but 
low tumor purity. A recent study has shown that tumor-
infiltrating lymphocyte patterns are inconsistent with 
checkpoint profile, and our results may be useful in finding 
ICIs-sensitive populations (39). For the CXCL13, EPSTI1, 
and CDK1 positive subpopulation in LUAD, only one cell 
was found to express all three of these markers simultaneously 
in the stroma, and there was a rare number detected in 
unsorted sequencing or peripheral blood tissues (data not 
shown). Of course, there are challenges with scRNA data, 
such as drop-out events and measurement noise (4). Since 
the CXCL13, EPSTI1, and CDK1 positive subpopulation 
was rarely expressed in cancer cells fractions, and was 
verified with bulk and scRNA (Figure 3C, Figure S4A),  
immune-enrichment sequencing was recommended.

We hypothesized that pre-existing cells could help 
to identify sensitive populations susceptible to ICIs. 
However, therapy-guided TME differs from the naïve 
state. In NSCLC, ICIs therapies have been found to induce 
proliferating CD8+ T cells infiltration into the cancer nest, 
but a durable response may require a reduction in this 
subpopulation (40). Similarly, therapies have been shown to 
result in a decrease in proliferating T cells in hepatocellular 
carcinoma (41). Proliferating T cells being in a state of 
memory but not in exhaustion may contribute to long-
term responses (42). It is of interest to further investigate 
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Figure 5 Co-localized CXCL13+ EPSTI1+ CDK1+ subpopulation intercellular communications and regulators. (A) Spatial transcriptome 
of CXCL13, EPSTI1, and CDK1 from the SpatialDB website (https://www.spatialomics.org/SpatialDB/). (B) The number of predicted 
intercellular ligand-receptor pairs from the CXCL13+ EPSTI1+ CDK1+ subpopulation in GSE154826 cohort. The vertical axis is the ligand 
and the horizontal axis is the receptor. Additionally, the quantity is converted to log2 plus 1. (C) Highly expressed cellular communication of 
cycle T cells derive from the CXCL13+ EPSTI1+ CDK1+ subpopulation in GSE154826 cohort (top: proliferating T cells as ligands; bottom: 
proliferating T cells as receptors). (D,E) Box plot showing number and differential genes of the CXCL13+ EPSTI1+ CDK1+ subpopulation 
before and after chemo-immunotherapies in the GSE179994 cohort. (F) Network image from the top 10 CXCL13+ EPSTI1+ CDK1+ 
subpopulation-related transcription factors inferred by site ChEA3 (https://maayanlab.cloud/chea3/). (G) Proteomics of five lung cancer cell 
lines demonstrating change values after compound treatment. Log FC takes the average value. FC, fold change.
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of the transition from memory to exhaustion. Recently, 
Chu et al. characterized the pan-cancer T cell atlas and 
identified CXCL13+ as a subset of proliferating T cells (43). 
However, we found that proliferating T cells in NSCLC 
were not coordinated with the overall profile. Despite the 
presence of proliferating T cells, it remains unclear whether 
this group is biologically significant. Associated with our 
results, RBPJ may be the regulator of the CXCL13, EPSTI1, 
and CDK1 positive subpopulation (44), which suggests 
that the validation of the 121 therapeutically relevant 
subgroup genes is meaningful (table available at https://cdn.
amegroups.cn/static/public/jtd-23-1164-3.xls).

The proliferation markers are widely expressed and 
not cell-specific. Although subpopulations in T cells are 
rare, key targets and regulatory networks are depicted  
(Figure 5E,5F). A recent study showed that CXCL13 is 
widely expressed, and similarly, the CXCL13, EPSTI1, and 
CDK1 positive subpopulation is not restricted to T cells (6). 
Thus, we explored cellular communication in the CXCL13, 
EPSTI1, and CDK1 positive subpopulation, where the 
CD74-MIF/COPA pathway was significant (Figure 5C). 
It can be speculated that maintenance of CD74 signals 
may be associated with better immune responses (45). 
Taken together, the CXCL13, EPSTI1, and CDK1 positive 
subpopulation may help to explore cellular communication, 
such as DC3 activation of T cells via signaling. In this 
study, we found that at least two tumor species contained 
this subpopulation and that it is immunospecific in 
LUAD. Thus, our data are mainly based on LUAD, but 
pan-cancer validation may be profitable. We believe that 
the identification of the CXCL13, EPSTI1, and CDK1 
positive subpopulation will help to obtain high-resolution 
information related to ICIs. This cannot be evaluated with 
a deconvolution-based algorithm (4).

It is not surprising that CDK1  and ISG are co-
expressed. Previous studies have shown that CDK1 and 
CDK inhibitors could regulate the IFN pathway (46,47). 
Emerging evidence also suggests that CDK4, another 
member of the CDK family may affect T-cell survival (48). 
In this study, we have identified relevant targets of CDK1, 
such as GALNT2 and VCAM1. Previous study has shown 
that O-glycosylation can be modified by proliferative 
factors (e.g., FOXM1), and it is plausible that transcription 
factor synergist mediators may regulate the activity of the 
downstream enzyme GALNT2 (49). In addition, VCAM1 
and CDK1 are considered key molecules in the progression 
of idiopathic pulmonary fibrosis (50). In conclusion, we 
believe that the concept based on co-expression allows the 

discovery of additional targets and may provide insights into 
the underlying mechanisms of CDK-applicable diseases.

Meta-analyses and systematic review have demonstrated 
the prognostic role of CXCL13, EPSTI1, and CDK1, but the 
CXCL13, EPSTI1, and CDK1 positive subpopulation has 
not been studied (51-53). CDK1 is associated with cancer 
stemness and proliferation, whereas CXCL13 has previously 
been considered a promoter of tertiary lymphoid structures 
(6,53). EPSTI1 is mainly expressed in the immune and 
stromal fractions and its immunological role of EPSTI1 
in colon cancer has been described (52). We described the 
pan-tumor spectrum of EPSTI1, in which EPSTI1 was 
once highly amplified in colon cancer, but was ignored 
(Figure 2A) because EPSTI1 plays a tumor suppressor 
role in LUSC, and it was necessary to determine whether 
EPSTI1 enhances antitumor immunity in LUAD (54). 
Meanwhile, despite the importance of CDK1 as a member 
of proliferation, our score differs from the past pan-
cancer proliferation index (55). Again, squamous-lineage 
scores were higher compared to those of other cancers 
(Figure 3B,3C). In addition, TP53 mutations have been 
found to have higher scores and it is interesting to explore 
patterns of co-alteration (2). Importantly, we highlighted 
co-localization of EPSTI1, CXCL13, and CDK1 by spatial 
transcriptome and HPA immunohistochemistry databases. 
From the perspective of antibody validation, prioritizing 
CXCL13 was necessary because CDK1 and EPSTI1 could 
be expressed in the cytoplasm of most tumors. In addition, 
we hypothesize that the high RNA expression enrichment 
of CXCL13 and EPSTI1 in human lymph nodes may lead to 
enhanced immuno-sensitivity.

Immune checkpoint levels are higher in LUSC than 
in LUAD, which exhibits activated MHC-II (56). Our 
previous findings also indicated that different TME profiles 
are associated with distinct subtypes, such as the squamous 
subtype having an increased CXCL13, EPSTI1, and 
CDK1 positive subpopulation compared to the bronchioid 
subtype (9). Apart from this, populations previously 
negative for NKX2-1 and with solid pathology exhibited 
higher proportions of PD-L1. The CXCL13, EPSTI1, 
and CDK1 positive subpopulation reflected all three 
features of neoantigen activation, ISG, and proliferation 
simultaneously. This subpopulation might identify patients 
with poor prognosis who would benefit from ICIs and 
dasatinib. Combined with our results, dasatinib reshapes 
specific subgroups in the TME to complement ICIs. 
Indeed, the results with dasatinib in some datasets and cell 
lines were consistent with our previous observations, such 
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as in the H2030 cell line (38). Our results suggest that the 
multi-omics data are meaningful, and indicated the potential 
usefulness of CMAP analysis in providing information on 
gene knockdown and compound perturbation (37). Major 
limitations include the fact that our study primarily involved 
data analysis and that the definition of cell types was 
dependent on other studies. The deficiencies of sequencing 
should also be considered.

Conclusions

Our study discovered the signature comprising CXCL13, 
EPSTI1, and CDK1 was indicative of prognosis and drug 
sensitivity. Pan-cancer analyses not only revealed the 
distribution of the three-gene signature but also supported 
its association with the previously identified pathways. 
Additionally, we verified the existence of subpopulations 
and demonstrated the cellular communication within the 
immuno-sensitive niche. High-resolution and multi-omics 
analyses suggested subpopulations of associated targets and 
guided treatment.
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Table S1 Patient cohort used in this study

Cohort Number patients NSCLC type Source

E-MTAB-6149 5 – PMID: 29988129

WCH 44 – PMID: 35027529

GSE154826 27 LUAD used PMID: 34767762

GSE179994 8 LUAD used PMID: 35121991

Bulk LUAD

TCGA-LUAD 320 LUAD used PMID: 25079552

SU2C-MARK 47 LUAD used PMID: 37024582

Others

GSE111907 36 – PMID: 32381040

GSE184398 Variable – PMID: 34963056

Meta-12 cohorts – LUAD used PMID: 31242643

NSCLC, non-small cell lung cancer; WCH, west China hospital; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; SU2C-
MARK, Stand Up to Cancer-Mark Foundation.
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Figure S1 EPSTI1-related immunomodulators at TISIDB website. Pan-cancer based spearman correlation between EPSTI1 RNA 
expression and (A) immunoinhibitor, (B) immunostimulator, and (C) major histocompatibility complex molecule. The X-axis is the type of 
cancer and the Y-axis is the RNA expression of the immune signature. TISIDB, Tumor-Immune System Interactions and Drug Bank.
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Figure S2 RNA expression of three-gene at GEPIA2 website. (A-C) RNA expression of CXCL13, EPSTI1, and CDK1 in TCGA and GTEx 
projects. Red represents cancer, while blue represents normal tissue. The horizontal axis is cancer type and the vertical axis is the expression 
in the form of TPM. TPM, transcripts per million; GEPIA2, Gene Expression Profiling Interactive Analysis; TCGA, The Cancer Genome 
Atlas; GTEx, genotype-tissue expression.
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Figure S3 Three-gene quantified by the ssgsea method at GSE184398 cohort. (A-C) Box plot showing single sample score measured by 
CXCL13, EPSTI1, and CDK1 in the GSE184398 cohort with CD3+, HLA-DR+, and CD25+ CD4+ FACS. FACS, fluorescence-activated cell 
sorting.
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Figure S4 Overlap of CXCL13+ EPSTI1+ CDK1+ subpopulation in four NSCLC cohorts. (A-D) Pie chart depicting the proportion 
of CXCL13+ EPSTI1+ CDK1+ subpopulation belongs to the author-defined cell types in West China Hospital, E-MTAB-6149 T cells, 
GSE154826, and GSE179994 cohorts. In particular, GSE154826 and GSE179994 only included patients with LUAD. LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; NSCLC, non-small cell lung cancer.
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Figure S5 Antibody information of three-gene at HPA website. (A) Protein levels and sublocalization of CXCL13 and EPSTI1 in 
the LUAD patient ID: 3003 at HPA website (https://www.proteinatlas.org/). (B) Quantification of anti-CXCL13 (HPA052613), anti-
EPSTI1 (HPA017362), and anti-CDK1 (CAB003799) in normal alveolar and macrophage cells. HPA, Human Protein Atlas; LUAD, lung 
adenocarcinoma.
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Table S2 Cell count of CXCL13+ EPSTI1+ CDK1+ subpopulation in GSE179994

CD8+ T cells Total T cells

Sample Cell_sum Sample Cell_sum Timepoint

P1.post.1 5 P1.post.1 29 Post

P1.post.2 8 P1.post.2 22 Post

P1.post.3 13 P1.post.3 27 Post

P1.pre 15 P1.pre 45 Pre

P10.post.1 3 P10.post.1 4 Post

P10.pre 61 P10.pre 81 Pre

P13.post.1 14 P13.post.1 80 Post

P13.post.2 4 P13.post.2 37 Post

P19.pre 210 P13.pre 1 Pre

P29.post.1 3 P19.post.1 3 Post

P29.pre 1 P19.pre 291 Pre

P30.post.1 5 P29.post.1 8 Post

P30.pre 26 P29.pre 5 Pre

P33.post.1 6 P30.post.1 16 Post

P33.pre 1 P30.pre 41 Pre

P35.pre 20 P33.post.1 18 Post

P33.pre 3 Pre

P35.post.1 0 Post

P35.pre 35 Pre


