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Background: At present, there is a paucity of research on the link between Crohn’s disease (CD) and atrial 
fibrillation (AF). Nevertheless, both ailments are thought to entail inflammatory and autoimmune processes, 
and emerging evidence indicates that individuals with CD may face an elevated risk of AF. To shed light on 
this issue, our study seeks to explore the possibility of shared genes, pathways, and immune cells between 
these two conditions.
Methods: We retrieved the gene expression profiles of both CD and AF from the Gene Expression 
Omnibus (GEO) database and subjected them to analysis. Afterward, we utilized the weighted gene co-
expression network analysis (WGCNA) to identify shared genes, which were then subjected to further 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analyses. Furthermore, we employed a rigorous analytical approach by screening hub genes through both 
least absolute shrinkage and selection operator (LASSO) regression and support vector machine (SVM), and 
subsequently constructing a receiver operating characteristic (ROC) curve based on the screening outcomes. 
Finally, we utilized single-sample gene set enrichment analysis (ssGSEA) to comprehensively evaluate the 
levels of infiltration of 28 immune cells within the expression profile and their potential association with the 
shared hub genes.
Results: Using the WGCNA method, we identified 30 genes that appear to be involved in the pathological 
progression of both AF and CD. Through GO enrichment analysis on the key gene modules derived from 
WGCNA, we observed a significant enrichment of pathways related to major histocompatibility complex 
(MHC) and antigen processing. By leveraging the intersection of LASSO and SVM algorithms, we were 
able to pinpoint two overlapping genes, namely CXCL16 and HLA-DPB1. Additionally, we evaluated the 
infiltration of immune cells and observed the upregulation of CD4+ and CD8+ T cells, as well as dendritic 
cells in patients with AF and CD.
Conclusions: By employing bioinformatics tools, we conducted an investigation with the objective of 
elucidating the genetic foundations that connect AF and CD. This study culminated in the identification of 
CXCL16 and HLA-DPB1 as the most substantial genes implicated in the development of both disorders. Our 
findings suggest that the immune responses mediated by CD4+ and CD8+ T cells, along with dendritic cells, 
may hold a crucial role in the intricate interplay between AF and CD.
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Introduction

CD is a multifaceted inflammatory bowel disorder 
characterized by chronic inflammation of the gastrointestinal 
tract. Its pathogenesis is a complex interplay of genetic 
susceptibility, environmental factors, and aberrant immune 
responses (1). Recent genome-wide association studies have 
identified multiple susceptibility loci, including genes that 
play a role in regulating immune response, intestinal barrier 
function, and autophagy, all of which contribute to the 
development and progression of CD (2). Moreover, dysbiosis 
of the gut microbiome has also been implicated in the 
pathogenesis of CD, with changes in the composition and 
function of the microbiota contributing to the persistence of 
chronic inflammation (3).

CD exhibits a diverse global epidemiology, with a higher 
incidence reported in North America and Europe (4).  
Various risk factors have been identified for CD, including 
family history of inflammatory bowel disease, smoking, 
urban living, and exposure to certain infections (5). 

Furthermore, CD has been associated with an increased 
susceptibility to other diseases, such as osteoporosis, 
anemia, and malignancies like lymphoma and colorectal 
cancer (6). Despite the significant progress in understanding 
the pathogenesis of CD, the management of this complex 
disorder remains a challenge.

Atrial fibrillation (AF) is a prevalent cardiac arrhythmia 
characterized by the irregular and rapid contractions of the 
atria, which can manifest in symptoms such as palpitations, 
fatigue, and dyspnea (7). The pathophysiology of AF is 
multifaceted, involving complex structural and electrical 
remodeling of the atria. Structural remodeling, encompassing 
fibrosis and hypertrophy, induces electrical inhomogeneities, 
slows conduction velocity, and heightens vulnerability to 
reentry (8). Meanwhile, electrical remodeling, which is 
defined by changes in ion channel expression and function, 
may alter action potential duration and conduction velocity, 
ultimately leading to the initiation and perpetuation of AF (9).  
Moreover, evidence suggests that inflammation, oxidative 
stress, and autonomic nervous system imbalance may also 
contribute to the pathogenesis of AF (10,11).

Recent investigations have unveiled a potential 
correlation between AF and CD. One of these inquiries 
reported that individuals affected by CD confronted 
a higher likelihood of developing AF than the general 
population, with a corresponding increase in risk 
proportionate to the severity and duration of the disease (12). 
Another study has demonstrated an elevated prevalence 
of AF among patients with inflammatory bowel disease, 
including CD (13). Although the mechanisms underlying 
this association are not fully understood, it has been 
posited that chronic inflammation and oxidative stress may 
contribute to the pathogenesis of both AF and CD (14,15). 
Additionally, some of the pharmaceutical agents prescribed 
for the treatment of CD, such as corticosteroids and anti-
tumor necrosis factor (TNF) agents, have been linked to an 
augmented risk of AF (16,17). Thus, further investigations 
are warranted to unravel the precise relationship between 
AF and CD and to identify potential therapeutic modalities 
for these patients.

With the advent of  advanced high-throughput 
sequencing, gene expression profiling, and network analysis, 
bioinformatics has garnered considerable interest in the 
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study of disease pathogenesis, diagnosis, and treatment. 
In the study, we utilized bioinformatics methodologies to 
identify potential crosstalk genes that link AF and CD, and 
to analyze their interaction with infiltrating immune cells. 
Our primary aim was to gain an enhanced understanding of 
the complex pathophysiological mechanisms underlying the 
relationship between AF and CD. We present this article in 
accordance with the STREGA reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-23-
1078/rc).

Methods

The flow diagram of the analysis process is presented in 
Figure 1. The study was conducted in accordance with the 

Declaration of Helsinki (as revised in 2013).

Acquisition of datasets

We employed the “GEOquery” R program to retrieve two 
CD datasets, namely GSE112366 and GSE75214, as well 
as five AF datasets, including GSE115574, GSE31821, 
GSE79768, GSE41177, and GSE14975, from the Gene 
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/
geo/) database. The GSE112366 dataset comprises 362 CD 
samples and 26 normal samples, while GSE75214 includes 
75 CD samples and 22 control samples. The AF datasets 
collectively encompass 56 sinus rhythm (SR) samples and 
83 AF samples. To eliminate batch effects and create a 
unified GEO dataset, the Bioconductor “sva” R software 

AF
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GSE41177 and GSE14975

CD
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Figure 1 Flow diagram showing the design of this study. AF, atrial fibrillation; CD, Crohn’s disease; WGCNA, weighted gene co-expression 
network analysis; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; GSEA, gene set enrichment 
analysis.
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was applied.

WGCNA

The weighted gene co-expression network analysis 
(WGCNA) is a popular systems biology approach for 
analyzing high-throughput gene expression data (18). In 
this study, we employed the WGCNA R software package 
to construct a co-expression network. To begin with, 
hierarchical clustering, a method for grouping samples 
or genes based on their similarity, was performed using 
the standard R function “Hclust”. This step aimed to 
identify any potential outliers that might affect downstream 
analyses. To retrieve a scale-free network, which is 
characterized by a few highly connected hub genes and 
many poorly connected peripheral genes, we utilized the 
“pickSoftThreshold” function. This function helps to 
determine an appropriate soft thresholding power β, which 
transforms the gene expression similarity matrix into a 
weighted adjacency matrix. The adjacency function was 
then applied to transform the similarity matrix into an 
adjacency matrix, utilizing the soft-thresholding parameter 
β. This adjacency matrix was used to construct a topological 
overlap matrix (TOM), which captures both direct and 
indirect correlations between genes while minimizing the 
impact of noise and false associations. We used hierarchical 
clustering and the dynamic tree cut algorithm to detect 
modules, which are groups of genes that are co-expressed 
and biologically related. Finally, we conducted Pearson 
correlation tests to examine the correlation between the 
identified modules and the disease status of patients.

Machine learning

Two machine learning algorithms, least absolute shrinkage 
and selection operator (LASSO) and support vector 
machine (SVM), were employed to identify the optimal 
diagnostic genes. LASSO regression, a popular variable 
selection technique, was performed using the “glmnet” 
language package in R to identify the best predictors of 
AF and CD from the intersected genes obtained from 
WGCNA analysis. LASSO regression uses a penalty term 
to shrink the regression coefficients of irrelevant variables to 
zero, while keeping relevant variables. SVM, a widely used 
supervised learning algorithm, was also used to establish 
a threshold between the two classes of AF and CD. SVM 
seeks to find the best hyperplane that separates the data 
points of different classes with the largest margin, allowing 

for accurate classification based on one or several feature 
vectors.

Evaluating the immune cell infiltration

The 23 types of immune cells were calculated using single-
sample gene set enrichment analysis (ssGSEA). The 
immune populations that exhibited zero score in over 
80% sample were removed from further study. Then the 
immunologic features of all samples were evaluated using 
the ssGSEA technique using the “GSVA” R package (19).

Statistical analysis

Data analysis and statistical analyses were conducted by R 
4.2.2. The statistical difference between the two groups was 
assessed using the Wilcox test. The Pearson correlation was 
employed to examine the association between the expression 
levels of biomarkers linked to immune cells, with statistical 
significance set at a P value of 0.05.

Results

Merging GEO data

For the AF study, we integrated five GEO datasets, 
namely GSE115574, GSE31821, GSE79768, GSE41177, 
and GSE14975, by eliminating the batch effects with 
the aid of the “sva” package implemented in R software. 
The merged datasets were then normalized using the 
“normalizeBetweenArrays” function of the “limma” package 
in R software, which adjusted the expression values of genes 
to obtain similar distributions across the entire set of arrays. 
Principal component analysis (PCA) plots validated the 
successful removal of batch effects (Figure S1A,S1B).

WGCNA network construction and module identification

To identify the subpopulation of genes associated with the 
specific disease status in AF and CD, we herein used the 
method of WGCNA to dig out the hub genes. To guarantee 
a scale-free network, we computed the scale-free fit index 
and mean connectivity. The power of β=6 was chosen 
for the soft thresholding for AF dataset and the power 
of β=11 was chosen for CD dataset (Figure S2A,S2B).  
Then the genes of both datasets were clustered based 
on a dissimilarity measure (1 − TOM) as visualized by 
dendrogram (Figure 2A,2B). To retrieve the subpopulation 

https://cdn.amegroups.cn/static/public/JTD-23-1078-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-1078-Supplementary.pdf
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of genes associated with clinical diseases, we performed 
Pearson regression to investigate the correlation between 
gene modules with clinical traits. In AF dataset (Figure 2C),  
nine modules were obtained by co-expression network 
based on AF samples and we obtained two modules 
including MEyellow and MEblue due to their strong 

positive correlating with AF (R=0.37, P<0.001 and R=0.38, 
P<0.001). In CD dataset, 11 modules were obtained by 
co-expression network based on CD samples (Figure 2D). 
The MEtan had the highest positive correlation with CD 
(R=0.8, P<0.001) while MEgreenyellow had the strongest 
negative correlation with CD (R=−0.6, P<0.001). To sum 
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Figure 2 WGCNA identifying core genes related to AF and CD. (A) Dendrogram of genes clustered based on a dissimilarity measure 
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up, 348 genes of MEyellow and MEblue in AF dataset 
were selected as AF hub genes and 701 genes from MEtan 
and MEgreenyellow in CD dataset were selected as CD 
hub genes. After intersection of AF and CD hub genes, we 
finally obtained 30 genes that were potentially involved in 
the pathological progression of both AF and CD diseases 
(Figure 2E).

Enrichment of the hub genes identified by WGCNA

To decipher the function of the hub genes in AF and CD, 
we conducted Gene Ontology (GO) enrichment analysis on 
the key gene modules derived from WGCNA. In the blue 
module of AF, the hub genes were significantly enriched in 
heart contraction, heart processes and muscle contraction, 

with considerable proportion of genes located on 
contractile fiber (Figure 3A). Intriguingly, genes in yellow 
module were enriched in immune related pathways such 
as leukocyte migration and leukocyte mediated immunity, 
suggesting that the activation of immune system may 
potentially participated in the pathology of AF (Figure 3B). 
In the Tan module of CD, immune related GO terms were 
significantly enriched such as responses to IFN gamma and 
defense response to virus (Figure 3C). While in yellowgreen 
module which negatively correlated with CD, we found 
that respiration and mitochondrial related pathways were 
significantly enriched (Figure 3D). Notably, in the 30 
intersected genes, major histocompatibility complex (MHC) 
related pathways and antigen processing related pathways 
were enriched, suggesting that they are activated in both 
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diseases (Figure 3E). Figure 3F illustrates a network of gene-
pathway associations that depict the pathways connected to 
commonly differentially expressed genes (DEGs).

Identification of diagnostic genes via machine learning

In an effort to identify the potential diagnostic genes in both 
AF and CD, we combined LASSO and SVM algorithms to 
obtain the most robust diagnostic genes. Briefly, LASSO 
analysis in AF datasets identified five out of 26 hub cross 
genes under the most appropriate λ=0.0629 (Figure 4A). 
SVM screened 25 genes in AF (Figure 4B). In CD, LASSO 
analysis obtained five genes under the most appropriate 
λ=0.0754 and SVM obtained 22 genes as diagnostic hub 
genes for CD (Figure 4C,4D). Finally, intersection of two 
algorithms calculated based on two diseases retrieved 
two overlapping genes, namely CXCL16 and HLA-DPB1  
(Figure 4E).

The diagnostic validation and expression of CXCL16 and 
HLA-DPB1 in AF and CD

CXCL16 and HLA-DPB1 were selected as shared diagnostic 
biomarkers in both AF and CD. In test cohort of CD and 
AF, both markers showed wonderful diagnostic values 
as indicated by receiver operating characteristic (ROC) 

curves (Figure 5A,5B). Then their expression pattern was 
visualized by boxplot, which showed that CXCL16 and 
HLA-DPB1 were both significantly upregulated in both 
CD and AF (Figure 5C,5D). The diagnostic efficacy of 
CXCL16 and HLA-DPB1 in CD was further validated in 
validation cohort GSE112366. In AF, the diagnostic efficacy 
of CXCL16 and HLA-DPB1 was validated in GSE41177, 
GSE115574, GSE79768, GSE31821, and GSE14975. 
These observations showed that CXCL16 and HLA-DPB1 
could perform robustly in both AF and CD diseases.

GSEA analysis of CXCL16 and HLA-DPB1 in AF and 
CD

To decipher the molecular function of CXCL16 and HLA-
DPB1 in AF and CD, we additionally performed GSEA 
analysis. In AF, patients with high expression of CXCL16 
were enriched in Kyoto Encyclopedia of Genes and 
Genomes (KEGG) term associated with immunity such 
as chemokine signaling and cytokine-cytokine receptor 
interaction (Figure 6A). Likewise, high expression of HLA-
DPB1 was associated with cell adhesion molecules and 
chemokine signaling (Figure 6B). In parallel, similar results 
was obtained in CD patients (Figure 6C,6D), suggesting that 
these two markers were strongly associated with immune 
activation.
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Immune profile study and correlation with diagnostic 
markers

Given the strong immune associated nature of two 
biomarkers, we next explored their expression with 
immune infiltration. We first quantified the infiltration 
of various immune cells and found that some adaptive 
immune population such as CD4+ and CD8+ T cells and 
innate immune populations such as dendritic cells were 
significantly upregulated in AF patients (Figure 7A). In 
CD patients, we observed that almost all immune cells 
were significantly upregulated, which may be due to the 
inflammatory nature of CD (Figure 7B). Pearson correlation 
study showed that the two biomarkers were strongly 
correlated with most types of immune cells in both AF and 
CD (Figure 7C,7D).

Discussion

This study endeavored to investigate potential shared genes, 
biological pathways, and associated immune cells between 
AF and CD by employing bioinformatics and machine 
learning techniques. Specifically, we utilized WGCNA for 
the first time to construct a gene co-expression network, 
and subsequently applied machine learning algorithms 
to identify two key genes: CXCL16 and HLA-DPB1. 
Additionally, our immune infiltration analysis highlighted 
the possible critical roles of CD4+ and CD8+ T cells, as well 
as dendritic cells, in the pathogenesis of AF and CD.

Our study aimed to explore the enrichment of MHC-
related and antigen processing-related pathways among the 
30 intersecting genes. The MHC region contains a cluster 
of genes involved in the immune system, with the MHC-

related pathway referring to the molecular pathways that 
are regulated by MHC genes and their products. These 
pathways play a crucial role in immune recognition and 
the subsequent activation of immune responses against 
pathogens, tumor cells, and self-antigens. Dysregulation of 
the MHC-related pathway can lead to autoimmune diseases, 
allergies, and infections (20). Although the mechanisms 
underlying MHC involvement in autoimmune diseases 
are not fully understood, one long-standing hypothesis 
suggests that the loss of immune tolerance to self-antigens 
is attributed to anomalies in the presentation of self or 
foreign peptides to self-reactive T lymphocytes resulting 
from aberrant class II expression. Hence, the targeting of 
specific self-antigens could be determined by distinct MHC 
class II (MHCII) alleles, potentially resulting in disease-
specific associations. A recent high-density mapping of 
the MHC region has revealed the involvement of HLA-
DRB1*01:03 and HLA-C*06:02 in CD among European 
populations (21). MHC molecules may also play a role in 
regulating the immune response to gut microbiota (22). 
Various investigations have demonstrated that specific 
genetic variations in the MHC region are correlated with 
the pathogenesis of CD. The IBD3 region, one of the 
most polymorphic regions in the MHC, harbors several 
candidate genes, including TNF, LTA, and NFKB1 (23). The 
proteins encoded by TNF and LTA genes are significant 
players in the inflammatory response and cell apoptosis, and 
their expression levels are closely associated with the onset 
and progression of CD (24-26). The protein encoded by 
the NFKB1 gene is a fundamental constituent of the NF-κB 
signaling pathway and is also implicated in the pathogenesis 
of IBD. Moreover, MHC class I and class II molecules 
are key regulators of IBD onset. Class I molecules are 
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predominantly expressed on intestinal epithelial cells and 
are vital for mounting an immune response and clearing 
intestinal bacteria, while class II molecules are primarily 
expressed on immune cells and modulate T cell and B cell 
immune responses (27,28). Recent research has suggested 
that specific subsets of immune cells, such as T-lymphocytes 
and macrophages, may contribute to the pathogenesis of 
AF. These cells can infiltrate the atrial tissue and produce 
pro-inflammatory cytokines, ultimately leading to the 
development of atrial fibrosis and electrical remodeling 
(29,30). Additionally, the gut-heart axis has emerged as 

a potential mechanism linking the gut microbiota to the 
development of AF, whereby gut dysbiosis can result in 
increased levels of circulating inflammatory markers and 
subsequent atrial remodeling (31). In conclusion, the 
MHC-related pathway plays a crucial role in immune 
response by presenting antigens to T cells, which are a 
fundamental component of the immune system. Moreover, 
this pathway also participates in the regulation of gut 
bacteria. Consequently, dysregulation of immune response 
and gut bacteria may be implicated in the pathogenesis of 
AF and CD.
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Figure 7 Correlation of the crosstalk genes with immune landscape of AF and CD patients. (A) Heatmap showing the infiltration of 
immune cells in AF and SR patients. (B) Correlation of two biomarkers with the infiltration of different types of immune cells in AF. (C) 
Heatmap showing the infiltration of immune cells in CD and health control patients. (D) Correlation of two biomarkers with the infiltration 
of different types of immune cells in CD. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. SR, sinus rhythm; AF, atrial fibrillation; Con, 
control; CD, Crohn’s disease.

Overfitting is a pervasive issue in clinical biomarker 
discovery studies, whereby a model becomes overly 
intricate and fits the data too closely, resulting in poor 
generalizability to new data. To mitigate this issue, it is 
critical to appropriately select an adequate number of 
samples for training and testing the model (32). The area 
under the ROC curve (AUC) is a widely accepted metric 

for evaluating the performance of a biomarker or diagnostic 
test. It quantifies the ability of the test to discriminate 
between true positives and true negatives across a range of 
cutoff values. A higher AUC value indicates better overall 
test performance in terms of sensitivity and specificity (33).  
In this study, we employed ROC analysis to assess the 
diagnostic capability of CXCL16 and HLA-DPB1 in 
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predicting CD and AF. The results indicated that CXCL16 
achieved an AUC of 0.818 and 0.720 for predicting CD 
and AF, respectively, while HLA-DPB1 showed an AUC 
of 0.829 and 0.702 for predicting CD and AF, respectively. 
Both markers exhibited excellent diagnostic value in the test 
cohort of CD and AF, as corroborated by the ROC curves.

CXCL16 is a chemokine that plays a crucial role in 
immune cell recruitment and inflammation. This protein 
is expressed in various cell types, including endothelial 
cells, smooth muscle cells, and macrophages, and functions 
as a chemoattractant for immune cells expressing its 
cognate receptor, recombinant chemokine C-X-C-motif 
receptor 6 (CXCR6) (34). CXCL16 has been implicated in 
the pathogenesis of CD, an inflammatory bowel disease 
characterized by chronic inflammation and fibrosis in the 
intestinal mucosa (35). Numerous studies have elucidated 
the multifaceted role of CXCL16 in CD, highlighting its 
involvement in the regulation of immune responses, fibrosis 
promotion, and inflammation modulation in the intestinal 
mucosa. Notably, a recent investigation revealed that 
CXCL16 expression levels are elevated in both the serum 
and intestinal mucosa of individuals afflicted with CD, and 
that CXCL16 promotes the recruitment of immune cells to 
inflamed intestinal tissue, suggesting a potential contributory 
role in the chronic inflammation characteristic of this 
disease (36). Another study has demonstrated that CXCL16 
promotes fibroblast migration, which may contribute to 
fibrosis in animal models of renal fibrosis (37). Fibrosis, 
a hallmark feature of CD, is believed to be a factor in 
disease progression and complications. Additionally, a study 
investigating the CXCL16 p. Ala181Val polymorphism found 
that carriers of this variant have a higher risk of developing 
severe CD and fistulizing disease (38). Collectively, 
these findings underscore the importance of CXCL16 in 
CD, particularly through its involvement in regulating 
immune response, promoting fibrosis, and regulating 
inflammation in the intestinal mucosa. Furthermore, 
recent research has demonstrated that  CXCL16  is 
released from activated platelets in the inflammatory 
state of AF and may amplify platelet activation, leading 
to a vicious cycle of inflammation and thrombosis (39). 
Furthermore, CXCL16 may exacerbate AF by stimulating 
cardiac fibroblast proliferation, disrupting collagen 
synthesis, enhancing extracellular matrix remodeling, 
and contributing to atrial structural remodeling (40).  
Elevated levels of CXCL16 and other chemokines have been 
associated with the progression of AF by promoting the 
inflammatory response process, triggering arrhythmia and 

matrix formation, and activating the coagulation system. 
Additionally, the medication therapy, including ARBs, 
warfarin, and statins, may affect the relationship between 
CXCL16 and prognosis in AF patients through their impact 
on the concentration of CXCL16, inflammatory response, 
and anticoagulant status (41-43). Recent research has 
also identified extensive areas of atrial fibrosis in patients 
with lone AF through histological examination of atrial  
biopsies (29). Therefore, CXCL16’s ability to promote 
fibrosis could also contribute to the development of AF.

Our study has identified HLA-DPB1 as an important 
gene involved in the crosstalk between AF and CD, albeit 
with limited research currently available on this gene. 
HLA-DPB1 encodes the human leukocyte antigen DPβ1 
chain, which thereby produces the MHCII molecule that is 
essential for presenting antigens to T cells. T cells, in turn, 
are an integral component of the immune response, which 
has been implicated in the pathogenesis of both AF and 
CD. By conducting KEGG enrichment analysis on these 
two factors, CXCL16 and HLA-DPB1, it was found that 
they are mainly associated with the immune system. Given 
the strong association of these two biomarkers with the 
immune system, we further investigated their expression in 
relation to immune infiltration.

This study found a significant difference in the immune 
pattern between the control group and both AF and CD 
groups, with CD4+ and CD8+ T cells and innate immune 
populations being elevated in both AF and CD samples. 
Previous studies suggest that AF is linked to increased 
infiltration of immune cells, including CD4+ and CD8+ 
T cells, macrophages, dendritic cells, and mast cells 
(10,44). These cells produce pro-inflammatory cytokines, 
chemokines, and growth factors that contribute to atrial 
remodeling, fibrosis, and electrical instability in AF. CD4+ 
T cells activate fibroblasts and release cytokines like 
interleukin (IL)-17, IL-6, and TNF-α (10) that facilitate 
inflammation and fibrosis, while CD8+ T cells promote 
fibrosis and atrial remodeling by inducing apoptosis of 
cardiomyocytes and producing transforming growth 
factor (TGF)-β. The activation and infiltration of CD8 
T cells into the atrial tissue can lead to the release of pro-
inflammatory cytokines and chemokines, promoting atrial 
remodeling and electrical disturbances. This immune 
response mediated by CD8 T cells may contribute to the 
perpetuation of AF and its progression to a more chronic 
and persistent state (45,46). Macrophages contribute to 
the pathogenesis of AF by releasing pro-inflammatory 
cytokines such as TNF-α, IL-1β, and IL-6, as well as 
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phagocytosing apoptotic cardiomyocytes, which can lead 
to fibrosis (47). Dendritic cells promote inflammation by 
presenting antigens to T cells and producing cytokines like 
IL-6 and IL-1β (48). Mast cells release histamine, which 
can cause atrial fibrosis and remodeling, as well as activate 
fibroblasts and myofibroblasts (48). In summary, CD4+ and 
CD8+ T cells, along with innate immune populations, play a 
critical role in the promotion of inflammation, fibrosis, and 
electrical instability in the atria, thereby exacerbating the 
pathogenesis of AF.

Strengths and limitations

This study represents a groundbreaking application 
o f  b i o i n f o r m a t i c s  t o o l s  t o  e x p l o r e  t h e  g e n e t i c 
relationship between CD and AF. By employing LASSO 
regression algorithm and SVM, we identified potential 
shared diagnostic genes, which enhances the overall 
comprehensiveness and innovation of this investigation. 
Additionally, through validation of external datasets, we 
have demonstrated improved precision of predictions, 
further validating the significance of these results. However, 
it is important to note that this study has some limitations, 
such as the lack of consideration for regional, racial, and 
age-specific patient data. Therefore, future research should 
aim to evaluate these factors, which could significantly 
contribute to the development of AF.

Conclusions

Our study signifies an endeavor in the application of 
bioinformatics tools to thoroughly explore the genetic 
association between AF and CD. As a result, we have 
ident i f ied the  CXCL16  and HLA-DPB1  genes  as 
fundamental components in the interplay between these 
two pathological conditions. By highlighting the crucial 
role of CD4+ and CD8+ T cells and dendritic cells in the 
pathogenesis of AF and CD, our findings offer significant 
potential for immunomodulatory therapies to manage 
patients with both conditions. Furthermore, our findings 
pave the way for further research into the dynamic 
relationship between AF and CD, potentially identifying 
novel therapeutic targets for their treatment. In conclusion, 
this study serves as a foundational stepping stone towards 
a deeper understanding of the complex interplay between 
genetics and immune responses in the development of AF 
and CD, ultimately leading to improved patient outcomes.
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Supplementary

Figure S1 The PCA plot before and after batch effect removal. Two types of samples [(A) AF and (B) SR] from two different datasets are 
shown on this figure. PCA, principal component analysis; AF, atrial fibrillation; SR, sinus rhythm.

Figure S2 Soft threshold selection for WGCNA in AF GSE115574, GSE31821, GSE79768, GSE41177, and GSE14975 (A) and CD 
GSE112366 and GSE75214 (B) dataset. WGCNA, weighted gene co-expression network analysis; AF, atrial fibrillation; CD, Crohn’s 
disease.


