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Background: Rhodiola wallichiana var. cholaensis (RW) is one of the traditional Chinese medicinal materials, 
which is used to treat angina pectoris (AP). However, the possible underlying mechanisms remains unclear. 
The aim of this study was to explore RW in the treatment of AP and to identify the potential mechanism of 
the core compounds. 
Methods: In this study, systematic and comprehensive network pharmacology and molecular docking were 
used for the first time to explore the potential pharmacological mechanisms of RW on AP. First, the relative 
compounds were obtained by mining the literature, and potential targets of these compounds using target 
prediction were collected. We then built the AP target database using the DigSee and GeneCards databases. 
Based on the data, overlapping targets and hub genes were identified with Maximal Clique Centrality (MCC) 
algorithm in Cytoscape, cytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses and protein-protein interaction (PPI) analysis were performed 
to screen the hub targets by topology. Molecular docking was utilized to investigate the receptor-ligand 
interactions on Autodock Vina and visualized in PyMOL.
Results: A total of 218 known RW therapeutic targets were selected. Systematic analysis identified nine 
hub targets (VEGFA, GAPDH, TP53, AKT1, CASP3, STAT3, TNF, MAPK1 and JUN) mainly involved 
in the complex treatment effects associated with the protection of the vascular endothelium, as well as 
the regulation of glucose metabolism, cellular processes, inflammatory responses, and cellular signal 
transduction. Molecular docking indicated that the core compounds had good affinity with the core targets.
Conclusions: The results of this study preliminarily identify the potential targets and signaling pathways 
of RW in AP therapy and lay a promising foundation for further experimental studies and clinical trials.
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Introduction

Angina pectoris (AP) is a clinical syndrome with episodes 
of chest pain as the main symptoms due to temporary 
hypoxia and ischemia of the heart (1). The incidence of AP 
in China is about 3.6%, and the trend is increasing year by 
year (2). It is well known that AP is a typical symptom of 
myocardial ischemia. Therefore, conventional medicines for 
the treatment of AP, such as nitrates, beta-blockers, calcium 
channel blockers, are mainly used to alleviate the symptoms 
of AP (3).

Traditional Chinese medicine (TCM) is an integrated 
system of medicine with a history of thousands of years. 
It has potential application value in clinical practice (4). 
Rhodiola wallichiana var. cholaensis (RW) is a common species 
of the genus Rhodiola, which is one of the most popular 
medicinal plants in Asia (5). Clinical studies have shown 
that RW preparations can reduce the symptoms of AP, heart 
failure and other heart diseases, have antioxidant and anti-
inflammatory effects, and reduce hypoxia-induced cellular 
oxidative stress (6,7). Moreover, modern pharmacological 
researches have revealed multiple bioactivities of RW plants, 
such as antioxidative (8,9), immunomodulatory (10), anti-
Inflammatory (11), antidiabetic (12,13), antihypertensive 

and neuroprotective (14,15) antistress and antidepressant 
(16-18), anti-altitude sickness (19,20), antifatigue (21,22), 
and anticancer (23,24) activities. The relationship between 
the chemical profile and bioactivities of RW should be 
established. However, due to the multi-compound system 
of TCM, the material basis and molecular mechanisms 
involved in RW remain unclear. Therefore, it is important 
to develop modern and technical means to analyze the 
mechanism of RW in treating various diseases.
Network pharmacology is a new research method that 
integrates pharmacodynamics, pharmacokinetics, and 
network analysis. In recent years, it has been applied to 
elucidate the possible mechanism of TCM prescriptions 
in the treatment of various diseases from the perspective 
of proteomics systems (25-27). In particular, it has 
been used to characterize the interaction relationship 
of TCM in multi-components and multitargets, as well 
as to study the mechanism of multitarget compounds 
affecting the biological network of TCM (28,29). In 
this study, we explore the hub active ingredients and 
potential mechanisms of RW in AP based on network 
pharmacology and molecular docking. We present 
this article in accordance with the STREGA reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-1891/rc).

Methods 

Schematic diagram 

In this study, network pharmacology strategies, including 
drug similarity assessment, oral bioavailability prediction, 
multiple drug target prediction, and other network 
pharmacology techniques, were used to study the 
potential role of RW against AP mechanisms. The gene 
target network of RW was analyzed through network 
pharmacology, starting with the identification of active 
substances and key target genes whose expression is altered 
in AP and whose protein products are predicted to interact 
with active compounds in RW. Figure 1 presents the 
schematic diagram of the study design and workflow. We 
investigated the mechanism of action of RW using network 
pharmacology and molecular docking methods.

Chemical ingredient database building

A total of 83 RW compounds were collected through 
literature mining. Then, their biomolecular activities were 
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Key findings
• The results of this study verify and predict the molecular 

mechanism of Rhodiola wallichiana var. cholaensis (RW) in angina 
pectoris (AP) at the system level, which may provide enlightenment 
for the mechanism of RW and other anti-AP Chinese medicines 
and promote the application of RW in the treatment of AP.

What is known and what is new? 
• RW is a traditional Chinese medicine that activates blood 

circulation and removes blood stasis, which can effectively relieve 
patients’ blood circulation disorders and improve the protective 
effect against cardiovascular diseases.

• We found that these hub targets (VEGFA, GAPDH, TP53, AKT1, 
CASP3, STAT3, TNF, MAPK1 and JUN) ameliorated AP by 
participating in protecting the vascular endothelium, regulating 
glucose metabolism, regulating cellular processes, regulating 
the inflammatory response, and participating in cell signal 
transduction, among other processes.

What is the implication, and what should change now? 
• The clinical application of RW in cardiovascular diseases has 

accurate efficacy, high safety, few adverse reactions, and can achieve 
rapid and effective treatment purposes. It is one of the ideal choices 
for the treatment of cardiovascular diseases.
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Rhodiola wallichiana 
var. cholaensis

Angina pectoris

13 active compounds

PPI network

KEGG analysis

Drug-key compound-hub 
target-pathway network

HJT8-MAPK1 (affinity =−7.5 kcal/moL)

HJT8-CASP3 (affinity =−6.0 kcal/moL)

HJT8-ATK1 (affinity =−5.8 kcal/moL)

GO analysis

Figure 1 Flow chart showing the analysis of the mechanisms of action of RW based on data mining and network pharmacology. PPI, 
protein-protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; RW, Rhodiola wallichiana var. 
cholaensis. 

viewed using the PubChem database (https://pubchem.
ncbi.nlm.nih.gov) (30). Finally, the standard simplified 
molecular-input standard delay format (SDF) and the 
structural information of 42 compounds were obtained, 
including that of salidroside, tyrosol, and quercetin, among 
others (31-33).

Screening of active compounds of RW

The SDF format file was uploaded under the item 
“Chemical Ingredients Database Building” to the Swiss 
ADME platform (http://www.swissadme.ch) (34,35), 
a platform for predicting the relevant parameters of 
the absorption and drug-like properties of candidate 
compounds. First, we set the gastrointestinal (GI) 
absorption as “High” for the conditions under which the 
drug can be absorbed to screen for active compounds with 
good oral bioavailability; second, we set five types of drug 
predictability (Lipinski, Ghose, Veber, Egan, Muegge), and 
there were three or more compounds that appeared with 
“Yes” in the results, which could be considered the active 
compounds.

Active compound target prediction

The SDF format file was imported into the Swiss Target 
Prediction (http://www.Swisstargetprediction.ch/) 
(36,37) and PharmMapper (http://www.lilab-ecust.cn/
pharmmapper/) (38-40) platforms with the property set to 
“Homo sapiens”, in order to collect all the predicted targets 
and removing duplication.

Prediction of known therapeutic targets

Genes associated with AP were collected and screened 
from the GeneCards database (http://www.genecards.
org/) (41) and DigSee database (http://210.107.182.61/
geneSearch/) (42). We searched GeneCards and DigSee 
for data using the keywords “angina pectoris” with the 
species limited to “Homo sapiens”. Then, the top 1,000 
target genes were selected from the GeneCards database, 
and 541 targets were obtained from the DigSee database. 
Finally, 1,297 genes were collected after removal of 
duplicates. To obtain the potential target genes of RW 
that played a major role in AP, the AP-related genes 

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
http://www.swissadme.ch
http://www.Swisstargetprediction.ch/
http://www.lilab-ecust.cn/pharmmapper/
http://www.lilab-ecust.cn/pharmmapper/
http://www.genecards.org/
http://www.genecards.org/
http://210.107.182.61/geneSearch/
http://210.107.182.61/geneSearch/
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were compared with potential gene targets of the active 
components.

Network construction

A network analysis was performed to scientifically 
determine the complex relationship between AP-related 
compounds and targets. Subsequently, based on the 
protein-protein interactions (PPIs), we linked the putative 
targets of RW, the AP-related targets, and interactional 
proteins together. Then, to illustrate the relationship 
between the possible targets of RW and known targets 
of AP, a drug-compound-target-disease network was 
constructed and visualized using Cytoscape software 
(version 3.7.2) (26). The PPI network of the interaction 
between RW and AP was obtained via Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) 
software (http://string-db.org/cgi/input.pl), in which 
the limiting conditions were “Homo sapiens” and a 
confidence score ≥0.4. The subsequent results were saved 
in tab separated values (TSV) format and imported into 
Cytoscape software to visualize and analyze the interaction 
network. We used the style function from the statistics 
tool in Cytoscape to set the node size and color settings to 
reflect the size of the degree and the thickness of the edge 
of the comprehensive score to obtain the final protein 
interaction network. Degree refers to the number of links 
to node I and is usually used to describe the topological 
importance of proteins in the network. Therefore, we used 
cytoHubba to select the central gene with the degree value 
as the tangent point to analyze the pharmacological effects 
of key targets.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment

GO and KEGG pathway enrichment analyses were 
executed on the candidate targets using Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID) 6.8 (43). GO gene enrichment analysis included 
3 categories: biological process (BP), molecular function 
(MF), and cell component (CC). With P≤0.05 as the 
truncated value, the results were calculated using bilateral 
hypergeometric tests, including the identification of the 
enriched GO terms and the localization of the biological 
and MFs of these proteins. Finally, the bubble chart was 
plotted using the ImageGP platform (http://www.ehbio.
com/ImageGP/index.php/Home/Index/index.html) (44).

Molecular docking simulation

Core targets were obtained from the PPI network for 
molecular docking. Initially, AutoDockTools 1.5.6 was 
employed to set the number of rotatable bonds for the 
12 small molecule compounds. Subsequently, protein 
conformation was determined in the Protein Data Bank 
(PDB; https://www.rcsb.org/) (45-47) database. The 
screening conditions were set as follows: (I) the protein 
structure was obtained by X-crystal diffraction; (II) the 
crystal resolution of the protein was less than 2.5 Å; (III) the 
species was Homo sapiens; and (IV) association action models 
were constructed with the STRING and PDB databases. 
Based on the above conditions, a total of 11 core target 
protein PDB IDs were gathered. Additionally, PyMOL 2.7 
(https://pymol.org/2/) and AutoDockTools were applied 
to not only remove water molecules and proligand small 
molecules but also to hydrogenate and charge them. Finally, 
molecular docking calculations were performed using 
AutoDock Vina 1.1.2, and PyMOL and LigPlot+ software 
was used to visualize the docking results.

Results

Target screening of RW and AP

A total of 83 chemical ingredients were obtained from 
the RW according to related literature studies. After 
removal of duplicates, 26 chemical ingredients (Table 1) 
and 671 corresponding targets of RW were acquired, and 
1,297 therapeutic targets for AP were obtained from the 
GeneCards database and DigSee database (Figure 2A). 
Then, the ultimate gene targets of RW acting on AP were 
obtained by mapping these targets to the components of 
the disease targets. As shown in Figure 2B, 218 target genes 
corresponding to RW candidate compounds of AP were 
obtained for further research.

Network construction and result analysis

TCM exerts its therapeutic role mainly through the 
synergistic effect between compounds and targets. To 
illustrate the potential mechanism of this synergistic effect 
of RW on AP, it is necessary to understand the effects of 
each component in RW on its target proteins. Based on 
the network analysis of compounds and putative targets 
in Cytoscape 3.7.2, as shown in Figure 2C, our study 
showed that the network was composed of 1,754 edges and  
697 nodes, among which 26 were component nodes and  

http://string-db.org/cgi/input.pl
http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
https://www.rcsb.org/
https://pymol.org/2/
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Table 1 Analysis of the 26 underlying compounds in RW

No. Mol ID Compound Formula Chemical structure

1 HJT1 Quercetin C15H10O7

O

OH

HO

O
OH

OH
OH

2 HJT2 Herbacetin C15H10O7

O

OH

HO

O
OH

OH
OH

3 HJT3 Cyanidin C15H11O6
+

O

OH

HO

OH

OH
OH

4 HJT4 Kaempferol C15H10O6

O

OH

HO

OH

OH

O

5 HJT5 Anthocyanin C15H11O
+

O

6 HJT6 Cinnamic alcohol C9H10O OH

7 HJT7 Rosin C15H20O6

O
OH

O

OH
OH

HO

8 HJT8 Salidroside C14H20O7

O
OH

O

OH
OH

HO

OH

9 HJT9 Tyrosol C8H10O2

OH

OH

Table 1 (continued)

https://pubchem.ncbi.nlm.nih.gov/search/#query=C15H11O6+
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Table 1 (continued)

No. Mol ID Compound Formula Chemical structure

10 HJT10 p-Hydroxy-cinnamic acid C9H8O3

OH

OHO

11 HJT11 Ferulic acid C10H10O4

OH

OHO

O

12 HJT12 Rosiridol C10H18O2

OH
OH

13 HJT13 p-hydroxyphenethyl anisate C16H16O4
O

O

O

OH

14 HJT14 8-hydroxypinoresinol C20H22O7 O

O

HO

HO
O

OH

O

15 HJT15 Methyl trans-cinnamate C10H10O2 OO

16 HJT16 Paeonol C9H10O3

HO

O

O

17 HJT17 Syringate C9H10O5

OH

OHO

O O

18 HJT18 Vanillin C8H8O3 O
HO

O

19 HJT19 2-furoic acid C5H4O3

O
OH

O

Table 1 (continued)
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Table 1 (continued)

No. Mol ID Compound Formula Chemical structure

20 HJT20 Tricin C17H14O7

O
O

OH
O

O

HO

OH

21 HJT21 p-hydroxycinnamic acid C9H8O3 HO

OH

O

22 HJT22 β-D-phenyl glucopyranoside C12H16O6

O

OH
HO OH

O
OH

23 HJT23 Picein C14H18O7

O

OH
HO OH

O
OH

O

24 HJT24 Coniferin C16H22O8

O

OH
HO OH

O
OH

OH

O

25 HJT25 Scaphopetalone C21H26O6

O
OH

O

O
OH

HO

26 HJT26 Berchemol C20H24O7

O
HO

O

OH
O

HO
HO

RW, Rhodiola wallichiana var. cholaensis; Mol, molecule. 

671 were target nodes. It was clear that the target genes 
with high degree and mediated centrality were most 
important to the antianginal effect of RW in the network.

Construction and analysis of the PPI network

To further investigate the potential mechanism of action 
of RW in the treatment of AP, target genes acting on the 

corresponding components were submitted to the STRING 
database, a subsequent PPI network was constructed, and 
then highly reliable target protein interaction data sets 
with a score >0.7 were selected. A single protein is unlikely 
to perform a specific function, and proteins often interact 
with each other to form large molecular complexes that 
perform their biological functions. Thus, exploring and 
constructing a PPI network is key to understanding the BPs 
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Angina targets RW targets

218 4531,079

A B

C

Figure 2 Analysis of the active compounds of RW and the putative RW antianginal effect. (A) Angina target network plotting. The red 
circle represented all the 1,297 genes of AP obtained from GeneCards and DisGeNET, while the green diamond represented the disease. 
(B) The Venn diagram showed the 218 overlapping targets of AP and compounds of RW. (C) The compound-predicted target network of 
RW. The green hexagon represented all the 26 compounds of RW, while red diamond represented the 671 targets. The size of the nodes 
is directly proportional to the degree of the nodes. Cytoscape 3.7.2 software was used to generate the figure. RW, Rhodiola wallichiana var. 
cholaensis; AP, angina pectoris. 

and biological functions of cells. The PPI network (Figure 3)  
file obtained was imported into Cytoscape software. After 
adjusting the parameters, we selected 70 key genes that were 
related to the various pathogenic processes of AP according 
to the degree.

GO functional analysis

A total of 70 potential genes associated with AP were 
analyzed in the DAVID panel. We undertook GO 
enrichment analyses of 70 targets to explore their general 
functions. As shown in Figure 4, the GO analysis results 
showed the key predictive targets of RW acting on AP, 
and 20 GO items with low P values and more enrichment 
targets were enriched. Our results showed that these 
predictive targets were mainly involved in cell signal 

transduction, protein autophosphorylation, and positive 
regulation of cell proliferation, indicating that RW may 
regulate the biological function of AP through these 
pathways, thus playing a key role in treatment of AP.

KEGG signaling pathway analysis

To identify the relevant signaling pathways involved in the 
antianginal effect of RW, DAVID analysis was performed. 
A total of 34 KEGG signaling pathways were obtained, and 
27 pathways were associated with AP. To show the results 
of the signaling pathways intuitively and explicitly, a bubble 
diagram was drawn, as seen in Figure 4D; here, the bubble 
scale represents the number of genes, and the depth of the 
bubble color represents the P value; the change in color 
from green to red represents the P value from low to high, 
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Degree
Top 70

BA

Figure 3 Identification of a core PPI network for RW against angina. (A) The interactive PPI network of RW and AP targets comprising 
218 nodes and 4,456 edges are shown. (B) The PPI network of significant proteins extracted from this network comprises 70 nodes and 1,689 
edges. PPI, protein-protein interaction; RW, Rhodiola wallichiana var. cholaensis; AP, angina pectoris. 

C D

BA

Figure 4 Enrichment analyses of overlapping genes between RW and AP, including KEGG pathway, GOBP, GOMF and GOCC. (A) 
Enriched Gene Ontology terms for biological processes of potential targets. (B) Enriched Gene Ontology terms for the cellular components 
of potential targets. (C) Enriched Gene Ontology terms for molecular functions of potential targets. (D) Enrichment analysis of the KEGG 
signaling pathways. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RW, Rhodiola wallichiana var. cholaensis; AP, 
angina pectoris; BP, biological process; MF, molecular function; CC, cellular component. 
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and the size of the nodes indicates how many target genes 
are associated.

The KEGG analysis results indicated multiple channels 
and mechanisms of action of RW against AP.

The top 20 pathways with lower P values and more 
gene enrichment are listed in Figure 4D and include the 
PI3K-Akt signaling pathway, HIF-1 signaling pathway, Ras 
signaling pathway, thyroid hormone signaling pathway, 
and Toll-like receptor signaling pathway. These signaling 
pathways are closely related to the anti-AP effects of RW. 
To elucidate their interactions, we established a graphical 
network containing the main chemical-target-signaling 
pathway of RW (Figure 5).

Molecular docking simulation

In this study, nine potential targets with 13 corresponding 
compounds were simulated with molecular docking, and the 
docking results were analyzed. The analysis revealed higher-
affinity results for compound and hub targets (Table 2). 
Using PyMOL software, we found that 13 compounds could 
enter the active pocket of the protein. HJT8 (salidroside;  
Figure 6A) was used as an example for analysis. The salidroside 

small molecule forms four hydrogen bonds with Lys52, 
Asn152, Ser151, and Met106 residues and has a higher affinity 
(affinity =−7.5 kcal/mol) with MAPK1 (Figure 6B).

Discussion

TCM, a complex, mixed system of multiple ingredients and 
multiple targets, has traditionally been used to prevent and 
treat various cardiovascular diseases (CVDs) (33,48,49). RW 
has a high clinical value as a traditional Chinese medicine 
in relieving AP. Chu et al. (50) included seven randomized 
controlled trials in 662 patients with stable angina and 
found that the combination of oral/intravenous infusion 
of RW provided good relief of angina compared with 
conventional Western treatment. Man et al. (5) included  
18 randomized controlled trials involving 1,679 patients and 
found that RW adjuvant therapy significantly reduced the 
frequency of angina attacks by ≥80%, the weekly frequency 
of angina attacks, and significantly improved abnormal 
electrocardiograms. In addition, it significantly reduced 
whole blood viscosity, plasma viscosity, and serum levels 
of fibrinogen. Although RW can effectively relieve AP, its 
pharmacological mechanism of action remains unclear. 
Consequently, in the present study, a pharmacology network 
method was used to identify bioactive compounds, potential 
targets, and the pathways modulated by these compounds in 
the RW treatment of AP.

Nine potential hub targets were identified based 
on selection and network topology analysis, including 
VEGFA, GAPDH, TP53, AKT1, CASP3, STAT3, TNF, 
MAPK1 and JUN. Numerous studies have shown that 
the targets mentioned above are mainly involved in the 
protection of the vascular endothelium, as well as the 
regulation of glucose metabolism, cellular processes, 
inflammatory responses, and cellular signal transduction. 
Vascular endothelial growth factor (VEGF), a strong pro-
angiogenesis cytokine, is secreted by vascular endothelial 
cells, which could increase the permeability of microvessels 
and venules and promote angiogenesis, thus improving 
myocardial hypoxia and relieving AP (51-53). A recent study 
has demonstrated that the inflammatory response is related 
to the occurrence of CVDs such as coronary heart disease, 
which may cause local endothelial activation, atherosclerotic 
plaque rupture, and then thrombosis formation or 
rupture, leading to AP and myocardial infarction (54). 
Tumor necrosis factor-alpha (TNF-α) usually appears 
in the early stage of inflammatory reaction, and plays an 
important role in cell function regulation, immunity and 

RW Key compounds Hub targets Pathways

Figure 5 Drug-key compound-hub target-pathway network. The 
green circle represents the drug, the blue hexagons represent 
the key compounds, the red diamonds represent the hub targets, 
and the purple arrows represent the pathways. Cytoscape 3.7.2 
software was used to generate the figure. RW, Rhodiola wallichiana 
var. cholaensis. 
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Table 2 Analysis of the target-compound docking simulation

Target protein PDB ID Active ingredient Docked complex of protein and ligand Affinity (kcal/mol)

AKT1 1UNQ Quercetin −6.4

Herbacetin −6.2

Anthocyanidins −5.6

Kaempferol −6.2

Salidroside −5.8

Tricin −5.9

TNF 5UUI Rosin −6.8

TP53 6IUA Rosin −6.8

MAPK1 2OJJ Salidroside −7.5

p-hydroxyphenethyl anisate −6.9

Benzyl alcohol-O-β-D-pyran 
glycosidase

−5.9

l-picein −6.4

Table 2 (continued)



Journal of Thoracic Disease, Vol 16, No 2 February 2024 1361

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(2):1350-1367 | https://dx.doi.org/10.21037/jtd-23-1891

Table 2 (continued)

Target protein PDB ID Active ingredient Docked complex of protein and ligand Affinity (kcal/mol)

Scaphopetalone −7.5

Berchemol −7.1

CASP3 1RHM Salidroside −6.0

p-hydroxyphenethyl anisate −6.4

GAPDH 6YND Benzyl alcohol-O-β-D-pyran 
glycosidase

−7.3

l-picein −7.8

c-JUN 5T01 Scaphopetalone −5.8

VEGFA 4ZFF Benzyl alcohol-O-β-D-pyran 
glycosidase

−6.7

STAT3 1BJ1 Ferulic acid −5.8

PDB, Protein Data Bank.

inflammatory reaction. It can regulate atherosclerotic 
plaque and coronary heart disease by affecting vascular 
endothelial function and vascular remodeling (55). The 
study has shown that proinflammatory cytokines are 
significantly increased in patients with AP compared to 
healthy individuals. Meanwhile, it is important to note that 
this increased inflammatory activity may be related to the 
pathogenesis of AP. 1-Deoxynojirimycin (DNJ) significantly 
improves angina attack frequency by reducing the levels of 
inflammatory cytokines, including TNF-α (56). AKT1 is 
an important protein in the PI3K pathway that can regulate 
cell apoptosis, proliferation, and antioxidant activity (57,58). 

Han et al. (59) demonstrated that hypericin can reduce the 
inflammatory response by activating phosphorylated protein 
kinase B (PKB) and reducing TNF-α and interleukin (IL)-
6 activity, thus alleviating myocardial ischemia-reperfusion 
injury. The p53 gene is an important apoptosis-related gene 
can be divided into two types: wild type (wp53) and mutant 
type (mp53). The mutant p53 gene can promote cell growth 
and participate in the occurrence of various tumors. The 
main function of the wild-type p53 gene is to participate in 
the negative regulation of cell growth, limiting cell growth 
and division. In recent years, studies have found that the 
p53 gene is not only associated with the occurrence and 
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HJT8-MAPK1 (affinity=−7.5 kcal/moL)

Figure 6 Analysis of the interaction between the salidroside and MAPK1 target proteins. (A) Three-dimensional structure of salidroside. (B) 
Analysis of the target-compound (HJT8) docking simulation. PyMOL 2.7 and LigPlot+ 1.4.5 software was used to generate the figure.

development of many tumors but also participates in the 
occurrence of apoptosis in the cardiovascular system (60,61). 
JUN is the heterodimer form of activating protein 1 (AP-1).  
Previous study has demonstrated that c-JUN can induce 
the production of adhesion factors in endothelial cells and 
increase the expression of chemokines and the formation of 
foam cells, thus promoting the formation and development 
of atherosclerosis (62). MAPK1 belongs to the Ser-Thr 
kinase protein family and has been previously reported 
in different features of cardiac modelling and regulation 
of inflammation, cell proliferation, and differentiation 
(63,64). STAT3 is a latent transcription factor that was 
initially identified as a cytokine signaling transductor and is 
involved in a variety of BPs, such as cell proliferation (65), 
differentiation (66), and survival (67).

To understand the potential biological mechanism of RW 

against AP, GO and KEGG functional enrichment analyses 
of DAVID and KEGG were applied. Through KEGG 
pathway analysis (P<0.05), we identified 21 AP-related 
signaling pathways, including HIF-1, PI3K-Akt, MAPK, 
FoXO, TNF, Ras, and Toll-like receptor signaling pathways. 
Accordingly, these pathways may be involved in the 
progression of AP. Based on the P value, we chose the HIF-
1 signaling pathway as the most likely candidate for further 
study. Hypoxia-inducible factor (HIF) is a transcriptional 
complex that responds to changes in oxygen and provides 
a master regulator for cells to coordinate changes in gene 
transcription. HIF acts on all mammalian cell types and is 
ancient in evolutionary terms. At the molecular level, the 
HIF complex contains an α subunit and a β subunit, both of 
which can be selected from several options. HIF-β subunits 
are composed and participate in heterogeneous reactions. 
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The α subunit is regulated and unique to hypoxic reactions. 
Under hypoxic conditions, HIF-1α is induced and highly 
expressed, transferring from the cytoplasm to the nucleus 
and initiating downstream gene expression, such as that of 
erythropoietin and VEGF. HIF-1α can increase myocardial 
glucose intake and transportation to continuously 
provide the compensatory energy supply by regulating 
myocardial GLUT4 and PKM2 gene expression (68).  
HIF-1α also facilitates the activation of PDK1 and PDK4 
as well as UCP2 to enhance mitochondrial oxidative  
phosphorylation (69). Moreover, NRF1 and TFAM play 
distinct roles in mitochondrial biogenesis (70), and the 
upregulation of NRF1 and TFAM promotes mitochondrial 
DNA synthesis in infarcted cardiac muscle (71). Therefore, 
the HIF-1 signaling pathway is activated in cardiomyocytes 
to produce continuous adenosine triphosphate (ATP) in 
adaptation to hypoxia by shifting myocardial metabolism 
substrate to glucose intake and transportation (72).

In this study, GO enrichment analysis was adopted. 
The targets were connected with the regulation of protein 
phosphorylation, nitric oxide biosynthesis, cell membrane 
region, platelet alpha granule, protein kinase, and protein 
phosphatase. Therefore, the results suggest that RW treats 
AP by participating in BP, CC, and MF.

Molecular docking analysis simulation provided a visual 
interpretation of the interaction between key compounds 
and their potential  protein targets.  For example, 
salidroside mainly forms 4 hydrogen bonds with Lys52, 
Asn152, Ser151, and Met106 A residues on MAPK1. 
Salidroside exerts various pharmacological effects, such 
as antifatigue, antioxidation, immune regulation, and 
free radical scavenging activities. In recent years, in vivo 
and in vitro experiments have proven that the compound 
has positive anticancer, anti-inflammatory, antioxidative, 
neuroprotective, myocardial-protective, liver-protective, and 
kidney-protective effects (73,74). In addition, it has been 
reported that salidroside can inhibit the release of lactate 
dehydrogenase (LDH), creatine-kinase (CK) and aspartate 
aminotransferase (AST) from human cardiomyocytes 
by increasing the expression of HIF-1α, increasing the 
content of superoxide dismutase (SOD), increasing the 
activity of human cardiomyocytes, and reducing the death 
and apoptosis of cells (75). Overall, it was speculated that 
the main composition of RW may play a significant role 
in the treatment of AP through hub targets in these top-
ranking signaling pathways. However, some limitations of 
our study should be considered. For instance, the results 
are only based on the screening of already known chemical 

constituents of RW, related targets, and signaling pathways 
from the literature and existing databases. Consequently, 
more in-depth research is required to characterize the 
underlying mechanisms of RW in the treatment of angina.

At present, network pharmacology is mostly used in 
the screening of drug active ingredients, prediction of the 
mechanism of action of specific drugs, analysis of targets of 
main active ingredients, and development of combination 
drugs. As a research idea, network pharmacology can also 
be used to explain the compatibility rules of traditional 
Chinese medicine compounds and discover new indications 
of traditional Chinese medicine. Network pharmacology is 
becoming a powerful and attractive tool to reflect the multi-
component and multi-target characteristics of traditional 
Chinese medicine. Based on network pharmacology 
methods, it can help explain many difficult problems in the 
material basis of traditional Chinese medicine efficacy.

Conclusions

Via network pharmacology and molecular docking virtual 
computing, 26 ingredients of RW and putative known 
therapeutic targets were collected, and the underlying 
mechanism of RW in the treatment of AP was explored. 
RW exerted treatment effects on AP by regulating nine hub 
targets: VEGFA, GAPDH, TP53, AKT1, CASP3, STAT3, 
TNF, MAPK1 and JUN. Based on the results of GO and 
KEGG pathway enrichment analysis, we found that these 
hub targets ameliorated AP by participating in protecting 
the vascular endothelium, regulating glucose metabolism, 
regulating cellular processes, regulating the inflammatory 
response, and participating in cell signal transduction, 
among other processes. In summary, this study used a 
network pharmacology approach to investigate the complex 
network relationships among multiple components, targets, 
and pathways of RW in the treatment of AP. The results 
of this study verify and predict the molecular mechanism 
of RW in AP at the system level, which may provide 
enlightenment for the mechanism of RW and other anti-
AP Chinese medicines and promote the application of RW 
in the treatment of AP. However, our research results are 
based on computational analysis, and further experiments 
are needed to verify these hypotheses. 
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