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Background: The radiographic classification of pulmonary nodules into benign versus malignant 
categories is a pivotal component of early lung cancer diagnosis. The present study aimed to investigate 
clinical and computed tomography (CT) clinical-radiomics nomogram for preoperative differentiation of 
benign and malignant pulmonary nodules.
Methods: This retrospective study included 342 patients with pulmonary nodules who underwent high-
resolution CT (HRCT) examination. We assigned them to a training dataset (n=239) and a validation dataset 
(n=103). There are 1781 tumor characteristics quantified by extracted features from the lesion segmented from 
patients’ CT images. The features with poor reproducibility and high redundancy were removed. Then a least 
absolute shrinkage and selection operator (LASSO) logistic regression model with 10-fold cross-validation 
was used to further select features and build radiomics signatures. The independent predictive factors were 
identified by multivariate logistic regression. A radiomics nomogram was developed to predict the malignant 
probability. The performance and clinical utility of the clinical-radiomics nomogram was evaluated by receiver 
operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).
Results: After dimension reduction by the LASSO algorithm and multivariate logistic regression, 
four radiomic features were selected, including original_shape_Sphericity, exponential_glcm_Maximum 
Probability, log_sigma_2_0_mm_3D_glcm_Maximum Probability, and ogarithm_firstorder_90Percentile. 
Multivariate logistic regression showed that carcinoembryonic antigen (CEA) [odds ratio (OR) 95% 
confidence interval (CI): 1.40 (1.09–1.88)], CT rad score [OR (95% CI): 2.74 (2.03–3.85)], and cytokeratin-
19-fragment (CYFRA21-1) [OR (95% CI): 1.80 (1.14–2.94)] were independent influencing factors of 
malignant pulmonary nodule (all P<0.05). The clinical-radiomics nomogram combining CEA, CYFRA21-1 
and radiomics features achieved an area of curve (AUC) of 0.85 and 0.76 in the training group and 
verification group for the prediction of malignant pulmonary nodules. The clinical-radiomics nomogram 
demonstrated excellent agreement and practicality, as evidenced by the calibration curve and DCA.
Conclusions: The clinical-radiomics nomogram combined of CT-based radiomics signature, along 
with CYFRA21-1 and CEA, demonstrated strong predictive ability, calibration, and clinical usefulness in 
distinguishing between benign and malignant pulmonary nodules. The use of CT-based radiomics has 
the potential to assist clinicians in making informed decisions prior to biopsy or surgery while avoiding 
unnecessary treatment for non-cancerous lesions.
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Introduction

Within the realm of malignancies in China, lung cancer 
reigns supreme, boasting the highest incidences and 
mortality rates. A staggering 70% of afflicted individuals 
are diagnosed at advanced stages, and the five-year survival 
rate is a meager 16% (1). A principal cause for the dismal 
survival rates among lung cancer patients can be attributed 
to the insidious nature of the disease, which often eludes 
early detection, thereby forfeiting optimal therapeutic 

opportunities (2). Furthermore, the heterogeneity in the 
morphology and dimensions of pulmonary nodules further 
inflates the incidence of misdiagnosis during initial stages 
of lung cancer. Most early-stage lung cancers manifest as 
solitary pulmonary nodules with a diameter of less than 
3 cm, posing a significant challenge in the differential 
diagnosis of benign versus malignant nodules within the 
realm of radiographic lung cancer detection methods (3). 
If malignant pulmonary nodules could be identified and 
surgically excised at an early stage, it would substantially 
enhance the survival and cure rates among lung cancer 
patients. Consequently, the radiographic classification of 
pulmonary nodules into benign versus malignant categories 
is a pivotal component of early lung cancer diagnosis (4).

The wide application of low-dose computed tomography 
(LDCT) in clinic could distinguish benign and malignant 
pulmonary nodules, and promote the survival rate (5). 
Spiculation and lobulation are common computed 
tomography (CT) manifestations of malignant pulmonary 
nodules, however, research suggests that individual 
radiographic features or quantitative parameters are 
insufficient for an accurate differentiation diagnosis of 
pulmonary nodules (6). Thus, a multivariate prediction 
model is likely to improve diagnostic performance. Previous 
prediction models for distinguishing benign from malignant 
lung nodules include the Mayo (7), Veterans Affairs (VA) (8),  
Brock (9) models and so on. However, those predictive 
models still have some limitations. Firstly, they were 
developed using data from specific patient populations and 
may not be generalizable to other populations. This can lead 
to inaccurate predictions if the patient being evaluated differs 
from the population used to create the model. Secondly, they 
do not consider individual patient characteristics such as age, 
smoking history, and commodities, which can impact the 
likelihood of malignancy. 

Radiomics is a method that involves extracting many 
different features from medical images using data-
characterization algorithms, which has the potential to uncover 
tumor patterns and characteristics that are not visible to the 
human eye (10). In contrast to conventional visual image 
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features, radiomics can extract substantially greater numbers 
of nodule features with much better reproducibility. Since the 
concept of radiomics has been introduced, it has been applied 
extensively in the identification, grading, efficacy evaluation, 
and prognostication of diverse neoplastic conditions (11). 

Thus, the aim of the present study was to build and 
verify a prediction model based on high-throughput 
features extracted by radiomics from CT imaging and 
clinical characteristics to distinguish malignant from 
pulmonary nodules. Besides, we aimed to evaluate the 
incremental efficacy of this model in comparison to 
traditional pulmonary nodule prediction models such as 
Mayo, VA, and Brock. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-23-1400/rc).

Methods

Clinical data

In this single-center retrospective study, we screened a total 
of 342 patients with pulmonary nodules who underwent 
high-resolution CT (HRCT) examination in our hospital 
from May 2016 to May 2021. This study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). This study was approved by the institutional ethics 
committee of the Affiliated Hospital of Nantong University 
(No. 2018-L100), and written informed consent for this 
retrospective analysis was waived.

The inclusion criteria were as follows: (I) the patient’s 
clinical data were complete and the patient had undergone 
HRCT with satisfactory image quality; (II) the diameter 
of pulmonary nodule was ≤30 mm; (III) the surgery was 
completed within one month after HRCT examination 
and had definite pathological diagnosis after operation. 
The exclusion criteria were as follows: (I) the patient’s 
information was incomplete; (II) the image quality was low; 
(III) patients received anti-tumor therapy previously. After 
screening, it was found that there was a total of 342 patients 
that met the criteria. Using a 7:3 random sampling method, 
239 patients (76 benign and 163 malignant) were selected 
as the training set, while 103 patients (26 benign and  
77 malignant) were chosen as the validation set.

Clinical measurements

The clinical characteristics of the enrolled patients were 
recorded, including patient gender, age, smoking history, 

years since smoking cessation, previous medical history (such 
as hypertension, diabetes, coronary heart disease), personal 
tumor history, family tumor history, as well as hematological 
indicators such as preoperative carcinoembryonic antigen 
(CEA), cytokeratin-19-fragment (CYFRA21-1), adenosine 
deaminase (ADA),  lactate dehydrogenase (LDH), 
neutrophil lymphocyte ratio (NLR), lymphocyte monocyte 
ratio (LMR), and platelet lymphocyte ratio (PLR).

Instruments and imaging method

The examinations were conducted using a 256-slice CT 
scanner (Brilliance iCT, Philips Healthcare, Cleveland, OH, 
USA) with the following parameters: The CT protocol 
included an automatic tube current range of 100–400 mA 
and section thickness of 5 mm. The collimation was set at 
0.625 mm and pitch at 0.914 matrix with a resolution of 
512×512 pixels. Breath-hold technique was used during 
full inspiration for image acquisition. Lung smooth 
reconstruction kernel with a thickness of 1 mm was applied 
to obtain images that were captured in both lung (window 
width: 1,500 HU; window level: −600 HU) and mediastinal 
(window width: 350 HU; window level: 50 HU) settings. 
Scanning started from thorax entrance up to posterior costal 
angle region.

All images were examined and recorded by two radiologists 
with more than five years of work experience and without 
knowing the pathology. When their opinions were not unified, 
they would discuss together to reach a consensus.

Region of interest (ROI) segmentation and data 
preprocessing

Dicom images were viewed with the software RadiAnt 
DICOM Viewer (version 4.6.5) and Image J (version v1.52j) 
and exported in tiff-format. The maximum boundary of the 
nodules was manually and semi-automatically delineated 
layer by layer using ITK-SNAP software (Version 3.4.0, 
available at http://www.itksnap.org/), by two radiologists 
with a collective experience of five years. Blood vessels 
and bronchus were avoided. The ROI segmentation was 
checked by one senior radiologist (Figure 1). The images 
and data underwent preprocessing through the application 
of image binarization and data normalization techniques. 
Image binarization was utilized to convert each pixel’s gray 
value in the images into either 0 or 1, resulting in binary 
images that were more suitable for further processing. This 
approach eliminated extraneous image information beyond 
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the ROI to prevent noise introduction.

Radiomics feature extraction and selection

There were 1,781 tumor characteristics quantified by 
extracted features from the lesion segmented from patients’ 
CT images using Pyradiomics 2.2.0 (in Python software 
3.6; https://www.python.org) (12). Briefly, the radiomic 
features consisted of four feature groups: 186 volume and 
shape features, 107 first-order features, 651 texture features, 
and 837 wavelet features. Texture features included the 
common gray level dependence matrix (GLDM), gray-
level cooccurrence matrix (GLCM), gray level run-length 
matrix (GLRLM), gray-level size zone matrix (GLSZM), 
neighborhood gray tone difference matrix (NGTDM), and 
neighborhood gray-level difference matrix (NGLDM). 

The presence of excessive and repetitive irrelevant 
data is often observed in high-dimensional information. 
Consequently, this can lead to overfitting and significantly 
impair the performance of the learning algorithm. 
Hence, conducting a feature selection procedure becomes 

imperative. The redundant features were reduced and the 
optimal radiomics features were selected using methods 
such as variance threshold, analysis of variance (ANOVA), 
and least absolute shrinkage and selection operator (LASSO) 
logistic regression model with 10-fold cross-validation. A 
threshold value of 0.8 was applied to the variance threshold 
method to eliminate eigenvalues with smaller variances. 
The ANOVA method included all features that exhibited 
significant differences (P<0.05) between benign and 
malignant lesions. The LASSO algorithm determined the 
optimal LASSO alpha parameter through five-fold cross 
validation, ultimately selecting radiomics features with non-
zero coefficients from the training cohort (13,14). The Rad-
score for each lesion was determined by combining specific 
features using their corresponding coefficients.

Development and validation of the clinical-radiomics 
nomogram

A training cohort dataset was analyzed using multivariate 
logistic regression to determine the clinic characteristics and 

Figure 1 RadiAnt extracts cross-sectional CT images. (A) A solid nodule was discovered on slice 90 (Im90) from the initial CT examination 
in June 2020 of a 60-year-old male patient. (C) A solid nodule was discovered on slice 98 (Im98) from the same CT examination of the same 
patient. (B) The red region indicates the ROI delineated on slice 90 on the mediastinal window (window width: 350 HU, window level:  
50 HU). (D) The red region indicates the ROI delineated on slice 96 on the mediastinal window (window width: 350 HU, window level:  
50 HU). CT, computed tomography; ROI, region of interest.
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Rad-score that independently predict whether pulmonary 
nodules are benign or malignant. Subsequently, a clinical-
radiomics nomogram was created based on these factors. 
The nomogram’s ability to predict outcomes was evaluated 
by analyzing receiver operating characteristic (ROC) curves 
and calculating the area under the curve (AUC) in both the 
training and validation groups. The sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value 
(NPV) were determined by optimizing the Youden index to 
identify its optimal threshold. The calibration curves were 
used to assess how well the predicted probabilities matched 
the observed results. To assess the practical value of the 
nomogram, decision curve analysis (DCA) was performed in 
the validation group to measure the net benefit across various 
threshold probabilities. Net benefit referred to the weighted 
discrepancy between true positive proportion and false 
positive proportion, considering the relative risk linked with 
false positive and false negative outcomes.

Statistical analysis

The statistical analyses were carried out using R software 
(version 3.5.1, https://www.r-project.org/). The LASSO 
regression model was constructed with the “glmnet” 
package and ROC curve analysis was performed using the 
“pROC” package. Categorical variables were analyzed in 
terms of frequencies and proportions, while continuous 
variables were described using mean and standard deviation. 
The Chi-square test was utilized to compare categorical 
variables, whereas the independent t-test was employed for 
continuous variables comparison. The DeLong method 
was employed to assess the importance of the distinction 
between the clinical-radiomics nomogram and alternative 
models (15,16). A P value less than 0.05 was considered 
statistically significant.

Results

Patient features

In this study, all 342 patients had available pathological 
results. The histopathological examination revealed  
102 cases (30%) of benign nodules (27 cases of pulmonary 
sequestration, 37 cases of tuberculoma, 20 cases of 
chronic inflammation of lung tissue, 18 cases of sclerosing 
pneumocytoma). The 240 (70%) malignant solitary 
pulmonary nodules included 208 cases of adenocarcinoma, 
29 cases of squamous cell carcinoma, and 3 cases of small 
cell lung cancer. The included patients were divided into 

the training and validation cohorts (239 in the training 
cohort and 103 in the validation cohort). The baseline 
characteristics of the cohort are listed in Table 1. No 
significant difference in age, gender, smoking, family history 
of cancer, nodule size, and hematological indicators were 
noted between the training cohort and validation cohort 
groups (all P>0.05). Univariate and multivariate logistic 
regression analyses of clinical risk factors concluded that 
age, CEA and CYFRA21-1 were independent influencing 
factors of malignant pulmonary nodule [odds ratio (OR) 
95% confidence interval (CI) =1.05 (1.02–1.08), 1.45 (1.15–
1.90), 1.42 (1.06–2.06), respectively]. Multivariate logistic 
regression was used to establish a clinical prediction model 
(baseline model), which was as follows: 

( ) ( )
( )
( )

Logit P 3.442 0.045 age

0.373 CEA

0.349 CYFRA21-1

= − + ∗

+ ∗

+ ∗

[1]

Radiomics feature selection and radiomics score 
construction

For this study, we extracted various features including 
volume and shape features, first-order features, texture 
features, and wavelet features for each case. A total of 1,781 
radiomic features were obtained. The two experienced 
radiologists achieved good consistency between their 
observations with an interobserver coefficient exceeding 
0.80. Then λ=0.0427 with log (λ)=−1.369 was chosen as the 
optimal value, and finally, the optimal λ resulted in 24 non-
zero coefficients (Figure 2). The 24 non-zero coefficients are 
shown in Table 2. Then the results of the multiple logistic 
regression analysis showed that original_shape_Sphericity, 
exponential_glcm_Maximum Probability, log_sigma_2_0_
mm_3D_glcm_Maximum Probability, and logarithm_
firstorder_90 Percentile were independent risk factors for 
malignant pulmonary nodules [OR (95% CI) =0.34 (0.23–
0.49), 1.44 (1.10–2.476), 0.42 (0.20–0.74), 0.60 (0.39–0.89), 
respectively]. The Rad-score of each patient was calculated 
by the following calculation formula: 

[2]

( )Logit P 1.142 1.073 original_shape_Sphericity
0.367 exponential_glcm_MaximumProbability
0.878 log_sigma_2_0_mm_3D_glcm_MaximumProbability
0.512 logarithm_firstorder_90Percentile

= − ∗

+ ∗
− ∗
− ∗

Development of the clinical-radiomics nomogram

Multivariate logistic regression results are shown in Table 

https://www.r-project.org/
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Table 1 Clinical characteristics in the training and validation cohorts

Characteristic Training cohort, N=239 Validation cohort, N=103 P value

Gender 0.71

Male 95 (39.7) 38 (36.9)

Female 144 (60.3) 65 (63.1)

Age, years 59.74±10.80 60.34±9.92 0.63

Smoking 18 (7.5) 12 (11.7) 0.3

Family history of cancer 1 (0.4) 1 (1.0) 1

Nodule size (mm) 16.01±5.11 16.28±4.91 0.74

Hematological indicators

CEA (μg/L) 3.36±6.37 2.79±2.19 0.38

CYFRA21-1 (ng/mL) 1.74±0.87 1.62±0.83 0.24

NLR 2.30±1.76 1.89±0.82 0.03

LMR 4.29±1.71 4.64±1.74 0.08

PLR 122.41±47.39 118.07±43.52 0.43

LDH (U/L) 188.86±37.82 182.46±39.62 0.16

ADA (U/L) 9.28±2.98 8.59±2.36 0.04

Data are presented as n (%) or mean ± standard deviation. CEA, carcinoembryonic antigen; CYFRA21-1, cytokeratin-19-fragment; NLR, 
neutrophil to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; PLR, platelet to lymphocyte ratio; LDH, lactate dehydrogenase; ADA, 
adenosine deaminase.

Figure 2 LASSO algorithm and 10-fold cross-validation to select the optimal texture features. (A) The tuning parameter (λ) in the LASSO 
model was selected using 10-fold cross-validation. The function of log (λ) is plotted by binomial deviances from the LASSO regression 
cross-validation. The black vertical line is plotted at the best values of λ for which the model provides the best matching of the data. 
λ=0.0427 with log (λ) = −1.369 was chosen as the optimal value. (B) Regression coefficient diagram of LASSO. LASSO, least absolute 
shrinkage and selection operator.
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3. Multivariate logistic regression showed that CEA [OR 
(95% CI): 1.40 (1.09–1.88)], CT rad score [OR (95% 
CI): 2.74 (2.03–3.85)], and CYFRA21-1 [OR (95% CI): 
1.80 (1.14–2.94)] were independent influencing factors 
of malignant pulmonary nodule (all P<0.05). Then, we 
constructed a clinical-radiomics nomogram, integrating 
CEA, CT rad-score, and CYFRA21-1, according to the 
Akaike Information Criterion (AIC) in the training cohort 
(Figure 3). The nomogram formula is as follows:

[3]
( ) ( )

( )
( )

Logit P 1.828 0.340 CEA

0.585 CYFRA21-1

1.007 CT rad-score

= − + ∗

+ ∗

+ ∗

Validation of the clinical-radiomics nomogram

The diagnostic efficiency of each model in the training 
and verification cohorts is showed in Table 4. The AUCs 
of clinical model, CT rad-score, and clinical-radiomics 
nomogram for predicting malignant pulmonary nodule 
in the training cohort were 0.74 (95% CI: 0.68–0.81), 
0.81 (95% CI: 0.74–0.87) and 0.85 (95% CI: 0.80–0.91), 
respectively. The AUCs of clinical model, CT rad-score, 
and clinical-radiomics nomogram for predicting malignant 
pulmonary nodule in the validation cohort were 0.64 (95% 
CI: 0.53–0.76), 0.75 (95% CI: 0.64–0.85) and 0.76 (95% 
CI: 0.66–0.86) respectively (Figure 4). Clinical-radiomics 
nomogram shows significant advantage over CT rad-score 
alone and clinical model for predicting malignant pulmonary 
nodule. The sensitivity, specificity of clinical-radiomics 
nomogram for predicting malignant pulmonary nodule were 
81.2% and 75.9% in the training cohort; 84.3%, and 63.6% 
in the internal validation cohort, respectively. Compared 
with three common models (Mayo, VA, Brock), the clinical-
radiomics nomogram still had the highest AUC both in the 
training cohort [0.85 (95% CI: 0.80–0.89) vs. 0.72 (95% CI: 

Table 2 Least absolute shrinkage and selection operator coefficient 
profiles of the features

Radiomics features Coefficients

original_shape_Sphericity −0.926

exponential_glcm_MaximumProbability 0.749

log_sigma_2_0_mm_3D_glcm_
MaximumProbability

−0.838

logarithm_firstorder_90Percentile −1.059

wavelet_LLL_ngtdm_Coarseness −0.439

wavelet_HHL_ngtdm_Coarseness −0.447

wavelet_LHL_ngtdm_Coarseness −0.658

exponential_glcm_ClusterProminence −0.501

log_sigma_2_0_mm_3D_firstorder_90Percentile 0.589

log_sigma_1_0_mm_3D_firstorder_90Percentile 0.532

wavelet_HLH_firstorder_Mean −0.469

log_sigma_1_0_mm_3D_glszm_
LargeAreaHighGrayLevelEmphasis

0.996

wavelet_HLL_glcm_SumEntropy −0.534

logarithm_glcm_Imc2 0.448

wavelet_LLL_glcm_SumEntropy −0.457

log_sigma_1_0_mm_3D_glcm_Id 0.227

gradient_glcm_MaximumProbability −0.231

log_sigma_3_0_mm_3D_gldm_
GrayLevelVariance

0.194

log_sigma_5_0_mm_3D_glcm_Contrast −0.112

wavelet_LHH_glcm_SumEntropy 0.246

wavelet_LHL_glcm_SumEntropy −0.087

gradient_gldm_GrayLevelVariance −0.033

wavelet_LLL_firstorder_90Percentile −0.034

wavelet_LHH_glcm_MCC 0.002

Table 3 Multivariate logistic regression analyses for malignant pulmonary nodule

Variables Coefficient OR 95% CI P

CEA 0.34 1.40 1.09–1.88 0.01*

CYFRA21-1 0.59 1.80 1.14–2.94 0.02*

CT rad-score 1.01 2.74 2.03–3.85 <0.001*

*, P<0.05. OR, odds ratio; CI, confidence interval; CEA, carcinoembryonic antigen; CYFRA21-1, cytokeratin-19-fragment; CT, computed 
tomography.
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Table 4 Diagnostic efficiency of different models in training and verification cohorts

Cohort Models AUC (95% CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training 
cohort

Clinical model 0.74 (0.68–0.81) 77.1 62.3 83.4 52.4

CT rad-score 0.81 (0.74–0.87) 79.4 73.9 88.2 59.3

Clinical-radiomics nomogram 0.85 (0.80-0.91) 81.2 75.9 90.9 57.7

Validation 
cohort

Clinical model 0.64 (0.53–0.76) 72.9 63.6 89.0 52.5

CT rad-score 0.75 (0.64–0.85) 82.9 63.6 82.9 63.6

Clinical-radiomics nomogram 0.76 (0.66–0.86) 84.3 63.6 83.1 65.6

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; CT, computed tomography.
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0.66–0.78) vs. 0.72 (95% CI: 0.66–0.77), vs. 0.72 (95% CI: 
0.66–0.77), respectively] and validation cohort [0.76 (95% CI: 
0.67–0.84), 0.74 (95% CI: 0.64–0.82), 0.63 (95% CI: 0.53–
0.72), 0.71 (95% CI: 0.61–0.79), respectively]. The clinical-

radiomics nomogram’s calibration curves exhibited strong 
agreement between predicted outcomes and observations in 
both the training and validation groups (Figure 5). The DCA 
indicated that clinical-radiomics nomogram could add more 
net benefits than “all treatment” or “none treatment” with 
the threshold probability range from 0 to 1.0 in the validation 
cohort (Figure 6).

Discussion

The article discussed a non-invasive diagnostic method for 
distinguishing benign pulmonary nodules from malignant 
pulmonary nodules. The results of this study showed that 
CEA, CYFRA21-1 and CT rad-score were important 
predictors for predicting the malignant pulmonary nodules.

CEA serves as a widely employed biomarker in clinical 
practice for early detection and monitoring of lung cancer. 
CYFRA21-1, on the other hand, is a frequently utilized 
tumor marker in clinical settings and is often employed 
as a primary adjunctive diagnostic tool for squamous cell 
carcinoma of the lung. Several studies have indicated a 
widespread elevation of serum CEA in patients with non-
small cell lung cancer, suggesting its potential utility as a 
candidate biomarker for the diagnosis of non-small cell 
lung cancer. Additionally, the level of serum CYFRA21-1 
exhibits a strong correlation with tumor staging and disease 
progression, thereby serving as a viable means to monitor 
treatment efficacy (17,18). 

Radiomics refers to the artificial intelligence technology 
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that extracts shape, intensity, texture, and wavelet 
features of lesions based on imaging images [such as 
CT, magnetic resonance imaging (MRI), and positron 
emission tomography (PET)-CT], converts them into 
high-dimensional quantifiable quantitative feature data 
to further reflect the biological information of lesions, 
which is a process that transforms the subjective evaluation 
of images into objective quantitative data. It can provide 
relevant information for diagnosing diseases, prognostic 
evaluation and predicting treatment efficacy (19). It was 
reported that radiomics is valuable in predicting the benign 
and malignant effects of pulmonary nodules, but different 
imaging omics studies extract different features (10). 
Hawkins et al. extracted 219 features from CT images of 
600 pulmonary nodules, and ultimately selected 23 stable 
features to distinguish between benign and malignant 
nodules with an accuracy rate of 80% and a false positive 
rate of 9%. However, the study had inconsistent standards 
for collecting CT images with varying slice thicknesses, 
limited clinical data integration, and used support vector 
machine (SVM) algorithms that consume large amounts of 
memory and are sensitive to missing data, which limits its 
discriminatory potential (20). Feng et al. developed clinical 
risk factor models, radiomics models, and a comprehensive 
model combining radiomics features and clinical risk factors 
to predict the malignancy of 426 pulmonary nodules. The 
radiomics model utilized the LASSO logistic regression 
algorithm to reduce the β coefficients of the classifier, 
decrease classifier variance, and prevent overfitting. 
The results showed that the diagnostic accuracy of the 
comprehensive model was higher than that of the individual 
models, with AUC values of 0.97, 0.93, and 0.91 for 
training set, internal validation, and external validation 
cohorts, respectively. The diagnostic accuracy, sensitivity, 
and specificity for the external validation cohort were 0.82, 
0.79, and 0.95, indicating that the combination of radiomics 
features and clinical risk factors has significant value in 
distinguishing between benign and malignant pulmonary 
nodules (21).

In the present study, it was concluded that original_
shape_Sphericity, exponential_glcm_Maximum Probability, 
log_sigma_2_0_mm_3D_glcm_Maximum Probability, 
and logarithm_firstorder_90 Percentile are independent 
radiomic characteristics for malignant pulmonary nodules. 
The feature “original_shape_Sphericity” in pulmonary 
nodules represents the degree of sphericity or roundness 
of the nodule’s shape. It provides information about 
how closely the shape of the nodule resembles a sphere. 

Malignant nodules often exhibit more irregular and non-
spherical shapes compared to benign nodules, which tend 
to be more spherical. Therefore, a lower value of “original_
shape_Sphericity” may indicate a higher likelihood of 
malignancy, while a higher value may suggest a lower 
probability of malignancy (22). The feature “exponential_
glcm_Maximum Probability” in pulmonary nodules 
represents the maximum probability value obtained from 
the gray-level co-occurrence matrix (GLCM) after applying 
an exponential transformation, which can be useful in 
quantifying the dominant or most prominent texture 
pattern within the nodule. log_sigma_2_0_mm_3D_glcm_
MaximumProbability provides information about the texture 
or spatial arrangement of gray-level intensities within 
the nodule volume at a particular scale. The “logarithm_
firstorder_90Percentile” feature is useful for characterizing 
the overall intensity distribution and heterogeneity within 
the nodule. Different types of nodules may exhibit distinct 
intensity patterns due to variations in tissue composition, 
vascularity, or necrosis. The clinical-radiomics nomogram 
model we constructed provides a comprehensive description 
of the malignant pulmonary nodule by extracting more 
statistical features.

Qualitative diagnosis of pulmonary nodules is crucial 
for early diagnosis and treatment. However, relying solely 
on HRCT for qualitative diagnosis can be very difficult. 
Our results showed that this clinical-radiomics nomogram 
combining CEA, CYFRA21 and CT rad-score had good 
preoperative prediction performance of pulmonary nodule 
classification. The results showed that the clinical-radiomics 
nomogram had higher AUC values and accuracy than 
the common models (Mayo, VA, Brock). The calibration 
curves indicated a high consistency between the predicted 
probability of nomograms and the actual observation, and 
our model achieved high predictive performance. The DCA 
demonstrated that the clinical-radiomics nomogram was 
clinically valuable.

There are several limitations in the present study. Firstly, 
the study population is sourced from a single institution, 
thus limiting the sample size. This restriction in the number 
of validation cohort participants may potentially impact the 
validation of the proposed models. When mispredictions 
occur in a small number of lesions, it can result in a 
significant discrepancy. While our results hold encouraging 
potential, a more extensive, multicenter study with 
equitably distributed samples is necessitated to conclusively 
affirm the resilience of the proposed nomogram. Secondly, 
the extraction of radiomics features was conducted on two-
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dimensional (2D) ROIs. While 2D features may potentially 
omit crucial information required for a comprehensive 
characterization of the entire lesion, comparative studies 
have revealed that 2D features exhibit superior performance 
to their three-dimensional (3D) counterparts in the context 
of lung cancer (23). Thirdly, patients who underwent 
surgical procedures were disproportionately inclined to be 
those with a confirmed diagnosis of malignant neoplasms. 
Lack of external validation was the fourth flaw.

Conclusions

The clinical-radiomics nomogram combined of CT-
based radiomics signature, along with CYFRA21-1 and 
CEA, demonstrated strong predictive ability, calibration, 
and clinical usefulness in distinguishing between benign 
and malignant pulmonary nodules. The use of CT-based 
radiomics has the potential to assist clinicians in making 
informed decisions prior to biopsy or surgery while avoiding 
unnecessary treatment for non-cancerous lesions.
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