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Background: Reinfection of coronavirus disease 2019 (COVID-19) has raised concerns about how 
reliable immunity from infection and vaccination is. With mass testing for the virus halted, understanding 
the current prevalence of COVID-19 is crucial. This study investigated 1,191 public health workers at the 
Xiamen Center for Disease Control, focusing on changes in antibody titers and their relationship with 
individual characteristics.
Methods: The study began by describing the epidemiological characteristics of the study participants. 
Multilinear regression (MLR) models were employed to explore the associations between individual 
attributes and antibody titers. Additionally, group-based trajectory models (GBTMs) were utilized to 
identify trajectories in antibody titer changes. To predict and simulate future epidemic trends and examine 
the correlation of antibody decay with epidemics, a high-dimensional transmission dynamics model was 
constructed.
Results: Analysis of epidemiological characteristics revealed significant differences in vaccination status 
between infected and non-infected groups (χ2=376.706, P<0.05). However, the distribution of antibody 
titers among the infected and vaccinated populations was not significantly different. The MLR model 
identified age as a common factor affecting titers of immunoglobulin G (IgG), immunoglobulin M (IgM), 
and neutralizing antibody (NAb), while other factors showed varying impacts. History of pulmonary disease 
and hospitalization influenced IgG titer, and factors such as gender, smoking, family history of pulmonary 
diseases, and hospitalization impacted NAb titers. Age was the sole determinant of IgM titers in this study. 
GBTM analysis indicated a “gradual decline type” trajectory for IgG (95.65%), while IgM and NAb titers 
remained stable over the study period. The high-dimensional transmission dynamics model predicted and 
simulated peak epidemic periods in Xiamen City, which correlated with IgG decay. Age-group-specific 
simulations revealed a higher incidence and infection rate among individuals aged 30–39 years during both 
the second and third peaks, followed by those aged 40–49, 50–59, 18–29, and 70–79 years.
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Introduction

The global impact of coronavirus disease 2019 (COVID-19), 
caused by the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), has been profound, and efforts to mitigate 
its effects have been ongoing for over 3 years (1). As of 
13 August 2023, over 769 million confirmed cases and 
over 6.9 million deaths have been reported globally (1). 
Since December 2022, most countries have been adapting 
their emergency responses, and attention has turned to 
understanding the duration of the immune response to 
infection (2). As vaccination remains a cornerstone for 
controlling the COVID-19 infection, antibodies obtained 
from infection also play a role in warding off reinfection (3).

The humoral immune responses, whether triggered by 

COVID-19 infection or vaccination, are crucial to fight a 
second or third infection in the current massive reinfection 
circumstances (4). Humoral immunity is characterized by 
the production of antibodies by B cells as a response to 
antigens. Researchers concluded that after stimulating the 
immune reaction to COVID-19, the first antibody to appear 
is immunoglobulin M (IgM), succeeded by immunoglobulin 
A (IgA) and, notably, immunoglobulin G (IgG). However, 
the duration of these antibody types varies (5). IgM, for 
example, typically persists for only 20–30 days, while IgG, 
detectable approximately 10–14 days post-infection and 
peaking around day 25, provides longer-lasting immunity. 
Serum IgA levels rapidly decline, with seropositivity 
diminishing after 2 months (4), although neutralizing IgA 
can remain detectable in saliva for an extended period (49–
73 days post-symptoms) (6). Importantly, a study suggested 
that IgA is a significant isotype in nearly neutralizing 
serum activity, whereas IgG is a key component of serum 
neutralizing antibodies (NAbs) following SARS-CoV-2 
infection (7).

NAb titers after mild SARS-CoV-2 infection were 
reported to be comparable to those induced by first-
generation COVID-19 vaccines (8), and second-vaccine 
doses further enhance cross-neutralizing activity against 
variants of concern. The persistence of protective immune 
responses is linked to the time since the initial infection and 
the robustness of the peak antibody response (2,3,8,9).

With SARS-CoV-2 persisting in the human population 
for over 3 years, reports of reinfection cases have become 
increasingly prevalent. Studies about the relationship 
between antibody duration (arising from infection or 
vaccination) and reinfection risk have been conducted. A 
study that followed 12,541 healthcare workers at Oxford 
University Hospital revealed that the incidence of SARS-
CoV-2 was inversely proportional to baseline titers of 
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antibodies (10). Another study about the reinfection 
of SARS-CoV-2 implicated that herd immunity from 
infection is unlikely to be sufficient to eliminate the 
virus if reinfections are common (11). However, it is 
unneglectable that there is no evidence confirming that 
current intramuscular vaccines can reduce shedding in 
the event of reinfection. What’s more, as SARS-CoV-2 
continues to mutate, the immune escape of variants should 
also be taken into consideration when exploring antibody 
dynamics (12).

During the COVID-19 pandemic, researchers have 
come up with various methods to simulate and predict 
various epidemic scenarios. Transmission dynamics models 
have played a crucial role in this context (13-15). In light 
of the current situation, where mass virus testing has been 
postponed among the general population, constructing 
models that accurately reflect the real-world situation has 
become essential.

In this study, we examined the antibody titers of 
1,191 public health workers from the Xiamen Center 
for Disease Control. Our objectives were to investigate 
potential relationships between individual characteristics 
and antibody titers, predict future outbreaks by optimizing 
existing COVID-19 transmission dynamics models, and 
explore the interplay between epidemic peaks and the decay 
of specific antibody types within the population. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-1516/rc).

Methods

Study design

This study aims to investigate antibody titer dynamics 
among Xiamen healthcare workers through three key 
stages. First, we collected data via questionnaires distributed 
among healthcare staff in the Xiamen Healthcare System. 
This yielded 1,191 eligible participants, selected based on 
SARS-CoV-2 infection or vaccination status post-December 
2022. Subsequently, serum antibody testing occurred at 
monthly intervals from February to May to track titer 
variations. Finally, we employed a high-dimensional 
transmission dynamics model to predict future epidemic 
trends, examining correlations between antibody decay and 
epidemic peaks. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study was approved by the ethics committee of the Xiamen 

Center for Disease Control [XJK/LLSC(2022)004] and 
participants signed the agreement consent before filling out 
the questionnaire.

Data collection

This study collected data in two stages.  Initial ly, 
questionnaires were distributed among healthcare workers 
in Xiamen City, gathering individual information, health 
history, and COVID-19 vaccination records. For those 
previously infected with SARS-CoV-2, additional infection 
details were gathered. Based on prior research indicating 
that NAbs for COVID-19 might persist for a maximum of 
73 days (6), questionnaires that were incomplete or lacking 
essential infection-related information were excluded from 
the study, and 1,191 valid samples remained. Subsequently, 
a monthly serum antibody test tracked antibody decay from 
February to May.

Explore the epidemiological characteristics as well as 
correlation of individual properties and antibody titer for 
COVID-19

This  s tudy invest igated the correlat ion between 
individual baseline properties (age, height, weight, and 
previous health conditions) and COVID-19 antibody 
titers. Multivariate regression models were established 
to analyze the relationship, with regression coefficients 
(β), 95% confidence intervals (CIs), and standardized 
regression coefficients (β) calculated. Before establishing 
the regression model, we carried out variable distribution 
description and Spearman’s correlation analysis, and 
eliminated variables with strong correlation (r>0.7). The 
optimal model was selected using backward elimination, 
Bayesian information criterion (BIC), and Akaike 
information criterion (AIC).

The formula of the model is as follows:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

0IgGY f S sex f age S loca f height

f weight S smk S resd S cd

S vac S phsms S PI S symp

S hosp f SI S his

= + + + +

+ + + +

+ + + +

+ + +

 [1]

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

0IgMY f S sex f age S loca f height

f weight S smk S resd S cd

S vac S phsms S PI S symp

S hosp f SI S his

= + + + +

+ + + +

+ + + +

+ + +

 [2]
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

0NAbY f S sex f age S loca f height

f weight S smk S resd S cd

S vac S phsms S PI S symp

S hosp f SI S his

= + + + +

+ + + +

+ + + +

+ + +

 [3]

A group-based trajectory model (GBTM) was applied to 
analyze the longitudinal serum antibody data (16). The 
GBTM model identified potential clusters with similar 
antibody trajectory patterns. The study hypothesized that 
the population’s serum could be divided into up to five 
categories, namely, gradual growth type, gradual decline 
type, unchanged type, growth and then decline type, and 
decline and then growth type, reflecting different patterns 
of change in antibody levels. The highest order of the 
model was set to 3, i.e., the number of potential subgroups 
in the population was 1–5 groups, 0–3 orders, with the 
order reflecting the degree of rapidity or slowness of the 
trend of change. BIC and AIC were used to assess the 
model’s fit, with an emphasis on minimizing the absolute 
value of the index.

χ 2 analysis  and ANOVA were used to compare 
demographic differences between different serologic change 
patterns. Multiple linear and logistic regression analyses 
were conducted to further explore demographic differences. 
Statistical significance was set at P<0.05.

Prediction and simulation of the current COVID-19 
epidemic by constructing a high-dimensional transmission 
dynamics model

According to the natural history and vaccination situation 
for COVID-19 in Xiamen City, we have constructed a 
high-dimensional transmission dynamics model. This is 
a well-organized ordinary differential equation (ODE) 
model in tensor form, which includes factors of age, 
vaccine, regional contact, stages in disease progress, and 
critical events such as population growth, and migration. 
In this model, we grouped the total population N into 
susceptible, V; exposed, E; asymptomatic infection, A; 
pre-symptomatic infection, F; symptomatic infection, 
I; removed/recovered that will not be reinfected, Rp; 
recovered and will possibly be reinfected, R; therefore, 
this high-dimensional transmission dynamics model could 
also be named as VEAFIRPRV model (Figure 1).

The model settings are detailed in Appendix 1.
All the values of parameters in the model are presented 

in Table 1.
The functions for the high-dimensional transmission 

dynamics model (VEAFIRPRV model) are as follows:

( )( )1ijk ijk ijk ijk ijk
d V R VE t V
dt

τ λ= − −
 

[4]

τRijk

In

Aijk Rijk

Out

In

In

OutOutOutOutOut

ω''ijkFijk
(1-pijk) ω'ijkEijkλijk (1-VEijk(t)) Vijk

InInInIn

Out

δγ'ijkAijk

(1-δ) γijkIijkIijkFijkEijkVijk Rpijk

(1-δ) γ'ijk A
ijk

δγ
' ijk

I ijk

p ijk
ω ijk

E ijk

Figure 1 The framework for the VEAFIRPRV model. Arrows among compartments show the flow of the population, while arrows marked 
“In” and “Out” represent the natural demographic changes in the population. “In” includes immigration as well as newborns, while “Out” 
includes migrating out and natural death.

https://cdn.amegroups.cn/static/public/JTD-23-1516-Supplementary.pdf
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( )( ) ( )1 1ijk ijk ijk ijk ijk ijk ijk ijk ijk ijk
d E VE t V p E p E
dt

λ ω ω′= − − − −
 

[5]

( )1ijk ijk ijk ijk ijk ijk ijk ijk
d A p E A A
dt

ω δ γ δγ= − − −′ ′
 

[6]

( )1ijk ijk ijk ijk ijk ijk
d F p E F
dt

ω ω= − ′ ′′−  [7]

( )1ijk ijk ijk ijk ijk ijk ijk
d I F I I
dt

ω δ γ δγ′= −′ − −  [8]

( ) ( )1 1
ijkp ijk ijk ijk ijk

d R I A
dt

δ γ δ γ ′= − + −
 

[9]

 ijk ijk ijk ijk ijk ijk
d R I A R
dt

δγ δγ τ= −′+  [10]

After building the model, we applied it in the prediction 
and simulation for the future COVID-19 epidemic. We 
used the incidence rate and infection rate as the indexes for 
the scale of the COVID-19 epidemic in Xiamen City and 
carried out interventions that meet the current policies.

Statistical analysis

Data entry and organization related to this study were 
performed in Excel 2019. Continuous quantitative variables 
were described by median ± interquartile range (IQR), 
and categorical qualitative variables by percentages. 
Statistical analysis was performed by SPSS version 22.0, 
and differences were statistically significant at P<0.05. For 
a cross-sectional study, a multivariant regression model 
was constructed via Python’s statsmodels package. Then 
longitudinal data was analyzed by applying the GBTM 
model on traj package of Stats 17.0. High-dimensional 

transmission model was processed on Matlab R2023a, 
differential equations were solved using the fourth-order 
Runge Kutta method, and model convergence was based 
on the least root mean square (LRMS), further using the 
coefficient of determination (R2) to determine the goodness 
of fit. Graphs were plotted using CorelDRAW 2020.

Results

Crowd distribution for the samples

On February 10th, 2023, we initiated data collection by 
distributing questionnaires to healthcare workers in 
Xiamen City, including staff from hospitals, Centers for 
Disease Control and Prevention (CDCs), and primary 
healthcare organizations. Since it is difficult to collect both 
infection and serum antibody information from the general 
population or implement random sampling in the targeted 
healthcare workers, we have implemented convenience 
sampling. These questionnaires aimed to collect baseline 
information about the participants, which included details 
about their health conditions, COVID-19 vaccination 
status, and information regarding their previous SARS-
CoV-2 infections, such as symptoms and infection dates. 
Subsequently, serum antibody tests were conducted on the 
participants. A total of 1,344 questionnaires were collected 
along with their corresponding serum antibody results. 
To establish clear inclusion and exclusion criteria for our 
study, we considered that serum antibodies could persist 
for a maximum of 73 days (6). We included individuals 
who had developed antibodies within 73 days before serum 

Table 1 Definition and values of parameters in VEFIARpRV model of COVID-19

Parameters Definition Unit Value Source

p Proportion of asymptomatic infections 1 0.08 Reference (17-21)

ω Inverse of the average latent period Day-1 1/3

ω' Inverse of the average incubation period from exposed (e) to  
pre-symptomatic infection (F)

Day-1 1/2

ω'' Inverse of the average incubation period from pre-symptomatic 
infection (F) to infections (I)

Day-1 1/3

γ Recovery or removal rate for symptomatic infections 1 1/6.8

γ' Recovery or removal rate for asymptomatic infections 1 1/6.8

τ Inverse of the average duration of losing immunity Day-1 1/180

δ Proportion of those become susceptible again after recovery 1 0.7

COVID-19, coronavirus disease 2019.
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testing. For those who were infected by SARS-CoV-2, 
we considered the day of symptom onset as the antibody-
emerging date, while for those who were not infected, we 
used the last vaccination date as the antibody-emerging 
date. As a result, 1,191 participants met our inclusion 
criteria and were included in the study.

Of the 1,191 participants included in the study, 1,056 
individuals were confirmed to be infected with COVID-19 
(infections), and 135 individuals were not infected (no 
infections), as indicated in Table 2. Statistical analysis 
revealed that there were no significant differences in terms 
of gender (χ2=0.09, P=0.92) and age groups (χ2=9.639, 

P=0.08) between infected and non-infected individuals. 
However, there is statistical significance in the difference 
of the addresses (χ2=30.053, P<0.05) and vaccination status 
between infected and non-infected groups (χ2=376.706, 
P<0.05). Notably, the distributions of antibody titers for 
IgG, IgM, and NAb were found to be similar, as depicted 
in Figure 2.

Table 2 Crowd distribution for the samples

Categories Non-infected Infected Tests

Total, n 135 1,056

Gender, n χ2=0.09,  
P=0.92

Male 39 301

Female 96 755

Age (years), n χ2=9.639,  
P=0.08

<20 0 3

21–30 48 263

31–40 50 462

41–50 23 233

51–60 14 87

>61 0 6

Address, n χ2=30.053,  
P<0.05

Jinjiang City 0 1

Haicang 8 79

Huli 21 118

Jimei 32 140

Siming 36 517

Tongan 22 105

Xiangan 16 95

Longhai 0 1

Vaccination, n χ2=376.706,  
P<0.05

Fundamental immune 1 61

Booster 1 7 676

Booster 2 87 304

Booster 3 40 7
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Correlation of individual properties and antibody titer for 
COVID-19

The distribution of individual properties and the results of 
Spearman correlation analysis are presented in Figures 3,4. 
Notably, none of the individual properties exhibited strong 
correlations with each other (r<0.7), and regression coefficients 
(β), and 95% CIs for IgG, IgM, and NAb with individual 
baseline properties are provided in Figures S1-S3, then the 

standardized regression coefficients (β) for these different 
antibodies are presented in Figures S4-S6. Consequently, 
all individual properties were included in the multilinear 
regression (MLR) model.

In the MLR model, we have included the following factors: 
age, height, weight, smoking status, and antibody duration. 
Model selection was based on the BIC and AIC scores. The 
model with the lowest score was deemed the optimized 
MLR model (Table 3). The analysis revealed that a history 

Figure 3 Distribution of personal properties of three types of antibodies. (A) The distribution of personal properties of IgG. The dots are 
in the scatter plot and at the edge are the distribution fitting plots, the same case in (B), which is for IgM, and (C), which is for NAb. IgG, 
immunoglobulin G; IgM, immunoglobulin M; NAb, neutralizing antibody.
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of pulmonary disease and hospitalization had a significant 
impact on IgG titer. The optimized MLR model for IgG 
was determined to be ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age f height S smk S cd S hosp S his= + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age f height S smk S cd S hosp S his= + + + + + + + .  H o w e v e r ,  n o n e 
of the examined factors were found to be statistically 
significant for IgM titer, leading to the conclusion that 

( )0IgMY f f age= +  wa s  the  mixed  MLR mode l .  For 
NAb titers, we found that sex, smoking, family history 
of pulmonary disease, and hospitalization significantly 
influenced the titer. The optimized MLR model for NAb 
was determined to be ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + + .

For longitudinal analysis for the change of antibodies, 
optimized GBTM of IgG is an all-one-ordered four-
group (1,1,1,1 group) model (Figure 5), average posterior 
probabilities for each group are 0.9735, 0.9665, 0.9894, and 
08864, respectively. The results of the optimal model fitting 
showed that among the four categories, the first category 
group contained 52 individuals (4.3%) with low initial IgG 

levels, followed by a gradual increase in IgG levels, which 
was defined as a “gradual growth type”, and the other three 
groups contained 1,139 individuals (95.8%) with different 
initial IgG levels, followed by a gradual decrease in IgG 
levels, which was defined as a “gradual decline type”. The 
study determined that the optimal IgM model is a full 
first-order group (1 group), and the average posterior 
probability of each group is 1.0000. The optimal model 
fitting results show that the initial IgM levels of each group 
are different, and then show a gradual decline, which is 
defined as a “gradual decline type”. We determined that 
the optimal NAb model was also a full first-order group 
(1,1 group), and the average posterior probability of each 
group was 0.9790, and 0.9763, respectively. The results 
of fitting the optimal model showed that the initial NAb 
levels of each group varied, and then showed a gradual 
decline, which was defined as a “gradual decline type”. 
Detailed calculation results of GBTM are provided in 
appendix available at https://cdn.amegroups.cn/static/
public/jtd-23-1516-1.xlsx.
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Table 3 AIC and BIC results of optimized MLR model for three types of antibodies 

Antibody MLR model AIC BIC

IgG ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

6,580.65 8,501.69

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S hosp f SI S his= + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S hosp f SI S his= + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S hosp f SI S his= + + + + + + + + + + + + + +

6,578.65 8,494.61

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S hosp S his= + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S hosp S his= + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S hosp S his= + + + + + + + + + + + + +

6,576.66 8,487.75

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S PI S hosp S his= + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S PI S hosp S his= + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height f weight S smk S resd S cd S vac S PI S hosp S his= + + + + + + + + + + + +

6,576.62 8,592.98

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height S smk S resd S cd S vac S PI S hosp S his= + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height S smk S resd S cd S vac S PI S hosp S his= + + + + + + + + + + +

6,574.67 8,586.66

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height S smk S resd S cd S vac S hosp S his= + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height S smk S resd S cd S vac S hosp S his= + + + + + + + + + +

6,572.91 8,582.96

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height S smk S cd S vac S hosp S his= + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S loca f height S smk S cd S vac S hosp S his= + + + + + + + + +

6,571.19 8,579.77

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age f height S smk S cd S vac S hosp S his= + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age f height S smk S cd S vac S hosp S his= + + + + + + + +

6,564.77 8,616.74

( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age f height S smk S cd S hosp S his= + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age f height S smk S cd S hosp S his= + + + + + + +

6,561.42 8,611.84

( ) ( ) ( ) ( ) ( ) ( )0IgGY f S sex f age S smk S cd S hosp S his= + + + + + + 6,560.03 8,613.38

( ) ( ) ( ) ( ) ( )0IgGY f S sex S smk S cd S hosp S his= + + + + + 6,559.26 8,623.92

( ) ( ) ( ) ( )0IgGY f S sex S smk S hosp S his= + + + + 6,559.28 8,645.66

( ) ( ) ( )0IgGY f S smk S hosp S his= + + + 6,557.90 8,647.51

Table 3 (continued)

Simulation of the current COVID-19 epidemic by high-
dimensional transmission dynamics model

As shown in Figure 6, in the absence of available data 
on the precise number of COVID-19 infections, we 
employed a high-dimensional transmission dynamics 
model that considers reinfection and the vaccination 
status of individuals to simulate the current epidemic in 

Xiamen City. Notably, after the initial peak observed in late 
December 2022 and January 2023, a second peak occurred 
in mid-May and early June in Xiamen City. Additionally, 
the model predicts a third peak in mid-October and early 
November. According to Figure 7, the analysis reveals 
variations in infection and incidence rates across different 
age groups. The age groups 30–39 and 40–49 years exhibit 
higher incidence and infection rates during both the second 
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Table 3 (continued)

Antibody MLR model AIC BIC

IgM ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

7,946.09 44,470.88

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0  IgMY S sex f age f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S hisf + + + + + + + + + + + + + +=

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0  IgMY S sex f age f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S hisf + + + + + + + + + + + + + +=

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0  IgMY S sex f age f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S hisf + + + + + + + + + + + + + +=

7,935.07 44,471.87

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + +

7,933.07 44,464.98

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S cd S vac S PI S symp S hosp f SI S his= + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S cd S vac S PI S symp S hosp f SI S his= + + + + + + + + + + + +

7,925.57 44,540.34

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S vac S PI S symp S hosp f SI S his= + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S vac S PI S symp S hosp f SI S his= + + + + + + + + + + +

7,923.60 44,534.36

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S vac S PI S symp f SI S his= + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S vac S PI S symp f SI S his= + + + + + + + + + +

7,921.63 44,528.56

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S PI S symp f SI S his= + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f S sex f age f weight S smk S resd S PI S symp f SI S his= + + + + + + + + +

7,917.96 44,529.20

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f age f weight S smk S resd S PI S symp f SI S hif s+ + + + + + + +=

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f age f weight S smk S resd S PI S symp f SI S hif s+ + + + + + + +=

7,916.00 44,523.82

( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f f age f weight S smk S resd S PI f SI S his= + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( )0IgMY f f age f weight S smk S resd S PI f SI S his= + + + + + + +

7,914.04 44,518.57

( ) ( ) ( ) ( ) ( ) ( )0IgMY f f age f weight S resd S PI f SI S his= + + + + + + 7,912.11 44,514.47

( ) ( ) ( ) ( ) ( )0IgMY f f age S resd S PI f SI S his= + + + + + 7,910.25 44,513.71

( ) ( ) ( ) ( )0IgMY f f age S resd f SI S his= + + + + 7,908.85 44,533.38

( ) ( ) ( )0IgMY f f age S resd S his= + + + 7,907.30 44,546.42

( ) ( )0IgMY f f age S resd= + + 7,905.92 7,905.92

( )0IgMY f f age= + 7,905.23 7,905.23

Table 3 (continued)
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and third peaks, followed by age groups 50–59, 18–29, and 
70–79 years. Conversely, the eldest age group (80+) and the 
youngest [0–2] tend to have lower infection and incidence 
rates. However, it is essential to note that, overall, the 
incidence and infection rates for all age groups follow a 
similar scale as observed in the mid-aged group.

Discussion

The COVID-19 pandemic has sparked extensive research 
into prevention and symptom management (22). Notably, 
the quantity and longevity of antibodies produced during 
infection or vaccination are critical factors related to 
reinfection risk and symptom severity (23). The consensus 

Table 3 (continued)

Antibody MLR model AIC BIC

NAb ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S PI S symp S hosp f SI S his= + + + + + + + + + + + + + + +

21,148.52 3,437,296,211.85

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S symp S hosp f SI S his= + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S symp S hosp f SI S his= + + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height f weight S smk S resd S cd S vac S phsms S symp S hosp f SI S his= + + + + + + + + + + + + + +

21,146.52 3,437,296,701.40

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0  NAbY f S sex f age S loca f height f weight S smk S cd S vac S phsms S symp S hosp f SI S his= + + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0  NAbY f S sex f age S loca f height f weight S smk S cd S vac S phsms S symp S hosp f SI S his= + + + + + + + + + + + + +

21,144.52 3,437,299,018.61

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height S smk S cd S vac S phsms S symp S hosp f SI S his= + + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height S smk S cd S vac S phsms S symp S hosp f SI S his= + + + + + + + + + + + +

21,142.52 3,437,308,928.06

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height S smk S cd S vac S symp S hosp f SI S his= + + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height S smk S cd S vac S symp S hosp f SI S his= + + + + + + + + + + +

21,138.11 3,453,456,677.99

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height S smk S cd S vac S symp S hosp S his= + + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f age S loca f height S smk S cd S vac S symp S hosp S his= + + + + + + + + + +

21,136.13 3,453,534,733.00

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex S loca f height S smk S cd S vac S symp S hosp S his= + + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex S loca f height S smk S cd S vac S symp S hosp S his= + + + + + + + + +

21,134.36 3,454,199,593.04

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex S loca f height S smk S vac S symp S hosp S his= + + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex S loca f height S smk S vac S symp S hosp S his= + + + + + + + +

21,133.60 3,457,789,104.03

( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex S loca f height S smk S vac S hosp S his= + + + + + + +

( ) ( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex S loca f height S smk S vac S hosp S his= + + + + + + +

21,134.56 3,466,392,372.71

( ) ( ) ( ) ( ) ( ) ( )0NAbY f S sex f height S smk S vac S hosp S his= + + + + + + 21,127.39 3,480,471,771.79

( ) ( ) ( ) ( ) ( )0NAbY f S sex S smk S vac S hosp S his= + + + + + 21,128.19 3,488,662,304.51

( ) ( ) ( ) ( )0NAbY f S sex S smk S hosp S his= + + + + 21,127.58 3,498,633,038.26

Loca, location/address; smk, whether smoke; resd, respiratory diseases history; cd, chronical diseases; vac, vaccination condition; 
phsms, pharmaceutical or non-pharmaceutical protection condition of individuals; PI, whether infected by SARS-CoV-2; symp, severity 
of symptoms; hosp, whether admitted in hospitals; SI, time interval between onset of symptoms and testing for antibody titer; his, family 
history of respiratory or pulmonary diseases. AIC, Akaike information criterion; BIC, Bayesian information criterion; MLR, multilinear 
regression; IgG, immunoglobulin G; IgM, immunoglobulin M; NAb, neutralizing antibody; SARS-CoV-2, severe acute respiratory syndrome 
coronavirus 2.
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holds that as antibody levels wane, individuals become 
more susceptible to reinfection, leading to discussions on 
the protective role of antibodies after natural infection or 
vaccination (24).

Crowd distribution for the samples

In this study, serum antibody titers of 1,191 public health 
workers in Xiamen City were tested over four consecutive 
monthly intervals. The study population exhibited no 
significant differences in antibody distribution due to a 
likely common immune response to both infection and 
vaccination (11). As the staff are all from the Xiamen 
Healthcare System, including doctors, CDCs workers, 
and primary healthcare organizations, it explains the 
insignificant difference in age groups and gender, but it also 
indicates that these indifferences could not be extrapolated 
to the general population.

However, for the differences in addresses, it is found that 
some staff live in cities near Xiamen and work in Xiamen 

CDC, therefore, there would be some differences in the 
regional distribution of the staff. However, due to the 
limitations of the sample, we cannot assume that there is a 
difference in infection among the population in different 
districts of the whole of Xiamen City. What’s more, before 
December 2022, it was recommended that people take one 
booster dose of the COVID-19 vaccine, yet after the new 
COVID-19 policy, there has been a new peak in people 
accepting vaccination (25). This questionnaire was sent out 
in February, therefore, there will be some differences in the 
vaccinated status between infected and non-infected groups.

Correlation of individual properties and antibody titer for 
COVID-19

Previously, there have been studies exploring the serological 
information for COVID-19 antibodies, which included 
immune process, seroconversion time, immune response 
as related to clinical presentation, and immune duration 
(3,5,6,10,26-29). Results of these studies have indicated 

Figure 5 Result of GBTM on fitting the trend for three types of antibodies. (A) For IgG, 1, 2, 3, 4 represents four groups  
(1,1,1,1 group). 1 is the first category group. 4.3% is the proportion of the individuals that fit this group and it was an upward line, 
which was defined as a “gradual growth type”, and the other three groups 2, 3, and 4 contained the rest of the individuals (95.8%) 
with different initial IgG levels, and showed a gradual decrease in IgG levels, which was defined as a “gradual decline type”. Similarly, 
in (B), which is for IgM, there was only one line, showing that the optimal IgM model is a full first-order group (1 group), which 
is defined as a “gradual decline type”. (C) For the NAb model, featuring two lines, which means it is also a full first-order group  
(1,1 group). IgG, immunoglobulin G; IgM, immunoglobulin M; NAb, neutralizing antibody; GBTM, group-based trajectory model.
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that immune responses to SARS-CoV-2 are consistent with 
general viral infection patterns. However, some researchers 
suggest that immunity generated from natural infection 
appears to be short, which gives a hint that reinfection 
is inevitable (6,30-32). Should we find out individual 
properties that could make a difference in the antibody titer, 
it would be possible for us to select those who are at a high 
risk of short-term reinfection.

A MLR analysis was conducted to identify factors 
influencing IgG, IgM, and NAb titers. For IgM, only age 
demonstrated a significant impact, likely due to its role as 

the primary response and potential age-related variations in 
immune response (5); IgM plays a prominent role during the 
early age and only exists for 20–30 days. Since T-cell-derived 
antibody production decreases and B-lymphocyte generation 
decreases with age, antibody response against infectious 
agents and after vaccination may not be sufficient (17).  
In contrast, IgG, whose titers remained elevated and 
relatively stable for a longer period after induced, were 
significantly influenced by age, weight, height, history 
of pulmonary disease, and hospitalization. History of 
pulmonary diseases could be illustrated as soundness of 

Figure 6 Simulated infection rate and incidence rate of COVID-19 in Xiamen City and China. (A) The figure for the daily infection rate, 
X-axis shows the prediction time. The left Y-axis is for Xiamen City and the right one is for China, which is the same in (B) for the daily 
incidence rate. COVID-19, coronavirus disease 2019.

Figure 7 Simulated infection rate and incidence rate of COVID-19 for different age groups in Xiamen City. (A) The figure for the daily 
infection rate, and the X-axis shows the prediction time. The left Y-axis is for various age groups and the right one is for all ages, which is 
the same in (B) of daily incidence rate. COVID-19, coronavirus disease 2019.
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the immune system, which indicates that those who have 
suffered from pulmonary diseases may have pulmonary 
immune system damage and result in lower antibody  
titers (18). Hospitalization could be explained as the severity 
of symptoms, which can be indicative of immune system 
health and symptom severity (19). The effect of smoking on 
antibody response has shown variable results with different 
viruses. For example, a very low antibody response was 
measured in smokers after the hepatitis B vaccine (20). 
NAb titers were impacted by sex, smoking, family history of 
pulmonary disease, and hospitalization. Smoking’s effect on 
NAb titers can be explained by NAb’s longer-lasting nature, 
indicating its significance in protection (8).

Ever since the pandemic, there have been a variety of 
studies that revealed the duration of different antibodies 
through typical textbook knowledge as well as experimental 
studies, cohort studies, etc. (5,21,29,33). Here in this study, 
we have collected and tested for serum antibodies of 1,191 
healthcare workers four times and applied a GBTM model 
to explore potential development trajectories of antibodies. 
It was found in this study that only IgG presented a different 
trajectory, while IgM and NAb are the unchanged type. As 
IgM indicates the instant infections, remained unchanged 
since the timing for serological tests were all conducted 
in the middle of the month, when the infection was over. 
For NAb, it may be because they could last for more than 
3 months, and due Labor Day holiday from May 1st to 5th, 
people started travelling and increased the possibility of 
contact, then there was a peak in the infection rate, which 
may be the reason why NAb titer was unchanged. However, 
it was found that there were 52 individuals had a low IgG 
titer at first then kept growing during the follow-up period, 
while other 1,139 individuals with different initial IgG titer 
kept decreasing. Then we made a further investigation 
on those 52 individuals and found out that there were no 
differences in their infection status at the first serum test or 
in their gender, age, and other properties. Therefore, we 
need a further exploration of the reason why some would 
show an increasing trend while others declined (34).

Simulation of the current COVID-19 epidemic by high-
dimensional transmission dynamics model

Here we are under the circumstance that obtaining the 
current epidemic is unable to be acquired. We refined 
the previous SEIAR (Susceptible-Exposed-Infection-
Asymptomate-Removed/Recovered) transmission dynamics 
model (35), we have introduced some real-world scenarios 

such as vaccination, pre-symptomatic infections, reinfection 
to the simple model and constructed VEAFIRPRV model. 
Then we simulated the future incidence rate and infection 
rate of COVID-19. We have simulated and predicted that 
there was a peak in the middle of May and early July here 
in Xiamen City, which may result from an increased contact 
rate among the population due to the Labor Day holiday 
and Dragonboat Festival. And it was consistent with the 
time when IgG titer decreased and NAb titer increased 
in the tested participants. Hence, we believe that the 
authorities should remind people to take precautions during 
holidays when there is a large movement of people, and the 
government should be prepared for the possible shortage of 
medical resources due to COVID-19 during holidays.

Then we predicted that starting from late September, 
there would be another peak in the mid-October to early 
November. This could be explained by the increase in 
contact due to school starting, National Holidays, and 
cold weather, leading to low ventilation rates in rooms. 
Therefore, there may be a further decrease in IgG and 
another increase in NAb. Another prediction and simulation 
of incidence rate and infection rate was for different age 
groups. The quality of the antibody response is influenced 
by age, as is the case for T-cell responses (17). Given the risk 
of severe COVID-19 in the elderly is higher, age-dependent 
immunological mechanisms are particularly important to 
elucidate, as these could be targeted to improve responses to 
natural infection and vaccination (29). During simulation, we 
also found that the highest infection and incidence rate lie in 
the age group of 30–39 years, where the old and the babies 
are the lowest, we believe this result was driven by the total 
population of Xiamen City and the number of people by age 
groups. The independent population (age 15–60 years) has 
more chance of contact with each other than the dependent 
population (age <15 and >60 years).

Limitation

The limitation of the study is that the participants did not 
reflect the general population, as the study was conducted 
in a small group of healthy volunteers and we applied 
convenience sampling. Therefore, we could not adequately 
examine the differences in antibody levels in the presence 
of various diseases that are more likely to be present in 
the population with the demographic data we examine. 
Another limitation of this study lies in the high-dimensional 
transmission dynamics model. In this model, the contact 
among the population is considered to be the major factor 
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affecting the epidemic peak, mutation of the virus as well 
as the possible immune escape of variants are not taken 
into consideration, which indicates fact that the model is 
supposed to be refined to make a better prediction on the 
future epidemic trend.

Conclusions

While COVID-19 policies have evolved, the health 
challenges posed by the disease remain significant. New 
mutants continue to emerge, suggesting that reinfection is 
still a pressing problem. This study reveals key information 
about COVID-19 antibody dynamics in Xiamen healthcare 
workers. It highlights age-related impacts on IgM and 
diverse influences on IgG, and NAb titers, emphasizing 
the complexity of individual characteristics in antibody 
responses. However, the distinct trajectory in IgG levels 
among subsets warrants further investigation for potential 
factors driving these contrasting trends.

To build a more robust defense against reinfection and 
optimize self-protection strategies, we must delve deeper 
into understanding antibody dynamics and tailor more 
effective public health strategies as we navigate the ongoing 
challenges posed by COVID-19 epidemics.

Acknowledgments

Funding: This work was supported by the Xiamen Municipal 
Bureau of Science and Technology (No. 2022YJ-3) and the 
Science and Technology Development Fund of Macau SAR 
(No. 005/2022/ALC).

Footnote

Provenance and Peer Review: This article was commissioned 
by the Guest Editors (Jing Cheng, Tao Xu, Zifeng Yang, 
Wenda Guan) for the series “Current Status of Diagnosis 
and Forecast of COVID-19” published in Journal of Thoracic 
Disease. The article has undergone external peer review.

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://jtd.
amegroups.com/article/view/10.21037/jtd-23-1516/rc

Data Sharing Statement: Available at https://jtd.amegroups.
com/article/view/10.21037/jtd-23-1516/dss

Peer Review File: Available at https://jtd.amegroups.com/

article/view/10.21037/jtd-23-1516/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://jtd.amegroups.
com/article/view/10.21037/jtd-23-1516/coif). The series 
“Current Status of Diagnosis and Forecast of COVID-19” 
was commissioned by the editorial office without any 
funding or sponsorship. The authors have no other conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the ethics 
committee of the Xiamen Center for Disease Control [XJK/
LLSC(2022)004] and participants signed the agreement 
consent before filling out the questionnaire.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. World Health Organization. Strategy and planning. 
Available online: https://www.who.int/emergencies/
diseases/novel-coronavirus-2019/strategies-and-plans

2. Cohen JI, Burbelo PD. Reinfection With SARS-
CoV-2: Implications for Vaccines. Clin Infect Dis 
2021;73:e4223-8.

3. Castro Dopico X, Ols S, Loré K, et al. Immunity to SARS-
CoV-2 induced by infection or vaccination. J Intern Med 
2022;291:32-50.

4. Cruz AT, Zeichner SL. Duration of Effective 
Antibody Levels After COVID-19. Pediatrics 
2021;148:e2021052589.

5. Fearon DT, Locksley RM. The instructive role of innate 
immunity in the acquired immune response. Science 
1996;272:50-3.

6. Sneller MC, Liang CJ, Marques AR, et al. A Longitudinal 

https://jtd.amegroups.com/article/view/10.21037/jtd-23-1516/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1516/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1516/dss
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1516/dss
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1516/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1516/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1516/coif
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1516/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/strategies-and-plans
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/strategies-and-plans


Journal of Thoracic Disease, Vol 16, No 4 April 2024 2419

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(4):2404-2420 | https://dx.doi.org/10.21037/jtd-23-1516

Study of COVID-19 Sequelae and Immunity: Baseline 
Findings. Ann Intern Med 2022;175:969-79.

7. Jiang JC, Zhang Y. Serological antibody testing in 
the COVID-19 pandemic: their molecular basis and 
applications. Biochem Soc Trans 2020;48:2851-63.

8. Evans JP, Zeng C, Carlin C, et al. Neutralizing antibody 
responses elicited by SARS-CoV-2 mRNA vaccination 
wane over time and are boosted by breakthrough infection. 
Sci Transl Med 2022;14:eabn8057.

9. De Giorgi V, West KA, Henning AN, et al. Naturally 
Acquired SARS-CoV-2 Immunity Persists for Up 
to 11 Months Following Infection. J Infect Dis 
2021;224:1294-304.

10. Padoan A, Dall'Olmo L, Rocca FD, et al. Antibody 
response to first and second dose of BNT162b2 in a 
cohort of characterized healthcare workers. Clin Chim 
Acta 2021;519:60-3.

11. Nordström P, Ballin M, Nordström A. Risk of SARS-
CoV-2 reinfection and COVID-19 hospitalisation 
in individuals with natural and hybrid immunity: a 
retrospective, total population cohort study in Sweden. 
Lancet Infect Dis 2022;22:781-90.

12. Hachmann NP, Miller J, Collier AY, et al. Neutralization 
escape by SARS-CoV-2 Omicron subvariants BA. 2.12. 1, 
BA. 4, and BA. 5. N Engl J Med 2022;387:86-8.

13. Brand SPC, Ojal J, Aziza R, et al. COVID-19 transmission 
dynamics underlying epidemic waves in Kenya. Science 
2021;374:989-94.

14. Cai J, Deng X, Yang J, et al. Modeling transmission 
of SARS-CoV-2 Omicron in China. Nat Med 
2022;28:1468-75.

15. Donnat C, Bunbury F, Kreindler J, et al. Predicting 
COVID-19 Transmission to Inform the Management of 
Mass Events: Model-Based Approach. JMIR Public Health 
Surveill 2021;7:e30648.

16. Memoli V, Ekanmian G, Lunghi C, et al. What methods 
are used to study the association between medication 
adherence trajectories, estimated with the group-based 
trajectory modeling (GBTM) method, and health-related 
outcomes?-a protocol for a systematic review. Syst Rev 
2022;11:102.

17. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T 
Cell Responses to SARS-CoV-2 Coronavirus in Humans 
with COVID-19 Disease and Unexposed Individuals. Cell 
2020;181:1489-1501.e15.

18. Swartz MD, DeSantis SM, Yaseen A, et al. Antibody 
Duration After Infection From SARS-CoV-2 in the Texas 
Coronavirus Antibody Response Survey. J Infect Dis 

2023;227:193-201.
19. Smits VAJ, Hernández-Carralero E, Paz-Cabrera MC, et 

al. The Nucleocapsid protein triggers the main humoral 
immune response in COVID-19 patients. Biochem 
Biophys Res Commun 2021;543:45-9.

20. Huang YP, Gauthey L, Michel M, et al. The relationship 
between influenza vaccine-induced specific antibody 
responses and vaccine-induced nonspecific autoantibody 
responses in healthy older women. J Gerontol 
1992;47:M50-5.

21. Piccoli L, Ferrari P, Piumatti G, et al. Risk assessment and 
seroprevalence of SARS-CoV-2 infection in healthcare 
workers of COVID-19 and non-COVID-19 hospitals 
in Southern Switzerland. Lancet Reg Health Eur 
2021;1:100013.

22. Iwasaki A, Yang Y. The potential danger of suboptimal 
antibody responses in COVID-19. Nat Rev Immunol 
2020;20:339-41.

23. Newell KL, Clemmer DC, Cox JB, et al. Switched and 
unswitched memory B cells detected during SARS-CoV-2 
convalescence correlate with limited symptom duration. 
PLoS One 2021;16:e0244855.

24. Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and 
immunogenicity of an inactivated SARS-CoV-2 vaccine 
in healthy adults aged 18-59 years: a randomised, double-
blind, placebo-controlled, phase 1/2 clinical trial. Lancet 
Infect Dis 2021;21:181-92.

25. Nair S, Chen X. Biology of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and the humoral 
immunoresponse: a systematic review of evidence to 
support global policy-level actions and research. Glob 
Health J 2022;6:38-43.

26. Baumgarth N, Nikolich-Žugich J, Lee FE, et al. Antibody 
Responses to SARS-CoV-2: Let's Stick to Known Knowns. 
J Immunol 2020;205:2342-50.

27. Dan JM, Mateus J, Kato Y, et al. Immunological memory 
to SARS-CoV-2 assessed for up to 8 months after 
infection. Science 2021;371:eabf4063.

28. Lee WS, Wheatley AK, Kent SJ, et al. Antibody-
dependent enhancement and SARS-CoV-2 vaccines and 
therapies. Nat Microbiol 2020;5:1185-91.

29. Xie J, Ding C, Li J, et al. Characteristics of patients with 
coronavirus disease (COVID-19) confirmed using an IgM-
IgG antibody test. J Med Virol 2020;92:2004-10.

30. Kusunoki H, Ohkusa M, Iida R, et al. Longitudinal 
Changes in IgG-Type SARS-CoV-2 Antibody Titers after 
COVID-19 Vaccination and a Prominent Increase in 
Antibody Titers When Infected after Vaccination. Vaccines 



Xu et al. COVID-19 antibody trends and epidemic projections in Xiamen2420

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(4):2404-2420 | https://dx.doi.org/10.21037/jtd-23-1516

(Basel) 2023;11:860.
31. Chen J, Liu X, Zhang X, et al. Decline in neutralising 

antibody responses, but sustained T-cell immunity, in 
COVID-19 patients at 7 months post-infection. Clin 
Transl Immunology 2021;10:e1319.

32. Iyer AS, Jones FK, Nodoushani A, et al. Persistence and 
decay of human antibody responses to the receptor binding 
domain of SARS-CoV-2 spike protein in COVID-19 
patients. Sci Immunol 2020;5:eabe0367.

33. Uysal EB, Gümüş S, Bektöre B, et al. Evaluation of 
antibody response after COVID-19 vaccination of 
healthcare workers. J Med Virol 2022;94:1060-6.

34. Altawalah H. Antibody Responses to Natural SARS-CoV-2 
Infection or after COVID-19 Vaccination. Vaccines (Basel) 
2021;9:910.

35. Niu Y, Rui J, Wang Q, et al. Containing the Transmission 
of COVID-19: A Modeling Study in 160 Countries. Front 
Med (Lausanne) 2021;8:701836.

Cite this article as: Xu L, Abudunaibi B, Zeng Z, Zhao Y,  
Wang Y, Guo X, Zhang Y, Li T, Lu W, Tian W, Guo Z,  
Su C, Chen T. Relationship of various COVID-19 antibody 
titer with individual characteristics and prediction of future 
epidemic trend in Xiamen City, China. J Thorac Dis 
2024;16(4):2404-2420. doi: 10.21037/jtd-23-1516



© Journal of Thoracic Disease. All rights reserved. https://dx.doi.org/10.21037/jtd-23-1516

Supplementary

Appendix 1

Methods

Data collection
Data used in this study includes COVID-19 histories of 
individuals and a follow-up serum antibody test. As it is more 
available to conduct this research among healthcare workers, 
convenience sampling is a practical way to collect data. 
However, as participants are chosen based on ease of access, 
it may not represent the broader population accurately.

First, we initiated data collection by distributing 
questionnaires to public health workers in Xiamen healthcare 
system, including hospitals, CDCs, and primary healthcare 
organizations, and questionnaires were distributed to samples 
who were selected via convenient sampling. As we targeted 
individuals who had been infected by SARS-CoV-2 or 
had received vaccinations after December 1st, 2022. After 
collecting and reviewing the completed questionnaires, a 
total of 1,344 questionnaires were collected. Based on prior 
research indicating that NAbs for COVID-19 might persist 
for a maximum of 73 days (34), questionnaires that were 
incomplete or lacking essential infection-related information 
were excluded from the study. Finally, 1,191 of them being 
eligible to be included as the study’s sample population.

Subsequently, we conducted serum antibody testing 
on the selected participants in four monthly intervals, 
specifically in February, March, April, and May. This 
longitudinal testing aimed to capture the variations in 
antibody titers over time.

MLR models
MLR models were established to analyze the relationship 
between individual baseline properties and COVID-19 
antibody titers. Regression coefficients (β), 95% CIs, and 
standardized regression coefficients (β) are calculated and 
the calculation results are presented in Figures S1-S6.

GBTMs
The study constructs a GBTM, which can depict the 
characteristic dynamic changes of time-varying variables as 
the number of follow-up visits increases. It simultaneously 
divides the population into several latent class groups and 
establishes a latent growth class model within each category 
to describe the individual changes over time within the 
group. This model can not only reveal the relationships 
between different latent trajectories but also depict the 
fluctuations within the trajectory, thus providing a more 
realistic grouping of indicators and conducting predictive 

research (16).
The study uses the “traj” package in Stata 17.0 software 

for data analysis, first analyzing the dynamic changes 
in serum IgG, IgM, and NAb from baseline, the first 
to the third follow-up visits, and employing GBTM to 
identify latent clusters with similar trajectories. The study 
hypothesizes that the population serum may be divided 
into up to five main categories: gradual growth type, 
gradual decline type, unchanged type, growth and then 
decline type, decline and then growth type. The model 
is set with the highest order of 3, meaning the potential 
groupings of the population are between 1 and 5 groups, 
with orders 0–3, where the order reflects the speed of the 
trend changes. The model’s effectiveness is evaluated using 
the BIC and the AIC, with the smallest absolute value of 
the indicators and closer to 0 indicating a better model fit. 
Additionally, a higher average posterior probability of group 
membership (AvePP) indicates a better model fit. To ensure 
the effectiveness of the grouping, each group composition 
in the model should account for at least 2–5% and must be 
consistent with medical knowledge.

After determining the GBTM groupings, χ2 analysis is 
used to compare differences in serological change patterns 
by gender, age, and region, and analysis of variance is used 
to compare differences in serological change patterns by 
gender, age, and region. Multivariate linear regression 
and multivariate logistic regression are used to compare 
demographic differences between different serological 
change patterns. A P value of <0.05 is considered statistically 
significant. See the GBTM results of IgG, IgM and NAb 
in appendix available at https://cdn.amegroups.cn/static/
public/jtd-23-1516-1.xlsx.

High-dimensional transmission dynamics model
VEAFIRPRV model was built under these assumptions:

In this model, we grouped the total population N into 
susceptible, V; exposed, E; asymptomatic infection, A; 
pre-symptomatic infection, F; symptomatic infection, 
I; removed/recovered that will not be reinfected, Rp; 
recovered and will possible be reinfected, R.

(I) First, for the total population, we have included 
various regions (i), age groups (j) and their vaccination status 
(k) in the compartment N when making the calculation.

(II) Transmission rate, which is in the dimension of 
[person·time−1], contributes to the reduction of susceptible 
population (V) and the increase of exposed population 
(E). Usually, in an ODE model, it simplifies individual 
properties to the population averaged quantities, and 

https://cdn.amegroups.cn/static/public/jtd-23-1516-1.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1516-1.xlsx
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depicts the age-heterogeneity of transmission by the ‘contact 
frequency matrix’. Therefore, we assumed that should age-
specific contact frequency matrices for various regions are 
available, then for every individual in different age groups, 
the expected number of symptomatic infectious individuals 
he/she has contacted during a time interval could be 
calculated. Then the vaccine efficacy, which considered 
to be able to reduce transmissibility, was included in to 
calculation.

(III) In an ODE model, any infected individual is first 
categorized as exposed (E), then at time t, according to 
the natural history of COVID-19, there would be two 
results for exposed population E, they either become pre-
symptomatic infection F or asymptomatic infections A. 
Assume that a proportion p of E is converted to A, and the 
proportion of E to I is (1 − p). It is generally believed that 
after a person is exposed to pathogens, the time interval of 
he/she gets invaded by the pathogen and able to emit it is 
called latent period. The rate of transformation from E to 
A is proportional to the amount of E with a scale factor of 
pωE and ω is the latent period coefficient. And in the case 
of symptomatic infections, since there would be a time lag 
between the time of virus excretion and symptoms onset, 
we set ω' and ω'' as average incubation period from exposed 
(E) to pre-symptomatic infection (F) and average incubation 
period from pre-symptomatic infection (F) to infections (I), 
respectively.

(IV) After infection, individuals would be removed/
recovered, however, some of the removed/recovered 
population could experience reinfection while others won’t. 
Therefore, we set two endings for COVID-19 infections: 
one is the removed/recovered group that would not be 
infected again (Rp), and the other is removed/recovered 
group that would experience reinfection (R). Here we set 
the proportion of those become susceptible again after 
recovery as δ. At time t, the number of transfers to R and Rp 
is γI if the time interval between onset and diagnosis from 
a symptomatic infection I is γ; the number of transfers to R 
from A who is identified as asymptomatic infection is γ'I.

(V) As reinfection is often correlated with losing 
immunity, therefore, for Rp become susceptible, V depends 
on the immunity duration of the individual, here we 
introduce τ to be the average duration coefficient for 
immunity duration at time t.

Sensitivity analysis
This High-dimensional transmission dynamics model is an 
extension of basic SEIAR model, or we could consider it as 

an SEIAR model with multiple groups. Since the SEIAR 
models with multi-group are widely used by many studies 
(36,37), the sensitivity of other model parameters could be 
found in those references. In our model, the vector of VE, 
is multiplied on the group-wise contact matrix; which makes 
the sensitivity analysis analogous to those for the contact 
matrix.

Additional results

Figure S1 Regression coefficients (β), 95% CIs for IgG with 
individual baseline properties. CI, confidence interval; IgG, 
immunoglobulin G.
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Figure S2 Standardized regression coefficients (β) for IgG with individual baseline properties. IgG, immunoglobulin G.

Figure S3 Regression coefficients (β), 95% CIs for IgM with individual baseline properties. CI, confidence interval; IgM, immunoglobulin M.
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Figure S4 Standardized regression coefficients (β) for IgM with individual baseline properties. IgM, immunoglobulin M.

Figure S5 Regression coefficients (β), 95% CIs for NAb with individual baseline properties. CI, confidence interval; NAb, neutralizing 
antibody.

Figure S6 Standardized regression coefficients (β) for NAb with individual baseline properties. NAb, neutralizing antibody.
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