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Introduction

Cardiovascular disease has been the main cause of death 
in recent years (1), with the majority being caused by 
coronary artery disease (CAD). CAD is related to the 
accumulation of cholesterol and fat substances in the 

coronary arteries, which can lead to blockage of the vascular 
system supplying blood to the cardiac muscle system, 
resulting in heart disease, which can be fatal. Nowadays, 
cardiovascular disease is an increasingly prevalent disease 
in both developed and developing countries around the 
world. From a clinical perspective, coronary computed 
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tomography angiography (CTA) utilizes injection of 
iodinated contrast agents to visualize the anatomical 
structure of coronary arteries. It is a widely used, non-
invasive, and highly sensitive imaging method for routine 
clinical diagnosis of cardiovascular diseases. In clinical trials, 
coronary artery segmentation is an essential step in a series 
of tasks such as plaque assessment, stenosis detection, and 
centerline extraction (2). Describing the coronary artery in 
CTA images can help detect stenosis, obstruction, and other 
vascular abnormalities within the coronary artery, which is 
crucial for clinical decision-making such as drug selection 
and interventional treatment. Therefore, automatic 
coronary artery segmentation methods not only need to 
achieve high segmentation accuracy but also maximize the 
structural integrity of coronary artery formation. However, 
accurate segmentation of coronary arteries in CTA images 
is a challenging task due to factors such as significant noise, 
partial volume effects, and varying vessel sizes, especially 
uneven intensity distribution and branching heights. At 
present, the location and severity of narrowing plaques in 
CTA images need to be manually evaluated by radiologists. 
The precise segmentation of coronary arteries usually relies 
on the manual depiction of each CTA slice by radiologists, 
which is not only time-consuming but also prone to 
misdiagnosis and omission. Therefore, there is an urgent 
need for automatic segmentation of coronary arteries in 
CTA images to achieve an automatic and objective system 
for detecting coronary artery stenosis and plaques.

Vascular feature enhancement is usually performed 

prior to vessel segmentation. Vessels in medical images 
can usually be modeled as tubular structures whose cross 
sections can be described as asymmetric circles or ellipses (3). 
Based on this geometric structure, many studies have been 
conducted on vessel enhancement. Most studies on vessel 
enhancement have used Hessian-based methods. These 
methods use the second-order derivative matrix of the image 
intensities (Hessian matrix) to detect tubular structures. 
Among the Hessian-based filters, the most commonly used 
filter is Frangi’s (4) and the less applied functions are Sato’s (5), 
Li’s (6), Erdt’s (7), and Zhou’s (8). All these functions can be 
used to enhance three-dimensional (3D) images. The main 
advantage of such methods is that they can be performed 
in a multi-scale manner to detect objects of different sizes. 
Non-Hessian-based methods have also been investigated. 
Zeng et al. (9) refined the vessels and highlighted their 
centers by a combination of oriented flux symmetry and 
oriented flux anti-symmetry vector measures based on the 
analysis of directional flux symmetry at the centers and 
boundaries of the vessels.

From the perspective of theoretical techniques involved 
in segmentation schemes, coronary artery segmentation 
methods can be divided into clustering-based methods (10), 
region growing-based methods (11), active contour model-
based methods (12), tracking-based methods (13), and specific 
theoretical methods (14). Gharleghi et al. have provided 
a general review on coronary artery segmentation (15).  
Yi and Ra (16) introduced the method of using local cubes 
to detect vessel branches based on region growing, and 
achieved segmentation of several thick blood vessels in the 
coronary artery. However, the effect is not ideal for thin 
vessels. Yang et al. (17) developed a hybrid-level set method 
based on the Bayesian framework for segmenting coronary 
arteries in CTA images. They used the posterior probability 
of regional statistical information to construct shape-
preserving factors for effective segmentation, but they were 
unable to segment small parts of coronary arteries with 
weaker intensity. Cetin et al. (18) defined an intensity-based 
model to extract coronary arteries from CTA data. The 
model constructs second-order tensors from image intensity 
to drive the evolution of vessel segmentation, initializes 
at a single seed point, and segments the entire vessel tree 
through an automatic branch detection algorithm. Lee 
and Lee (19) proposed a semi-automatic segmentation and 
tracking algorithm for 3D computed tomography (CT) 
vessels based on the active contour model and Kalman 
filter. The algorithm performs well in segmentation and 
tracking by manually selecting a sufficient number of 
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initial points for the active contour model to complete 
vessel boundary segmentation, and uses a Kalman filter to 
track the position and shape changes of vessel boundaries 
between slices. Wang and Jiang (20) combined an implicit 
3D vessel model with a level-set method to continuously 
adjust the vessel centerline and the estimated diameter of 
the vessel to achieve more accurate vessel segmentation. 
Besides, the approach by Wang et al. (21) is based on a non-
parametric shape-constrained active contour model, which 
improved the segmentation ability of weak boundaries 
by adding a shape constraint term to the energy function 
of the traditional Chan-Vese (CV) active contour model. 
However, this method is more time-consuming and lacks 
segmentation ability for small vessels compared to the 
traditional CV model. In recent years, deep learning-based 
segmentation methods have received a lot of attention 
due to their convenient automation and high efficiency. 
Dong et al. (22) designed a novel multi-attention, multi-
scale 3D deep network which addresses the limitation of 
traditional U-shaped network structures, which often lack 
the ability to effectively extract contextual information. 
This new network can synergistically and comprehensively 
explore core features from multiple perspectives. Zhang 
et al. (23) proposed a deep learning model for coronary 
artery segmentation in X-ray angiography images, based 
on the UNet skeleton. The model incorporates a channel 
attention module in skip connections and a central auxiliary 
supervision module at the network’s end. Experiments have 
demonstrated the effectiveness of these two modules in 
improving model performance and enabling the network to 
effectively segment vessels. However, all these methods still 
suffer from boundary leakage and fail to achieve the desired 
results, especially in dealing with vessel bifurcations.

In addition, the coronary artery skeleton or centerline 
provides important pathological information and often 
plays a crucial role in vessel segmentation. A previous study 
has shown an overview of available centerline or skeleton 
extraction techniques (24). Bullitt et al. (25) introduced 
a ridge detection method to identify centerlines, which 
utilizes the Hessian value of image intensity. Aylward and 
Bullitt (26) developed a method based on intensity ridge 
traversal. The obtained centerline is smoothed using a 
B-spline-based method. Cui and Xia (27) used an enhanced 
Frangi filter and calculated the gradient vector field to 
obtain 3D segmentation results, then used the high-order 
Runge-Kutta method to calculate the centerline. Overall, 
accurate coronary artery segmentation still faces challenges. 
One major challenge is the complex and variable topology 

of the coronary arteries, which makes it difficult to predict 
and track the position of the coronary cross section within 
the slice. Additionally, due to the inhomogeneity intensity 
of the image, it is arduous to distinguish the coronary 
arteries from the background objects. To address this 
issue, this paper proposes a new method for automatic 
segmentation of coronary arteries based on a local region 
active contour model. First, an anisotropic diffusion filter is 
used to remove noise while maintaining vessel boundaries. 
Then, a two-step strategy is used to extract skeletons for 
both thick and thin coronary vessels. In the first step of 
skeleton extraction, clustering is first used to extract the 
region containing coronary arteries and the heart to remove 
most of the background objects. Then, an improved Jerman 
filter is used to enhance this region, and a 3D region 
growing method that automatically determines seed points 
is used to extract individual coronary arteries. The skeleton 
is obtained using thinning methods based on segmentation 
results. In the second step of the skeleton extraction, based 
on analyzing the topological structure of the coronary 
arteries, a cylinder model guided high ridge traversal 
method is used to obtain the skeleton of thin blood vessels. 
The final coronary artery skeleton is obtained by merging 
the skeletons of thick and thin blood vessels to generate the 
initial contour of the active contour model. Finally, a local 
region-based geometric active contour model is used for 
serialized segmentation to obtain the final coronary artery 
segmentation. A main flowchart of the proposed method 
is shown in Figure 1. We present this article in accordance 
with the MDAR reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-24-421/rc).

Methods

Preprocessing

To improve the efficiency of subsequent methods, we 
preprocessed the original images. Preprocessing includes 
two main steps: window width/level adjustment and 
noise filtering. The CT volume contains not only the 
target object, which is the coronary artery, but also other 
objects such as the ascending aorta and pulmonary vessels, 
which are within the intensity range of −1,024 to +3,071 
Hounsfield unit (HU) in the original CTA images. After the 
injection of the contrast agent, the HU values of the target 
objects ranged from 100 to 500. To enhance the contrast 
between the target objects and the background objects, and 
to suppress the interference of the neighbouring objects 

https://jtd.amegroups.com/article/view/10.21037/jtd-24-421/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-421/rc
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on the target structures, the window width and window 
level were adjusted on the original CTA images. This 
changes the range and brightness of each grey level in the 
image, allowing for mapping adjustments to the grey levels 

of the image. After this, the image intensity values were 
normalised to values between 0–255 to remove negative 
voxels in HU for algorithmic implementation. Since the 
scattering of X-rays in human tissues during CT imaging 
or the poor performance of the CT scanning equipment 
electronics can lead to noisy images, the use of anisotropic 
diffusion filtering (28) can better preserve the boundaries of 
the target objects while removing the image noise:
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( ) ( )0
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where ( ),0I x  represents the grayscale level of voxels 

at time t , ( )0I x  is the original 3D image, div  and ∇  
represent the divergence operator and gradient operator 

respectively. The conductivity coefficient ( )c I∇  is a 

monotonically decreasing function as the image gradient 

increases, defined as: ( ) ( )2I dc I e− ∇∇ = . The coefficient d  

is the threshold used to control the diffusion rate, which is 
set as 75 in this paper. The more iterations of filtering, the 
more obvious the noise filtering effect of the image, but this 
may affect the clustering effect in the subsequent algorithm. 
To balance the filtering effect and its impact on subsequent 
algorithms, we empirically set the number of iterations to 
3. The anisotropic diffusion filter was implemented using 
the Simple Insight Segmentation and Registration Toolkit 
(SITK), an open-source software widely used in medical 
image processing. Figure 2 shows the results after processing 
the image using different number of filtering iterations. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). 

3D original image

Noise filtering

Merged skeleton

Active contour model

Segmented vessel

K-means clustering

Improved Jerman filter

3D region growing

Leaf node detection

Height ridge travel

Figure 1 Flowchart of the proposed method. 3D, three-dimensional.

Figure 2 Example of (A) original 2D slice and the slices that have undergone anisotropic diffusion filtering iterations of (B) 3 times,  
(C) 6 times, and (D) 9 times, respectively. 2D, two-dimensional.

A B C D
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Vessel skeletonization

Typically, the topology of coronary arteries in CTA images 
is complex, with thicker portions near the root of the 
coronary artery and thinner bifurcated vessels away from 
the root of the coronary artery. These vessels are often 
surrounded by other objects and share similar intensity, 
making it difficult to segment individual coronary arteries 
or to obtain a more complete coronary arterial skeleton via 
traditional region growing methods. To solve this problem, 
the skeleton extraction process was divided into two steps 
and two different strategies were used. Firstly, the thick 
vessel skeleton closer to the root of the coronary artery was 
extracted. Then, the thin vessel skeleton of the remaining 
vessels farther from the coronary root, which could not be 
extracted in the previous stage, was obtained.

Skeleton extraction of thick vessels

The thick vessel skeletonisation method was first proposed 
to extract the skeleton of the thicker part of the coronary 
artery. The process begins by clustering the volumes, 
followed by extracting the coronary artery through 
segmentation using the 3D region growing method. Prior 
to this, the vessels were filtered using a Hessian-based vessel 
enhancement filter. Lastly, the result from segmentation is 
skeletonized to finalize the process. In order to reduce the 
impact of surrounding coronary objects on segmentation and 
improve the efficiency of subsequent algorithms, we used the 
K-means clustering method (29) to extract the target object 
and remove irrelevant objects. After conducting detailed 
experiments to balance performance and computation time, 
we set the number of clusters as three. 

The three-class clusters correspond visually to the 
background region, the transition region, and the coronary 
region (which also contains the heart, some pulmonary 
vessels, and bone). Based on the vessel prior in the CTA 
image, the volume of the coronary region is relatively 
small in the original volume, so we chose the cluster with 
the smallest number of voxels as the coronary region. The 
clustering results are shown in Figure 3. In recent years, 
Jerman et al. (30) proposed a novel vesselness enhancement 
filter. The filter is briefly described below. This filter is 
constructed based on a diffusion tensor used to detect 
approximately spherical structures, which is a metric based 
on the ratio of eigenvalues:

3

1 2 3
1 2 3

3VR λ λ λ
λ λ λ

 
=  + +   

[2]

where 1 2 3, ,λ λ λ  are the three eigenvalues of the Hessian 
matrix, and the eigenvalues are sorted according to their 
value. In order to detect slender structures (Figure 4A) that 

satisfy the characteristic of 1 2 3λ λ λ≈ ≈ , 1λ  is used instead of 

( )2 1λ λ− . However, this will suppress the rounded structure 

(Figure 4B), at which point 1 2 3λ λ λ≈ ≈ , ( )2 1λ λ−  will be 0 

or close to 0. The term 1λ  is removed because vessels may 

often exhibit characteristics of both rounded and tubular 
structures. As the enhancement function is susceptible to 
noise, it is difficult to distinguish between local structures 

when the magnitudes of both 2λ  with 3λ  are small, e.g., 
three eigenvalue magnitudes of a noise voxel with similar 
magnitudes may be recognised as a rounded structure and 

Figure 3 Examples of clustered images. (A) Transition region; (B) background region; and (C) coronary region.
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Figure 4 Schematic diagrams illustrating measures of similarity to local structures. (A) Tubular structure measurement; (B) rounded 
(blob-like) structure measurement (e1, e2, and e3 are eigenvectors of the Hessian matrix, sorted in ascending order based on vector 
modulus values).

be incorrectly enhanced. The regularisation of 3λ  yield ρλ  ,  
which increases the difference between eigenvalues at low 
eigenvalue magnitudes and suppresses the measure of the 
background structure. At last, the vascular cross-section is 
more approximated as an ellipse rather than a circle, and is 
enhanced for the elliptical structure in the filter function. 
The final proposed filter function for vessels is as follows:
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Where 3λ  is the regularised ρλ :
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and τ  is a cropping threshold that takes values between 
0 and 1. Compared to the Frangi filter, the Jerman filter 
utilises only two eigenvalues. In order to make full use 
of the image feature information and at the same time 
enhance the effect of suppressing the background, this 
paper proposes to add the background suppression 

term 2
j

j D
S λ

≤

= ∑  to the Jerman filter, where D  is the 

dimension of the image.
The following improved vesselness filter function is 

obtained:
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[5]

Here, the threshold c is taken to be half the value 
of the maximum Hessian norm. Finally, the optimal 
vesselness measure values are obtained in combination 
by calculating the maximum vesselness measure in each 

scale [ ]min max, ,σ σ σ σ∈ . The vesselness filtering results 

are shown in Figure 5, where the new vessel enhancement 
filtering suppressed some background objects and also 
enhanced the target object.

After the vascular enhancement of the image, a 3D 
region growing method was used to extract the individual 
coronary arteries. The first step in region growing is to 
select a set of seed points. The selection of the initial seed 
point has a direct impact on the result of region growing. In 
order to avoid the tedious manual selection of seed points, 
an automatic seed point selection method is proposed. 
This method uses Hough detection combined with vessel 
structure prior to the image slices after clustering to obtain 
the position of the root of the coronary artery in the slice 
and select the seed point at that position. The coronary 
arteries begin in the ascending aorta and their roots are 
connected to the ascending aorta. The ascending aorta is 
subcylindrical and nearly circular in cross-section, with 
minimal variation in size between adjacent slices. Due to 
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the similar intensity between the root of the coronary artery 
and the ascending aorta, the area connecting the coronary 
artery and the ascending aorta will show an irregular shape 
in the slice. Hence, the Hough transform (31) was first used 
to detect the circular in the slices and locate the ascending 
aorta in the clustered image slices. The circle radius size 
for Hough circle detection is an important parameter. 
The radius size of the circle is empirically selected in the 
range of 35 to 50, and the region of interest (ROI) of the 
detected image is selected to be a square region centred 
on the original image, with a side length of 200, to exclude 
possible false matches. The ascending aorta detection 
results are shown in Figure 6A. After locating the ascending 
aorta, the centre of its region is selected as the seed point, 
and the complete ascending aorta cross-section region is 
obtained using the flood fill method. Let the number of 

voxels of the ascending aortic cross-section region be in ,  
and the number of voxels of the ascending aortic cross-

section region of the next layer of slices be 1in + . When 

1 1i

i

n
n

α+ − ≥ , the ascending aorta in the next layer of slices 

is connected or disconnected from the coronary artery, and 
α  is the threshold term, which is set as 0.2 in this paper. 
Based on the position of the coronary arteries in relation to 
the ascending aorta, there is a process in the slice where the 
ascending aortic region connects to the left coronary artery 
(Figure 6B), then disconnects, and connects to the right 
coronary artery (Figure 6C) and disconnects again. After 
detecting the slices where the two connections between 

the ascending aorta and the coronary artery are located, 
the coronary root region can be obtained by subtracting 
the ascending aortic region in the upper slice from the 
ascending aortic connectivity region, and the centre of 
this region is selected as the seed voxel to perform the 3D 
region growing in the filtered image of the blood vessel. 

If a neighbour voxel iS  of the seed voxel seedS  satisfies 

the similarity criterion, i seedS S T− ≤ , it is added to the 

target region and set as a new seed voxel, where meanS  is 

the intensity mean of all the seed voxels, 
1

i

n

mean seed
i

S S
=

=∑ .  

After clustering, the image was partially removed from 
the background object and the vessel filtering has further 
weakened the background object. As a result, the T  setting 
in this paper has a larger optional range and can be set to 
between 0.15 and 0.25, which makes it less prone to over-
segmentation. Region growing is terminated when no voxel 
conforming to the similarity rule is added to the target area. 
After this step, the thicker coronary arteries are segmented 
as depicted in Figure 7A. Some of the branches near the end 
of the coronary has disconnections in the clustering results 
and are also disconnected after vesselness enhancement 
filtering.

Due to the intensity inhomogeneity and noise of the 
image, there are some voxels within the vessels that deviate 
significantly from the mean vesselness measure within the 
vascular region, which are difficult to obtain by region 
growing. For possible holes in the vessels obtained from 
region growing, close operation is performed on the vessels 

Figure 5 Example of images after vesselness enhancement filtering. (A) Origin image filtering using methods in the previous study (30); and 
(B) improved image filtering using the methods in this paper.
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Figure 6 Example for Hough detection of ascending aorta. (A) Ascending aorta indicated by one green circle; (B) left coronary artery root 
area; (C) right coronary artery root area.

Figure 7 Examples of vessels obtained from 3D region growing, vessel skeleton, schematic diagram of the height ridge traversal and 
cylindrical models. (A) The segmentation results of thick vessels obtained from 3D region growing. (B) Thick vessel skeleton (red) and 
thin vessel skeleton (blue). (C) Schematic diagram of height ridge traversal (t, height ridge traversal direction). (D) Schematic diagram of 
the cylindrical model (r, circle radius; v, normal vector of cylindrical base; h, cylinder height; sph, the sphere; cyl, the cylinder). 3D, three-
dimensional.

with the convolution kernel size set to 7×7. The segmented 
coronary is then skeletonised using the thinning method (32) 
and the skeleton is shown in Figure 7B.

Skeleton extraction of thin vessels

According to the contrast of the radiocontrast agent, blood 
can be divided into contrast-enhanced blood, a mixture 
of unenhanced and enhanced blood (mixed blood), and 
unenhanced blood (33). The further away from the root of 
the coronary artery, the smaller the cross-sectional diameter 
of the vessel. Thick vessels near the root of the coronary 
artery can be classified as contrast-enhanced blood, whereas 

thin vessels can be classified as mixed blood. Mixed blood 
approximates the intensity of the surrounding objects and 
is thus more difficult to segment compared to thick vessels. 
To obtain the thin vessel skeleton, the skeleton is extracted 
using an adaptive threshold height ridge traversal guided by 
a cylinder model. The vesselness measure at the centre of 
the vessel is significantly higher than that at the border of 
the vessel, and these voxels form a ridge of high vesselness 
measure in the vessel. The greater the vesselness measure of 
the voxel in the height ridge, the more likely it is to belong 
to the vessel region. The height ridge traversal method 
incorporates neighbouring voxels with high vesselness 
measure into candidate skeleton voxels along one direction 

A B C D
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Height ridge
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starting from a seed voxel (Figure 7C). The coronary artery 
skeleton is similar to a tree topology. We first found the 
end nodes from the thick vessel skeleton obtained earlier, 
which will be referred to as leaf nodes for visual illustration. 
Leaf nodes in the coronary skeleton have the following 
characteristics: they have only one skeleton voxel connected 
to them within a small neighbourhood, and that voxel is 
positioned away from the coronary root, close to the vessel 

termination. The leaf node 0x  is used as the seed voxel 
of the height ridge traversal algorithm to track the height 
ridge along the direction t. For each neighbourhood voxel 

ix , its local neighbourhood satisfying 0 0 0ix x t⋅ >


 with 

( )i lowV x th>  is included as a candidate skeleton voxel. The 

local neighbourhood size and lowth  is the key parameter 

during candidate skeleton voxel extraction. For example, 

a smaller lowth  and larger local neighbourhood can extract 

more candidate skeleton voxels, while at the same time 
leading to the misincorporation of voxels from background 
regions into the set of candidate voxels. Conversely, a larger 

lowth  is more effective at suppressing background voxels, 
but may lead to skeleton disconnections. Furthermore, the 
traversal direction of the height ridge is also crucial. In 
order to efficaciously extract thick vessel candidate skeleton 
voxels, we proposed to construct a cylinder model for 

determining t , lowth , and restricting the neighbourhood 

size to guide the extraction of candidate skeletons, which is 
inspired by (18). The cylinder model is shown in Figure 7D, 
and the details are explained as follows.

A sphere centred at the voxel 3
sx R∈  can be denoted 

as ( ),s s ssph x r= , where r  is the radius of the sphere. A 

cylinder with sx  as the center of its base is represented 

as: ( ), , ,s s s s scyl x r h v= , where r  is the radius of the base 

circle, h  is defined as the height of the cylinder, and v  is 
the normal vector of the circular base of the cylinder. Next, 

a set of directional vectors ig  is sampled from the centre of 

the unit sphere 2S , and each metric iM  in the ig  direction 

is an image-based feature constructed based on the intensity 
of the vesselness measure. Formally, the measurement of 

iM  is expressed as follows:

( )2
i i iM m n= −

 
[6]

where im  is the mean of 1Ω , and in  is the mean of 2Ω , 

where 1 sphΩ = , 2
1
2

cyl sphΩ = − . Finally, select ig , which 

minimises iM  to v , and v  is used as traverse direction. 

The height ridge traversal begins at the end of the thick 

vessels. First, construct an initial sphere 0sph  with the seed 

node 0x  as the centre. Since the vesselness measure only 
reaches its maximum value when the Gaussian scale of the 

filter 0σ  is consistent with the vessel diameter, 0σ  can be 

used to determine the radius of the sphere, i.e., 0 0
1
2

r σ= ,  

( )( )0 0argmax V xσ = . The initial threshold value of 0th  

is the average vessel measure value of voxels in the 0sph , 

which is ( )( )0 0,jth avg V x x sph= ∀ ∈ . In the region of 2Ω ,  

those that satisfy ( )i lowV x th>  are selected as candidate 

skeleton voxels.

During the traversal,  the centre of 1isph +  is the 

intersection of v  and the circular surface of isph , and this 

voxel is used to construct the cylinder model for the next 
iteration until the terminate condition is satisfied. The 

mean value of the measure of nsph  centred at the current 

coordinates nx  is nm  and the mean value of the measure of 

0sph  is 0m . If the ratio 
1

nm
m

 is less than the given threshold 

β , this indicates that the tracking has reached the end of 
the vessel and needs to be stopped at the current voxel, 
which is set to 0.6 in this paper.

After the height ridge traversal, the candidate skeletons 
are extracted using the thinning algorithm. Due to the low 
intensity and severe noise, only the skeleton with the largest 
length is retained as the skeleton for the thick vessels, 
addressing potential isolated skeletons. Finally, the thick 
vessel skeleton is merged with the thin vessel skeleton.

Segmentation based on local region geometric active 
contour model

Compared to edge-based active contour models, such as the 
geodesic active contour (GAC) model (Figure 8A) (34) and the 
distance regularized level set evolution (DRLSE) model (35),  
region-based geometric active contour models can deal 
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Figure 8 Example of slices obtained from segmentation of three active contour models (the area enclosed by the red curve represents the 
segmentation result obtained) and the 3D reconstruction result of segmented coronary arteries. (A) An example of using the GAC model to 
segment image slices. (B) A 2D slice segmented using the RSF model. (C) A 2D slice segmented using the local region active contour model 
proposed in this paper. It can be observed that over-segmentation occurred in (A,C), while our method successfully segments the target. (D) 
The 3D reconstruction of segmentation result obtained using the method proposed in this paper. 3D, three-dimensional; GAC, geodesic 
active contour; 2D, two-dimensional; RSF, region-scalable fitting.

with boundary leakage and intensity inhomogeneities more 
effectively (36). Local region geometric active contour model 
such as region-scalable fitting (RSF) model (37) is suitable 
for two-phase image segmentation, and the definition of the 
energy function is based on a single voxel. Even at locations 
far from the initial contour, the contour appears quickly 
in these regions after a few iterations. These models often 
segment the entire image (Figure 8B), making it difficult to 
detect a single target from a complex background. The CV 
model (38) differs from the aforementioned models, in that 
its energy function is defined based on the whole image, 
and its contour does not evolve too quickly, allowing its 
utilisation for the segmentation of small targets (Figure 8C).

Compared to the CV model, the Localised Chan-Vese 
(LCV) model (39) is based on fitting the intensity to a local 
region and is more robust to intensity inhomogeneity in 
the image. Hence, we applied the LCV model to coronary 
segmentation. Given that the segmentation target usually 
occupies a small area in the image, it is difficult to segment 
the target object solely based on intensity. Here, we 
used xJ , which integrates image intensity and vesselness 

measure, to replace the intensity-based measurement, i.e., 
in the original LCV model, where α  is a weight factor that 
balances intensity values and vesselness measurement, set to 
0.8 in this paper.

At the same time, in order to avoid re-initialisation of the 
level set function and to improve the stability of the model 

evolution, the regular term ( )pR φ  of the level set function 

in DRLSE is added to the energy function:

( ) ( )pR p dxφ φ
Ω

= ∇∫  [7]

where p  is a double-well potential function that keeps the 

signed distance property, 1φ∇ = , in regions adjacent to 

the zero level set, and keeps the level-set function (LSF) as 

a constant, 1φ∇ = , away from the zero level set, thereby 
reducing irregularities in the evolution of the LSF.

Using the zero-level set of a Lipschitz function φ  to 
represent the curve, the entire energy functional can be 
expressed as:

[8]( )

( )( )
( ) ( )

2

2

1

1

+ | |

x

x

p

E J u H dxdy

J v H dxdy

dxdy R

φ

φ

µ δ φ φ φ

Ω

Ω

Ω

= −

+ − −

∇ +

∫
∫
∫

 

where the length term coefficient is represented by 1µ , the 
closed contour is denoted by φ  and the image domain by 

Ω . Additionally, xµ  and xv  represent the mean values of 
the fitted intensity of the local regions of the image:

( ) ( )( ) ( )
( ) ( )( )

,

,x

x y y J y dy
u

x y y dy

φ

φ
Ω

Ω

⋅ ⋅
=

⋅
∫
∫
 

   
[9]

( ) ( )( ) ( )
( ) ( )( )

, 1

, 1x

x y y J y dy
v

x y y dy

φ

φ
Ω

Ω

⋅ − ⋅
=

⋅ −
∫
∫
 

   
[10]

The given Eqs. [9] and [10] includes the smoothed 

Heaviside function ( )H x  and the Dirac function ( )xδ  

respectively. ( ),B x y  is a characteristic function in terms 

of a radius parameter R , and we use ( ),B x y  to mask local 

A B C D
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regions.

( )
1

,
0 otherwise

x y R
x y

 − <= 


  [11]

According to the continuous gradient descent flow 
method, the partial differential equation (PDE) of the 
evolution contour is expressed as:

( ) ( ) ( ) ( )( )
( ) ( )( )

2 2

1 2div

x x

p

x x J u J v
t

L d

φ δφ

µ φ µ φ φ

∂
= − − + −

∂
− ∇ + ∇ ∇  

[12]

where 1µ  and 2µ  are weight coefficients. For the proposed 
model, it is sensitive to initialization, and the initial contour 
is generated using the previously obtained coronary 
skeleton for serialization segmentation. The skeleton is 
generally represented as one or several small connected 
areas in the slice. In order to balance model performance 
and computation cost, the voxel at the centre of the 
connected area is selected to generate a 3×3 rectangle as 
the initial contour of the active contour model. Due to 
the excellence of the initial contour, we could obtain fast 

convergence of the LSF. Figure 8D shows the results of 
the final segmentation using the active contour model. We 
found that the proposed method can efficiently segment 
almost all thick vessels and avoid severe over-segmentation 
and under-segmentation. In addition, our method also 
maintained a certain degree of smoothness on the vessel 
surface and preserved the continuity of the vessel shape. 
However, some terminal vessels were not segmented due to 
their low intensities.

Results

As an illustration of the validity of the methods in this paper, 
we applied them to validate the Automated Segmentation 
of Coronary Arteries (ASOCA) challenge dataset (40). The 
dataset comprises of 40 training and 20 test cases, including 
both normal and diseased patients. The experiments were 
performed via Python and the MATLAB R2017b platform 
on a computer equipped with an Intel Core i5 1.6 GHz 
CPU with 16 GB of RAM.

For clinical CTA images, the detailed parameters are set 
to the default values listed in the Methods section. Figure 9 

Figure 9 Coronary artery segmentation results of different methods. The first row shows the ground truth of five coronary artery images, 
and the subsequent three rows denote their corresponding coronary artery segmentation results by the methods in the previous study (41), 
CV model, and the proposed method, respectively. CV, Chan-Vese. 
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shows the segmentation results of five different original CTA 
images and their corresponding methods of the previous 
study (41), the CV model and the method proposed in this 
paper. In order to make the comparison as fair as possible, 
the parameters in the previous study (41) and the CV model 
were optimized to obtain the best segmentation results. It 
is observed that, compared to the segmentation obtained 
by the method in the previous study (41) and CV model, 
the proposed method can segment more thick blood vessels 
despite the weak boundary and low contrast between the thick 
blood vessels and cardiac tissues. This is mainly attributed to 
our method extracting a more complete coronary skeleton, 
which provides a good guide for the segmentation of the 
active contour model. Even if the segmentation of the middle 
part of the slice fails, it does not affect the segmentation of 
the other slices. Furthermore, our method effectively utilizes 
vessel intensity and local structural information, and is better 
able to handle regions with intensity inhomogeneity and 
segment thick vessels more accurately than the other two 
methods from the use of an active contour model based on 
local region.

In order to quantify the segmentation performance of 
the method, three commonly used evaluation measures: 
precision, recall, and dice similarity coefficient (DSC), are 
used in this paper. These measures are defined as follows:

TPPrecision
TP FP

=
+

 [13]

TPRecall
TP FN

=
+

 [14]

2
2

TPDSC
TP FP FN

=
+ +

 [15]

where TP, FP and FN denote true positives (the number 

of vessel voxels correctly identified), false positives (the 
number of non-vessel voxels incorrectly identified as vessel 
voxels), and false negatives (the number of vessel voxels that 
are not identified as vessel voxels), respectively. The DSC 
ranges from 0 to 1, with 1 denoting complete overlap.

Table 1 shows the segmentation performance of the other 
four different methods compared to our method on the 
twenty CTA datasets. Among them, the CV method and the 
method in the study of (41) are our implementations in this 
dataset, and the metric values of UNet (42) and VNet (43)  
methods are derived from studies in the same dataset in 
reference (44). We can find that the average segmentation 
accuracy, recall, and DSC of this method are 86.64%, 
91.26%, and 79.13%, respectively. Our method scored the 
highest in precision and recall, and was on par with the 
VNet method in DSC. Considering the current superiority 
of VNet in deep learning-based methods, we believe that 
the performance of our method is acceptable.

To further demonstrate the impact of the skeleton and 
vessel measure features on the segmentation performance 
of the method, an example is given to illustrate it for the 
following two different cases: (A) the proposed method does 
not use a skeleton to help generate the initial contour of 
the active contour model (we use the centroid of the area 
of the segmentation result of the previous slice to set the 
initialization in the next slice); and (B) the active contour 
model in the proposed method works without information 
of vesselness measure.

Figure 10A shows the results of coronary artery segmentation 
in case A. It is observed that the thick vessels can be 
segmented effectively, but fail to segment some of the 
thin vessels effectively. This is mainly due to the complex 
topology of the vessels, which often appear far away from the 
segmentation area in the last slice, and when there is a lack 
of positional guidance for these vessels, active contour model 
cannot segment without producing over-segmentation. 

Table 1 The segmentation performance of the five methods, measured by precision, recall and DSC

Methods Precision Recall DSC

Jawaid et al. (41) 0.8022±0.0607 0.8290±0.0941 0.7408±0.0698

CV (38) 0.7765±0.0552 0.7286±0.1039 0.6832±0.1064

UNet (42) 0.748±0.08 0.837±0.10 0.787±0.06

VNet (43) 0.759±0.06 0.849±0.08 0.806±0.08

Our method 0.8664±0.0734 0.9126±0.0720 0.7913±0.0815

The indicator value is expressed in the form of mean ± SD. DSC, dice similarity coefficient; CV, Chan-Vese active contour model; SD, 
standard deviation. 
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Figure 10B gives the segmentation for case B. The 
segmentation of thick vessels performs well, but thin vessels 
cannot be segmented due to low intensity, resulting in over-
segmentation, and the failure to segment this slice resulted 
in the production of disconnected vessels. The segmentation 
of the method of this paper is shown in Figure 10C,  
which uses the skeleton to obtain information about 
the overall topology of the coronary arteries. Since the 
vesselness measure are integrated into the energy function 
of the active contour model (see Eq. [13]), both thin and 
thick vessels are efficiently segmented compared to the 
segmentation results of cases A and B.

However, there are drawbacks in the proposed method. 
For example, it failed to segment the thin vessels that 
were not extracted from the skeleton, and part of the 
thin blood vessels that were extracted to the skeleton had 
disconnections (see Figure 10C). This is mainly attributed 
to the local-region-based active contour model driving the 
evolution of the contour based on the intensity differences 
between the inner and outer regions of the contour, and 
its tendency to segment vessels with larger intensity and 
vesselness measure. When the contrast between thin vessels 
and surrounding objects is low, over-segmentation may 
occur due to misclassification of vessel voxels with lower 
intensity into the foreground, or under-segmentation may 
occur due to misclassification of vessel voxels with higher 
intensity into background objects, resulting in the failed 
segmentation of the slice. 

Discussion

In this paper, we developed a coronary segmentation 
method based on the local region active contour model. In 
general, effective segmentation of thin and thick vessels is 
quite difficult due to inhomogeneities in intensity, severe 
noise, and low contrast. For example, GAC rely on gradient 

information to segment blood vessels, which can easily lead 
to over-segmentation. Graph-cut-based methods usually 
encounter the problem of structural contraction bias in 
elongated vessels, and the same problem occurs in level-
set-based methods. In fact, due to the complex geometric 
topology and intensity distribution, it is difficult to obtain 
good segmentation results using the active contour model 
alone, e.g., coronary arteries in different slices may be 
far away from each other, and sometimes some coronary 
arteries may suddenly appear in one location in one slice 
and disappear in the next slice, so it is necessary to consider 
other methods to assist segmentation using the active 
contour model. Based on this idea, we applied two different 
strategies to extract the skeleton of thin and thick vessels and 
used the skeleton to guide the segmentation of the active 
contour model. The proposed active contour model utilizes 
the overall topological information of the coronary artery 
represented by the coronary artery skeleton with the local 
structural a priori of the vessel provided by the vesselness 
measure values integrated into the energy function. In 
order to extract the skeleton of thick vessels, K-means 
cluster was first used to remove most of the background 
objects. The improved Jerman vesselness filter was applied 
to enhance the suppression ability of background objects 
and improve the efficiency of subsequent algorithms. 
Then, the 3D region growing method was used to extract 
individual coronary arteries that do not include the 
ascending aorta. Compared to the direct extraction of the 
coronary skeleton using a 3D region growing method, the 
clustered image removed a large number of background 
voxels while preserving the vessel branches, even though 
some of the thin-vessel branches were disconnected, which 
still provided the subsequent algorithms with critical 
information about the branch initiation location. In the thin 
vessel skeleton extraction step, candidate skeleton voxels 
were obtained using a height ridge traversal method. To 

Figure 10 Coronary artery segmentation results obtained by case A (A), case B (B), and the proposed method (C). Note that there are 
several breaks in the images segmented by the method described in this article (indicated by blue arrows).

A B C
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improve the robustness of the algorithm, a cylinder model 
was used to guide the traversal and automatically determine 

the parameters t , lowth  and neighbourhood range. Lastly, 
the thin vessel skeleton and the thick vessel skeleton were 
merged to form the final coronary skeleton, which was used 
in the active contour model to generate the initial contour. 
The skeleton voxels marked the location of almost all 
vessels within the section, and the active contour model did 
not miss the segmentation of these vessels. Moreover, as the 
energy function of local region active contour models, such 
as the RSF model, is defined based on voxels, it performs 
a two-phase segmentation of the image. This often results 
in the entire heart being segmented as the foreground 
and the lungs as the background due to the high contrast 
between the cardiac and lung region, making it difficult 
to segment the coronary surrounded by the cardiac tissue 
in the image slices. To solve this problem, we selected the 
LCV model, which defines the energy function based on 
the whole image as the segmentation model. The method 
has been evaluated on a public CTA dataset, and the 
experimental results showed that the method can segment 
coronary arteries effectively with precision, recall and DSC 
of 86.64%, 91.26% and 79.13%, respectively. Additionally, 
our method can segment thinner vessels compared to the 
other two methods as mentioned above. In conclusion, 
the good performance of the method is mainly attributed 
to the efficient extraction of the vessel skeleton using a 
two-step approach and the ability to accurately drive the 
convergence of the active contours to the vessel boundaries 
by introducing information about the vesselness measure 
into the local region active contour model.

Due to differences in imaging quality among different 
CT machines, the method proposed in this paper may not 
achieve ideal segmentation when CT imaging quality is 
poor. For example, due to individual differences in coronary 
artery structure and the fluidity of contrast agents in the 
coronary artery, some images may have lower contrast 
between the coronary artery and surrounding tissues. 
In this case, the window width and level can be adjusted 
appropriately to perform grayscale mapping on the image 
and increase its contrast. If there is a lot of image noise, 
the local region active contour model cannot accurately fit 
the local intensity, and it is more prone to falling into local 
optima and segmentation failure during the segmentation 
process, that is, the contour curve after evolution 
convergence spreads outside the coronary area or contracts 
into a point. At this point, the number of iterations 
of anisotropic diffusion filtering can be appropriately 

increased to enhance the noise filtering effect and achieve 
the desired segmentation effect. However, it should be 
noted that excessive smoothing of the image may lead to 
poor clustering performance and blurred edges. When the 
active contour model fails to segment the slices, it can cause 
the 3D reconstructed coronary artery to break, and most 
of the time, these breaks occur at the distal portion of the 
coronary artery. Clinicians should pay attention to these 
broken areas and the unsegmented vessels at the terminal. 
They can perceive their positions based on the continuity 
of vessel positions and the intensity between adjacent slices, 
and observe these slices layer by layer in the CT image.

Strengths, limitations and future works

The method in this article combines the advantages of 
multiple algorithms and proposes to use an improved 
Jerman vascular enhancement filter and cylindrical model 
to guide the extraction of candidate skeletons in the 
process of extracting coronary artery skeletons using a two-
step method, achieving a relatively complete extraction 
of coronary artery skeletons. The active contour model 
can incorporate prior terms into the energy function of 
the model based on the features of the image, allowing 
the model to fully integrate image characteristics for 
segmentation. The local region active contour model has 
stronger adaptability to features of intensity inhomogeneity 
and strong noise in medical images. By incorporating 
vesselness measure into the local region fitting term, the 
model can utilize the local geometric structure information 
of the image. Meanwhile, using the coronary skeleton to 
initialize the initial contour of the active contour model 
enables the model to grasp the global topological structure 
information of the coronary artery. Therefore, this method 
fully adapts to the characteristics of CTA images and utilizes 
slice context information, grasping the geometric topology 
information of coronary arteries globally and locally, 
ultimately achieving good segmentation results. Finally, the 
method proposed in this paper does not require a tedious 
training process, nor does it require manual selection of seed 
points and initial contours, making it relatively easy to use.

However, there are still some limitations in our current 
research. Firstly, the dataset used in this study has a relatively 
small sample size, and the generalization performance 
of this method still needs to be validated on larger scale 
datasets. Secondly, there were disconnections in some of 
the segmented vessels and some of the thin vessels with 
low intensity could not be segmented, which is a common 
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problem with other segmentation methods. Thirdly, although 
the images were first filtered using a nonlinear anisotropic 
diffusion filter, the surface of the coronary arteries segmented 
by our method was not very smooth. Fourthly, the algorithm 
in this paper took approximately 15 minutes to segment a 
typical volume of size 512×512×275, and most of the running 
time was spent on active contour model segmentation, which 
was significantly longer than the computation time of the 
methods in the study of (41).

In future work, considering the unique advantages of 
deep learning, we will attempt to combine local region 
active contour models with deep learning models, such 
as (I) exploring a segmentation framework from coarse to 
fine, using segmentation based on deep learning models as 
coarse segmentation, and then refining the segmentation 
results using active contour models; (II) incorporating the 
segmentation of active contour models into the training 
process of deep learning models to enhance their feature 
extraction capabilities. By exploring the potential of 
applying local region active contour models in coronary 
artery segmentation, we hope to obtain a more high-
performance coronary artery segmentation model and 
attempt to validate it on large-scale datasets.

Conclusions

In this paper, we proposed an effective coronary segmentation 
method based on a local region active contour model. Due 
to the low contrast, severe noise, and inhomogeneities in 
intensity between thin and thick vessels in the coronary 
vessels in CTA images, two strategies were used to extract 
the skeleton for thick and thin coronary vessels. The overall 
topological information of the coronary artery characterised 
by the skeleton was then used for effective segmentation 
using the active contour model with the local structural 
a priori of the vessels provided by the vesselness measure 
integrated into the active contour model. For thick vessels, 
the images were first clustered, after which the thick vessels 
were extracted using a 3D region growing method after 
vessel enhancement using a modified Jerman vesselness 
enhancement filter. For the thin vessels, candidate skeletal 
voxels were obtained using a height ridge traversal 
approach and a cylinder model to guide the traversal and 
automatically determine the threshold parameter, traversal 
direction and neighbourhood range. The vessel skeleton 
was generated using a thinning method on the segmentation 
results. Lastly, the thick and thin vessel skeletons were 
merged as the final skeleton to guide the segmentation 

based on the active contour model. To address the intensity 
inhomogeneity of the image, a priori information about the 
local structure of the vessel characterised by the vesselness 
measure was introduced into the active contour model, and 
the coronary was finally segmented. The method does not 
rely on manual selection of seed points with initial contours 
and avoids the heavy training process as in the case of deep 
learning-based methods. Experiments on the public dataset 
of coronary CTA showed that our method has better 
segmentation than other 3D vessel segmentation methods 
in terms of precision, recall, and DSC. Moreover, our 
method allows for accurate segmentation of thick vessels by 
exploiting information about the intensity and vesselness 
measure values. Meanwhile, the segmentation results of 
our method contain more thin vessels. Although some of 
them appear to have blurred and disconnected boundaries, 
radiologists can perceive them based on the continuity of 
the vessel location and the intensity between neighbouring 
slices, which are difficult to segment using conventional 
algorithms. At last, our proposed automatic coronary artery 
segmentation algorithm is expected to be applied in medical 
teaching, clinical trials, and assisting conventional clinical 
diagnosis.
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