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Background: Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study 
has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and 
tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated 
protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this 
study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. 
Methods: We performed Illumina Human Methylation 450K Beadchip arrays to investigate the 
methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry 
to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and 
c-Jun promoter methylation in HELFs.
Results: We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in 
early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was 
considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in 
advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild 
expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed 
at 12 and 24 h in HELFs.
Conclusions: Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN 
promoter hypermethylation might be associated with decrease of PTEN protein. 
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Introduction

Silicosis is an occupational fibrotic lung disease caused by 
long-term inhalation of free crystalline silicon dioxide, or 
silica, which is an occupational health problem worldwide (1).  
In 1997, the International Agency for Research on Cancer 
(IARC) announced crystalline silica is carcinogenic to 
humans (group 1) (2). Silica dust can also increase the 
mortality rate from respiratory diseases and cardiovascular 
diseases (3). Exposure to silica can cause abnormal gene 
expression (4). Regulation of gene expression not only 
depends on genetic mechanism, also with epigenetics 
mechanisms without genetic coding change, including 
DNA methylation and histone acetylation and so on (5). 

The characteristic pathological change forms silicotic 
nodules and diffuses interstitial fibrosis. Mitogen-activated 
protein kinases (MAPK) possesses complicated functions, 
for example extracellular regulated protein kinases 
(ERK) promotes cell proliferation, p38 MAPK and c-Jun 
N-terminal kinase (JNK) mediates cell death or cell survival 
depending on the stimuli (6-8). Phosphatidylinositol 
3-kinase (PI3K) can activate protein kinase C (PKC) 
directly or indirectly through Serine/threonine kinase 
(AKT) activation, which subsequently results in ERK 
activation, which can be negatively modulated by 
phosphatase and tensin homolog deleted on chromosome 
10 (PTEN) (9-12). Exposure to silica induced α-SMA 
expression via PI3K/AKT pathway, DNA double strand 
breaks, cyclooxygenase-2 expression via MAPKs and cell 
cycle changes via PI3K/AP-1 pathway in vitro (13-16). 

Epigenetic regulation of gene expression has been widely 
studied in cancer (17,18), and aberrant DNA methylation 
plays a role in the development of various diseases. But the 
reports about the relationship between silica and aberrant 
DNA methylation have been limited and focus on certain 
gene, rats model and blood from silicosis patient (19-21).  
PTEN was downstream of PI3K using siRNA in silica-
induced human embryo lung fibroblasts (HELFs) 
(unpublished data). It has been documented that PTEN 
promoter methylation mediated the loss of its expression 
implicated in hepatic stellate cell (22). The loss of PTEN 
function contributes to silica-mediated PI3K/AKT/MAPK/
AP-1 pathway activation.

Taken together, we performed genome-scale DNA 
methyaltion profile of lung tissues from silicosis patients 
to identify DNA methyaltion patterns in silicosis through 
llumina Human Methylation 450K Beadchip (450K 
BeadChip). By screening the genes in differentiated CpG 

sites promoter between early-stage silicosis and advanced 
stage, immunohischemistry was performed to measure 
the level of proteins in these specimens and these gene 
methyaltion status was verified by methylation specific PCR 
(MS-PCR) in HELFs. 

Methods 

Reagents 

RPMI 1640 medium was obtained from Thermo Fisher 
Scientific, USA. Fetal bovine serum (FBS) was purchased 
from Gibco, USA. L-glutamine and gentamycin sulfate 
were obtained from Sigma, USA.

Genome-wide DNA methylation analysis

Ten formalin-fixed, paraffin-embedded (FFPE) sections 
from silicosis patients were obtained from National Institute 
for Occupational Health and Poison Control, China. 
We selected patients with silicosis who had undergone 
autopsying between 1967 and 1979, and diagnosed lung 
cancer cases were excluded. The patients we selected in the 
paper had no other illness in the lung. And they were died 
because of the silicosis. We divided these samples based on 
disease progress, early stage or advanced stage. The first 
group included six samples, and the second group contained 
four samples. Normal lung tissues methylation data were 
obtained from GEO database. Genomic DNA was extracted 
from FFPE using QIAamp DNA FFPE Tissue Kit (Qiagen). 
Genomic DNA was bisulfite-converted using EZ DNA 
Methylation Kit (Zymo Research). Then the converted 
DNA was amplified at 37 ℃ for 22 h, fragmented, purified, 
resuspended and hybridized with multiBeadChip at 48 ℃ 
for 16 h. After which, the BeadChip was experienced to 
wash, extend the primers hybridized to the DNA by adding 
labeled nucleotides, and stained. The BeadChip was coated 
and scanned using the Illumina® iScan system. The image 
data was processing with the Genome StudioTM Methylation 
Module software and analyzed by Illumina Methylation 
Analyzer.

Immunohistochemistry

The above autopsy specimens and two normal lung tissues 
was measured 3 cm × 2 cm × 1 cm, and paraffin embedded 
and section was observed with hematoxylin and eosin (H&E) 
staining. Immunohistochemistry was performed to evaluate 
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the levels of the c-Jun and PTEN protein. 

Cell culture and silica exposure

HELFs were purchased from the Institute of Basic Medical 
Sciences, Chinese Academy of Medical Sciences. HELFs 
were cultured in RPMI-1640 medium with 10% heat-
inactivated FBS, 2.5 mmol/L glutamine, 100 μg/mL 
gentamycin sulfate at 37 ℃ in humidified atmosphere of 5% 
CO2. The silica particles were suspended in D-Hanks buffer 
saline, autoclaved to sterilize, and diluted to the needed 
concentrations (1 mg/mL).

MS-PCR

Genomic DNA of HELFs was extracted using Wizard® 
Genomic DNA Purification Kit (Promega, USA), according 
to the manufacturer’s instructions. The methylation status 
of the c-Jun and PTEN promoter region was detected by 
Methylation-Specific Polymerase Chain Reaction Genomic 
(MS-PCR). DNA was treated with sodium bisulfite using an 
EpiTect Bisulfite Kit (Qiagen, Germany). Two micrograms 
of DNA were modified in a final volume of 140 μL  

following the instructions of the manufactures. After 
bisulfite modifications, the MS-PCR for PTEN and c-Jun 
were conducted using ZymoTaq™ PreMix (Zymo Research, 
USA). The primers for the unmethylated PTNE gene 
were 5'-TATTAGTTTGGGGATTTTTTTTTTGT-3' 
(sense) and 5'-CCCAACCCTTCCTACACCACA-3' 
(antisense); the primers for the methylated PTEN 
gene were 5'-GTTTGGGGATTTTTTTTTCGC-3' 
( s ense )  and  5 ' -AACCCTTCCTACGCCGCG-3 ' 
(antisense) (23). Primers for c-Jun gene was designed 
by  Methpr imer  (24 ) ,  p r imer  sequences  were  a s 
f o l l o w s :  u n m e t h y l a t e d  r e a c t i o n ,  s e n s e  p r i m e r, 
5 '-GGTAGTGGAGTATTATTTTATTTTGT-3' , 
antisense primer, 5'-CAAAACCTTCCCATTAACTCAC-3'; 
m e t h y l a t e d  r e a c t i o n ,  s e n s e  p r i m e r , 
5'-GGGTAGCGGAGTATTATTTTATTTC-3', antisense 
primer, 5'-CAAAACCTTCCCATTAACTCG-3'. PCR was 
performed as follows: one cycle of 95 ℃, and 40 cycles of  
94 ℃ for 30 s, 60 ℃ (for detection of PTEN gene) or  
56.6 ℃ (for detection of c-Jun gene) for 1 min and 72 ℃ for 
1 min, followed by final extension at 72 ℃ for 5 min. Each 
product was loaded onto 2.5% agarose gel with ethidium 
bromide and visualized under UV. 

Results

Chest radiography

One of methods to diagnosis of silicosis is chest radiography. 
According to guidelines for the use of the International 
Labour Organization, the profusion of small opacities refers 
to the concentration of small opacities in affected zones of 
the lung. The category of profusion is based on comparisons 
with the standard radiographs. Classification of a radiograph 
using the 4-category and 12-subcategory scale is performed 
as Table 1. The appropriate category is chosen by comparing 
a subject radiograph with standard radiographs that define 
the levels of profusion characteristic of the centrally placed 
subcategories (0/0, 1/1, 2/2, 3/3) within these categories. 
Two kinds of shape of small opacities are recognized: 
rounded and irregular. In each case, three sizes are 
differentiated. For small rounded opacities, the three size 
ranges are denoted by the letters p, q and r. The three size 
ranges of small irregular opacities are denoted by the letters 
s, t and u. A large opacity is defined as an opacity having the 
longest dimension exceeding 10 mm. Categories of large 
opacities are defined as Table 1 (25). 

We performed the chest radiography in early-stage 

Table 1 Radiographical classification of silicosis

Classification Size

Small opacities (<1 cm)

Four-point major scale for profusion

0 0/–, 0/0, 0/1

1 1/0, 1/1, 1/2

2 2/1, 2/2, 2/3

3 3/2, 3/3, 3/+

Rounded shape and size

p ≤1.5 mm

q 1.5–3 mm

r 3–10 mm

Irregular shape size

s ≤1.5 mm

t 1.5–3 mm

u 3–10 mm

Large opacities (>1 cm)

A ≤5 cm

B 5 cm to the size of right upper zone

C Bigger than the right upper zone

Grades were given on the basis of comparison with standard films. 

Classifications were from the International Labour Organization (25).
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group and advanced-stage group respectively. In early-stage 
group, rounded small opacities can be seen in upper and 
middle zones of both lung fields, mainly in lateral region, 
recognized as p/q. The profusion of small opacities is from 
0/1 to 1/1 (Figure 1). In the advanced-stage group, there are 
increased and confused bronchovascular shadows in chest 
radiography. Rounded small opacities can be seen in lung 
fields, more in upper and middle zones of both lung fields, 
recognized as q/r. The profusion of small opacities is from 
2/3 to 3/3 (Figure 1). 

450K DNA methylation analysis of silicosis and normal 
lung tissues. 

Methylation of 86,770 (18%) CpG sites out of 480,815 
differed in early-stage and normal, which is 79,660 (16.6%) 
in advanced-stage. Hyper- or hypo-methylated CpG sites 
between silicosis and normal lung tissues were shown in 
Table 2. From these data, we concluded that the alteration 
of DNA methylation existed in silicosis lung tissues with 

hypomethylation of CpG sites being more common than 
hypermethylation. High methylated CpG sites are more 
likely to located in promoter regions either in early-
stage or advanced stage. A total of 59.3% (3,780 sites) and 
63.6% (8,797 sites) are associated with promoter regions, 
with hypomethylated CpG sites both only less than 2%, 
respectively. From the CpG content and neighborhood 
context, CpG sites significantly hypermethylated are in 
CpG island regions compared with normal lung tissue 
(Figure 2). Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis was performed to identify the biological 
process associated with the differentially methylated genes 
in early-stage silicosis or advanced-stage silicosis compared 
with normal lung tissue data. About 200 signaling pathways 
were detected and considered significant, according to the 
criterion of P≤0.001 and |difference score| ≥0.4 (Figure 3).  
Figure 4 showed the interaction in the differentially 
methylated gene of PI3K/AKT/MAPK/AP-1 cell signaling 
transduction pathway.

450K DNA methylation data on PI3K/PTEN/AKT/
MAPK/AP-1cell signal pathway

To validate the effect of DNA methylation on this 
pathway, we select CpG promoter sites with these genes 
of PI3K/PTEN/AKT/MAPK/AP-1. MAPKs are family 
with several members, which can be hypermethylated or 
hypomethylated, so we not select MAPKs. Fos can not 
be screened under the criteria of P≤0.001 and |difference 

Figure 1 The X-ray of early-stage group (A) and advanced-stage group (B) silicosis. In early-stage group, rounded small opacities can be 
seen in upper and middle zones of both lung fields, mainly in lateral region, recognized as p/q. The profusion of small opacities is from 0/1 
to 1/1. In the advanced-stage group, rounded small opacities can be seen in lung fields, more in upper and middle zones of both lung fields, 
recognized as q/r. The profusion of small opacities is from 2/3 to 3/3.

A B

Table 2 Differentiated methylated CpG sites in silicosis and normal 

lung tissues

CpG sites Early-stage (%) Advanced-stage

Hyper-sites 6,376 (7.3) 13,828 (17.4)

Hypo-sites 80,394 (92.7) 65,832 (82.6)

Total sites 86,770 (100.0) 79,660 (100.0)



2189Journal of Thoracic Disease, Vol 8, No 8 August 2016

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2016;8(8):2185-2195jtd.amegroups.com

Figure 2 Distribution of differentiated CpG sites according to CpG content and neighborhood context. High methylated CpG sites are 
more likely to located in promoter regions either in early-stage or advanced stage. 
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score| ≥0.4. Table 3 listed the genes under the above criteria. 
PTEN and Jun methylation were differentiated in disease 
stage, so their expression level was discussed in following 
study.

Immunhistochemical analyses of the level of PTEN and 
c-Jun in specimens from silicosis patients

Histological examination revealed many dust-laden 
macrophages around interlobular septa, and in peribronchiolar 
and perivascular areas, associated with some interstitial 
fibrosis and increased amounts of reticular fibers. The 
alveolar spaces were filled with swollen macrophages and 
amorphous proteinaceous semifluid. Those macrophages 
contained cytoplasmic black dust particles. There were some 
fibrotic nodules typical of pneumoconiosis (Figure 5, first 
row). The positive expression of c-Jun and PTEN protein 
are in early-stage cases and negative or mild expression in 
advanced-stage cases. All the cases were similar in c-Jun and 
PTEN protein expression which decreased relatively with 

the degree of pneumoconiosis lesions.

Measure the PTEN and c-Jun methylation status in 
HELFs

Electron microscopy showed that compared with control 
group, the experimental group exposure to 100 μg/mL 
silica suspension swallowed particulate in 24 h (Figure 6). 
In order to verify the above results, we selected HELF cells 
exposed to 100 μg/mL silica suspension. DNA was extracted 
after exposing 0.5, 1, 3, 6, 12 and 24 h. For PTEN, there 
are methylated bands and unmethylated bands at all-time 
points. However, c-Jun had shown differed methylation at 
12 and 24 h, only having unmethylated bands (Figure 7).

Discussion

This is the first study to compare differential DNA 
methylation on a genome-scale level in lung tissues from 
silicosis patients with normal lung tissue methylation 
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Figure 3 KEGG pathway analysis for the differentially methylated genes between (A) early-stage silicosis and normal tissues; (B) advanced-
stage silicosis and normal tissues. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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data. FFPE specimens from 6 early-stage silicosis cases 
and 4 advanced-stage silicosis cases showed altered DNA 
methylation in global scale, which were involved in varied 
signaling pathway. Compared with early-stage group, the 
level of PTEN and c-Jun protein, existed in PI3K/PTEN/
AKT/AP-1 cell signaling pathway, decreased in advanced-
stage group.

Aberrant DNA hypermethylation often occurs in the 
promoters associated CpG islands, the clusters of CpG 
dinucleotides, resulting in transcription silencing and vice 
versa (26). Epigenetic modifications are not only with 
cancer, more and more data supported that this may related 
with variable diseases. The pattern of DNA methylation 
is influenced by various environment factors (27),  
including silica particle. The 450K BeadChip has been 
reported as an accurate and reproducible tool to examine 
DNA methylation in genomic scale, which allows the 
identification of CpG sites location. It covers 96% of the 
CpG islands, associated with 56.1% of gene promotors, 

and 99% of the Ref Seqgenes (28-30). In our study, from 
the genomic wide, hypomethylated CpG sites seem to be 
more common, while hypermethylated CpG sites are more 
likely to link to the promoter regions (59.2% and 63.6%, 
respectively). KEGG analysis shows different pathway 
derived from high methylated genes and low methylated 
genes. Some of these differentially methylated pathways 
have known on the effect of inflammation and fibrosis.

Exposure to silica results in differences in gene 
expression, which can be a part accounted by DNA 
methylation. For example, DNA methylation in the 
promoter region of (ADP-ribose) polymerases-1 (PARP-1) 
might be responsible for silica-induced DNA double strand 
breaks in vitro (19,20). In addition, silica-induced tumors 
tissues exhibited widespread genomic hypomethylation in 
rat model (21). Furthermore, silicosis patients with lung 
cancer had higher risk of aberrant promoter methylation in 
at least one of the five tumor suppressor genes than those 
without lung cancer (31). The reports about the relationship 
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Figure 4 Interactions between the differentially methylated genes in PI3K/PTEN/AKT/AP-1 cell signaling transduction pathway from 
FFPE in silicosis. PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin homolog deleted on chromosome 10; AKT, serine/
threonine kinase; FFPE, formalin-fixed, paraffin-embedded.

Table 3 The effect of DNA methylation on the genes in PI3K/PTEN/AKT/MAPK/AP-1 pathway

Genes
Early-stage group Advanced-stage group

Target ID −Lg (adjusted P value) Target ID −Lg (adjusted P value)

PI3K cg00658016 6.31 cg00658016 5.79

PTEN cg03236184 8.51 cg03236184 7.40

cg06731059 7.47 cg06731059 7.18

cg01354923 7.65 cg19634213 7.05

cg03214660 7.67 cg08995089 4.11

– – cg27422496 7.44

– – cg03214660 7.31

– – cg13528847 6.42

– – cg01354923 6.33

– – cg23753021 3.97

– – cg03891929 6.88

AKT2 cg25333225 8.35 cg25333225 8.23

Jun – – cg25613251 7.80

– – cg07018071 7.33

– – cg16645584 5.51

PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin homolog deleted on chromosome 10; AKT, serine/threonine kinase; 

MAPK, mitogen-activated protein kinases.



2192 Zhang et al. Global DNA methylation’s  lung tissues from silicosis patients

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2016;8(8):2185-2195jtd.amegroups.com

Figure 5 Immunohistochemistry of PTEN and c-Jun in silicosis and normal tissues. Shown are H&E staining (first row) and 
immunohistochemistry staining for PTEN (second row) and c-Jun (third row) in different stages. PTEN and c-Jun was brown-yellowish 
particles in cytoplasm of myofibroblasts. The positive expression of c-Jun and PTEN protein are in early-stage cases and negative or mild 
expression in advanced-stage cases. Original magnification: 100×. PTEN, phosphatase and tensin homolog deleted on chromosome 10; 
H&E, hematoxylin and eosin.

Figure 6 Electron microscopy of control group (A) and the experimental group (B). The experimental group exposure to 100 μg/mL silica 
suspension swallowed particulate in 24 h in HELFs. HELF, human embryo lung fibroblast.
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Figure 7 Methylation analysis of PTEN and c-Jun promoter 
at different time points. In HELFs there are methylated bands 
and unmethylated bands of PTEN at all-time points. However, 
c-Jun had shown differed methylation at 12 and 24 h, only having 
unmethylated bands. PTEN, phosphatase and tensin homolog 
deleted on chromosome 10; HELF, human embryo lung fibroblast.
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between silicosis and DNA methylation have limited. 
IPF is a disease similarity with silicosis. Genome-wide 
methylation arrays show that 402 differentially methylated 
CpG islands overlapped between IPF and lung cancer, three 
genes expression positive correlation with hypomethylated 
promoters (32). The Human Methylation 27 array find that 
multiple CpG sites across the genome are differentially 
methylated in IPF fibroblasts (33). In our study, we choose 
FFPE lung tissues of silicosis without cancer, and we will 
explore the silicosis lung tissues with cancer and look 
forward their similarities and differences.

PI3K can act ivates  PKC direct ly  or  indirect ly 
through AKT activation, which subsequently results in 
ERK activation, which can be negatively modulated by 
PTEN (9-12). The decreased expression of PTEN may 
contribute to the activation of PI3K/AKT/MAPK/AP-1 
cell signaling transduction pathway, which regulates the 
cell cycle (15). AP-1 is the dimers composed of c-Jun and 
c-Fos, which is an intersection of many signaling pathway 
within the cell nucleus. In addition, histone deacetylase 
regulated fibroblast-myofibroblast differentiation by 
phosphorylation of AKT (34). Therefore, the expression of 
signal molecular was not only related to the upstream, but 
also to epigenetic modulation. Hypermethylation is one 
of the mechanisms of PTEN inactivation, which has been 
widely reported in many types of cancer (23,35). PTEN 
methylation at the promoter region is responsible for the 
down-regulation of its expression (22), accompanied with 
activation of PI3K/AKT/mTOR pathway (36). AKT can 
stabilize and enhance the nuclear translocation of DNA 
methyltransferase 1 (DNMT1) (37,38), and DNMT1 
contributes to the hypermethylation of PTEN (22). c-Jun 
is an important member of the activator-protein 1 (AP-1)  
complex, regulating cellular survival or proliferation by 

interacting with specific target DNA sequence to regulate 
gene expression (39). c-Jun is regulated not only by 
MAPK pathway, but also by dynamic acetylation of lysine 
4-methylated histone H3 or acetylation of phosphorylated 
histone H3 (40,41). So, DNA methylation was not the 
exclusive way for regulation of c-Jun.

In our study, we chose silicosis specimens without 
lung cancer. Silicosis patients have high risk to develop 
lung cancer. Although fibrosis may be a so-called 
precancerous lesion (42), DNA methylation patterns 
seems to have some differences between fibrosis and 
cancer. Hypomethylation of CpG sites is more frequently 
observed than hypermethylation in cancer and lesions from 
epithelial hyperplasia to lung cancer accompanied with 
decreased DNA methylation (18,43). Moreover, LINE-1  
retrotransposon differs in methylation status of IPF and 
lung cancer (32). So, our next research will select tissues 
from silicosis patients with lung cancer to disclose their 
similarities and differences in DNA methylation.

Research on target organs lesions has profundity and 
extent for us to understand pathological process. As with 
other studies, silicosis lung tissues have heterogeneity. 
The silicosis lung tissues contain epithelial, endothelial 
cells, fibroblasts, and many inflammatory cells. Naturally, 
it is possible to underestimate DNA methylation and not 
to identify DNA methylation related to specific cell type. 
Another limitation of our study is normal lung tissues 
methylation data obtained from CEO, which is not an age-
matched sample with silicosis patients.

Conclusions 

These results suggested that abnormal DNA methylation 
on genome-scale was implicated in silicosis, and PTEN 
promoter hypermethylation might be associated with the 
decrease of PTEN protein.
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