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Noninvasive ventilation (NIV) is a well-established treatment 
for acute respiratory failure (1), especially in patients with 
hypercapnia (2) and cardiogenic pulmonary edema (3). 
Conversely, the use of NIV for hypoxemic respiratory failure, 
including the acute respiratory distress syndrome (ARDS), is 
still controversial (4-12). Avoidance of NIV in these patients 
is often justified by the association between a failed NIV 
attempt with worse prognosis (8,11-13). In these studies, 
however, it is unclear whether NIV failure was responsible 
for the worse prognosis (a causal association, likely by 
delaying intubation) or if it was merely a marker of the 
underlying disease severity, such as severe sepsis, higher 
SAPS-II score, and lower arterial partial pressure of oxygen 
to inspired fraction ratio (PF-ratio) (8,14,15). A recent study 
showed similar adjusted outcomes in patients who failed a 
trial of NIV as compared to patients primarily intubated, 
supporting the non-causal association hypothesis (14).

Despite the debatable recommendation, NIV is regularly 
used for hypoxemic respiratory failure (13). Specifically for 
ARDS patients, a recent study (16) showed that NIV was 
used in 14.4% of patients (436 of 3,022), with 69% of them 
(300 of 436) being exclusively managed with NIV. These 
numbers highlight the importance of the topic, on which 
there is scarce literature.

In a recent study, Patel et al. (17) brought to attention 
the importance of the NIV interface in the outcome of 
ARDS patients. In this single-center trial, interrupted early 
for efficacy, 83 ARDS patients requiring NIV by face mask 
for at least 8 hours were randomized to NIV by helmet 
or to continue with the face mask. In the helmet group, 
intubation rate (the primary endpoint) was less than a third 
that in the face-mask group (18.2% vs. 61.5%). The lower 
intubation rate was associated with more ventilator-free 
days and lower mortality. 
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Can we attribute all of this expressive difference in 
outcome solely to the interface? To be able to address this 
question, it can be useful to examine the results more closely. 
The most common reason for intubation was tachypnea 
and hypoxemia (83.3% for the face mask vs. 37.5% for 
the helmet). Positive end-expiratory pressure (PEEP), a 
ventilatory setting used to avert hypoxemia, was set 3 cmH2O 
higher in the helmet group [median of 8.0 (5.0–10.0) vs.  
5.1 (5.0–8.0) cmH2O]. This could explain at least in part the 
significant reduction in the intubation rate in the helmet 
group. In their discussion, the authors argued that, in the face-
mask group, patient intolerance and excess air leaks limited 
the titration of PEEP to higher levels. Curiously, pressure 
support levels were 3 cmH2O higher in the face-mask group 
leading to comparable total inspiratory pressures (~16 cmH2O)  
between groups. It is true that the helmet interface has 
been associated with better tolerance in some studies (18). 
On the other hand, other authors (19,20) have been able 
to deliver even higher inspiratory pressures (≥20 cmH2O)  
through face masks with good tolerance (19). Of note, one 
study showed that the amount of leak was related to the 
total inspiratory pressure, not the PEEP (19). In that study, 
either a low PEEP (5 cmH2O) and high pressure support 
(15 cmH2O) or a high PEEP (10 cmH2O) and low pressure 
support (10 cmH2O) were both well tolerated and associated 
with similar measured leaks (~36%). In Patel’s study, 
subjective decisions regarding patient comfort and excess 
leaks might have influenced the results. More stringent 
criteria for the definition of patient tolerance and acceptable 
leaks would have been welcome.

Several studies (21-23) have shown that using the helmet 
interface predisposes to CO2 rebreathing due to its increased 
internal volume. In fact, the helmet works as a semi-closed 
system, and the degree of CO2 rebreathing depends basically 
on the amount of fresh gas (on top of the patient minute 
ventilation) and the CO2 production by the patient (21).  
For example, in a study by Taccone et al. (21) in normal 
volunteers with high flow rates of fresh gas (60 L/min), the 
inspired pressure of CO2 (PiCO2) was on average 2.5 mmHg;  
with a flow rate of fresh gas of 10 L/min, the average PiCO2 
was 13.7 mmHg, an amount of rebreathing similar to that 
obtained with a critical care ventilator (average PiCO2 of  
12.4 mmHg) such as the one used in the Patel’s study (17). 
Bear in mind that the flow rate of fresh gas has to be on top 
of the patients’ minute volume. This quantity is also known as 
bias flow and is settable in some mechanical ventilators within a 
prespecified range. In the mechanical ventilator used in Patel’s 
study, this quantity is limited to 10 L/min and is unrelated 

with the peak inspiratory flow displayed by the ventilator. It 
is the bias flow and not the inspiratory flow the quantity that 
matters for the rebreathing of CO2, what suggests that there 
was considerable rebreathing in Patel’s study. 

Having said this, how can we reconcile the likely 
relevant dead space ventilation in the helmet group with 
the decreased respiratory rate (24.5 vs. 29.1 bpm in the face 
mask group) together with lower pressure support levels 
(8 vs. 11 cmH2O in the face mask group)? Once more, we 
believe that the higher PEEP values in the helmet group 
might have been the key. Higher PEEP levels can promote 
recruitment of alveolar units leading to both decreased 
shunt and decreased shunt dead space ventilation. In other 
words, it is possible that the higher PEEP levels were 
responsible not only for better oxygenation (and thus lower 
intubation rate), but also for improved CO2 elimination. 

Perhaps one the most important contributions of Patel’s 
study was to emphasize that protective ventilation is as 
important during NIV as it is during invasive mechanical 
ventilation (24,25) in patients with hypoxemic respiratory 
failure. Lung-protective strategies were an important 
development in the treatment of patients with ARDS. Such 
strategies improve survival combining the use of low tidal 
volumes, low plateau pressures, and high PEEP values (24,25). 
Unlike patients under invasive mechanical ventilation, for 
whom there are established protective ventilation protocols, 
NIV currently lacks ventilation protocols directed to avoid 
the mechanisms of ventilator-induced lung injury. This is 
perhaps one of the major difficulties of the use of NIV in 
patients with ARDS. As a result, non-protective settings are 
commonly used. For example, tidal volumes greater than  
10 mL per kilogram of predicted body weight were used in 
over half the patients included in a recent European cohort 
of acutely hypoxemic patients (26). In that study, tidal volume 
was a strong predictor of NIV failure, suggesting that close 
monitoring of tidal volume is important. In patients with 
persistently high tidal volumes, early invasive ventilation 
might be a reasonable option to avoiding ventilator induced 
lung injury. 

In Patel’s study, besides higher PEEP levels in the helmet 
group, driving pressure was also lower, settings again 
consistent with a lung-protective strategy. Amato et al. (27), 
analyzing data from previously published trials of protective 
ventilatory strategies in ARDS, recently demonstrated that 
driving pressure (plateau pressure minus PEEP) was the 
variable most closely related to survival. This finding was 
later confirmed in a large prospective study in patients with 
ARDS (16) and also in patients (28) undergoing mechanical 
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ventilation for general anesthesia, in whom lower driving 
pressures during the intraoperative period were associated 
with less postoperative pulmonary complications. A 
word of caution, though, in actively breathing patients, 
driving pressure is usually underestimated because of the 
unmeasured force exerted by the respiratory muscles. 

The findings of Patel’s study highlight the importance to 
devise an NIV protocol specific for patients with hypoxemic 
respiratory failure. In hypercapnic respiratory failure, the 
protocol usually consists of the application of enough pressure 
support to improve alveolar hypoventilation and to unload 
the respiratory muscles, usually in combination with low 
values of PEEP until the underlying condition resolves (29).  
In hypoxemic respiratory failure, the main goals are to 
improve oxygenation, to unload the respiratory muscles, 
and to relieve dyspnea (19). The first goal can usually 
be achieved by using higher PEEP levels to recruit and 
stabilize previously collapsed lung tissue. Therefore, PEEP 
is the main factor to improve oxygenation and we believe 
that its setting should take precedence as it could reduce the 
need for high inspiratory pressures. Moreover, optimization 
of PEEP can result in reduced tidal recruitment, improved 
dead space, and decreased inspiratory effort leading to lower 
tidal volumes (30-34). Tidal volumes need to be monitored, 
and pressure support levels, adjusted accordingly to avoid 
tidal volumes over 8 mL per kilogram of predicted body 
weight. Driving pressures should be kept low (note that—in 
the presence of respiratory muscle effort—driving pressures 
are underestimated). In the inability to follow these basic 
protective principles, intubation should be considered.

An additional and potentially valuable resource to 
improve oxygenation is lung recruitment, a maneuver 
seldom used during NIV (31,35). For example, Cammarota 
et al. (35) used the helmet to deliver a CPAP of 10 cmH2O, 
which was transiently increased to 25 cmH2O for 8 s to 
recruit the lungs. This recruitment was associated with a 
37% improvement in oxygenation (from a PF-ratio of 225 to  
308 mmHg). 

In conclusion, the findings of Patel’s study suggest that, 
in patients with ARDS, NIV settings consistent with the 
principles of a protective ventilatory strategy produced better, 
clinically relevant outcomes. Use of NIV interfaces less prone 
to leakage may facilitate the application of lung-protective 
ventilation protocols for hypoxemic respiratory failure.
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