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Capacity to reprogram the metabolic activities exhibited 
by cancer cells distinguishes tumors from normal tissues 
supporting their unregulated growth. While alterations in 
glucose metabolism were the first cancer-related metabolic 
anomalies to be detected and extensively investigated, in the 
last years an increasing number of studies has progressively 
unveiled the role that the amino acid glutamine plays 
in an enlarging group of human tumors. Glutamine, 
as a potential donor of either carbon or nitrogen, plays 
several metabolic roles. Some of these are ubiquitous, 
others strictly tissue specific (1). In selected cancer types, 
glutamine is avidly transported from the extracellular 
compartment, and its metabolism is up-regulated to provide 
energy production and sustain biosynthetic aims. Cancers 
that exhibit particularly high requirements for glutamine 
are named glutamine-addicted (2). A variety of oncogenes 
and tumor suppressor genes impact glutamine metabolism 
in cancer cells (1) including Myc overexpression (1), p53 (3), 
Rb tumor suppressor (4) and Von Hippel-Lindau (VHL) 
suppressor through hypoxia-inducible factor (HIF)-1 (5). 
Nevertheless, the mechanism by which many cancer cells 
become dependent on glutamine is still under investigation.

Recently, Hao et al. (6) have shown that PIK3CA 
mutations enhance and reprogram glutamine metabolism 
by inducing glutamate pyruvate transaminase 2 (GPT2), 
also known as ALT2, in colon-rectal cancer cells (CRCs) 
suggesting that this mutation could be responsible for 
their glutamine dependence. PIK3CA codes for p110α, the 
catalytic subunit of phosphatidylinositol 3-kinase α (PI3Kα), 
which, upon an activating interaction with one of several 
regulatory subunits, synthesizes phosphatidylinositol-

3,4,5-trisphosphate (PIP3) from phosphatidylinositol-4,5-
bisphosphate (PIP2). Promoting the phosphorylation of 
AKT through 3-phosphoinositide dependent protein kinase 
1 (PDK1), PIP3 constitutes a key signal for cell survival and 
proliferation. The importance of the findings reported by 
Hao et al. (6) is evident, considering that PIK3CA mutations 
may be present in up to 30% of colon cancers (7) and 
represent one of the most common oncogene alterations in 
human tumors (8). In spite of the high frequency of these 
mutations any association between PIK3CA mutations and 
alterations in glutamine metabolism had been not reported 
thus far. Similarly to that observed in several glutamine-
dependent cancer models, also in PIK3CA-mutated CRCs, 
glutamine is rapidly converted into α-ketoglutarate and 
used for anaplerosis, thus ensuring compatibility of optimal 
Krebs cycle function for ATP production with large 
availability of biosynthetic precursors needed for rapid 
proliferation. While anaplerosis is commonly considered 
one of the most important metabolic roles of glutamine in 
tumor cells, it should be considered that maintenance of the 
intracellular pool of α-ketoglutarate may have additional 
relevance. Indeed, this metabolite is an obliged substrate 
or co-factor of enzymes, such as prolyl hydroxylases and 
5-methylcytosine hydroxylase, which modify proteins and 
DNA and are involved in important regulatory mechanisms 
of gene expression. What differentiates the models studied 
by Hao et al. (6) to previously described glutamine-addicted 
tumors is that PIK3CA mutations do not influence the 
expression of GLS (glutaminase), GLS2 (glutaminase 2) or 
GDH (glutamate dehydrogenase), the enzymes found more 
commonly overexpressed in glutamine-dependent cancers. 
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Interestingly, Hao et al. (6) show that, instead, the PIK3CA 
target responsible for the increased glutamine metabolisms 
in PIK3CA mutated cells is GPT2, the mitochondrial 
isoform of glutamate pyruvate transaminase. PIK3CA 
mutated CRCs express significantly more GPT2 than WT 
counterparts, and, importantly, this finding is confirmed 
comparing 10 tumors with PIK3CA mutations and 10 
tumors without mutations in the PI3Kα pathway.

The pivotal role of GPT2 in the development of 
neoplastic phenotype of the models studied by Hao 
et al. (6) is demonstrated by the severe delay in tumor 
growth observed if GPT2 is silenced or inhibited by 
aminooxyacetate (AOA). Changes in enzyme expression 
in cancer cells have been studied less in depth for 
transaminases than other enzymes involved in Gln 
metabolism, and the studies available usually concern 
glutamic-oxaloacetic transaminase (GOT) rather than GPT 
(9-11). Recently, however, Korangath et al. (12) observed a 
net GPT2 overexpression in glutamine-dependent breast 
cancer cells, but increased expression of other enzymes 
involved in the metabolism of the amino acids (GOT1/2, 
GLS2) were also present in the same models. Weinberg 
et al. (13) reported that K-RAS-dependent tumorigenesis 
in HCT116 CRCs, one of the models studied by Hao  
et al. (6), required GPT2 activity. However, they did not 
investigate changes in GPT2 expression and, on the other 
hand, Hao et al. (6) convincingly demonstrate that the effect 
of PIK3CA mutation on GPT2 is K-RAS independent. 
In other glutamine dependent tumors (14-16), ASCT2, 
one of the membrane carriers that transport glutamine, is 
overexpressed and cancer cell growth is hindered inhibiting 
its activity or expression. Because of the lack of ASCT2 
overexpression in PIK3CA-mutated cells, this approach may 
not be useful in this model (6). However, since these cells 
exhibit significantly increased glutamine consumption, they 
should also take up more amino acid. This issue should 
prompt the assessment of glutamine transport in PIK3CA-
mutated cells and the possible involvement of other 
glutamine transporters.

Another original finding reported by Hao et al. (6) is 
the characterization of the transduction pathway that links 
PIK3CA mutations and GPT2 overexpression (see Figure 1). 
Indeed, while AKT, the most well studied target of PIP3-
activated PDK1, is obviously activated in PIK3CA mutated 
cells, it does not seem to be responsible for GPT2 up-
regulation. In contrast, Hao et al. (6) elegantly demonstrate 
that PIK3CA mutations induce GPT2 through an AKT-
independent transduction axis, consisting of the increased 
expression of the transcription factor ATF4, promoted 
by the activity of the RSK2 kinase, another substrate of 

PDK1. This novel mechanism is very interesting, because 
it links metabolic alterations in cancer cells and the 
endoplasmic reticulum (ER) stress pathway. Indeed, the 
overexpression of the transcription factor ATF4 is one of 
the key mechanisms involved in the exertion of ER stress 
by cells undergoing various types of stress. However, 
while in stressed cells ATF4 overexpression is usually due 
to its increased CAP-independent synthesis, in PIK3CA 
mutated CRCs the half-life of the protein increases due to 
its RSK2-dependent phosphorylation in S245. Hao et al. 
(6) go further, demonstrating that p-ATF4 has an increased 
interaction with the deubiquitinase USP8 and, hence, is 
preserved from proteosomal degradation. However, it 
should be stressed that, even in the models studied by Hao 
et al. (6), AKT activation remains important, for instance, to 
promote the metastatic behavior (17).

The main findings reported in the manuscript by Hao 
et al. (6) are summarized in Figure 1 highlighting the 
different behavior between PIK3CA mutated and not 
mutated CRCs in terms of glutamine dependence and, 
consequently, in cell growth.

Besides its clear relevance in basic cancer biology, the 
study of Hao et al. (6) has evident translational implications. 
First of all, PIK3CA mutations promote the rapid growth 
of CRCs, as demonstrated both in vitro and in vivo, but also 
render them more sensitive to glutamine deprivation. Thus, 
while the pathway described by Hao et al. (6) confers a clear-
cut proliferative advantage, it also constitutes the basis for 
metabolic fragility. This apparently paradoxical observation 
constitutes the rationale for therapeutic approaches based 
on interference with glutamine metabolism. Although the 
prognostic role of PIK3CA on colon cancer is complex and, 
possibly, depends on the tumor site and the mutation(s) 
present (18), the possibility that the suppression of GPT2 
activity phenotypically limits the consequences of PIK3CA 
mutations is of evident interest. Second, the efficacy and 
relative safeness exhibited by AOA suggest the feasibility of 
therapeutic approaches based on the inhibition of GPT2. 
AOA has been already used to hinder the growth of tumors, 
such as breast cancer (12,19), where GPT2 was not the 
sole enzyme involved in the cancer associated metabolic 
alterations. In fact, as underlined by Hao et al., AOA is not 
specific, since it inhibits not only the other transaminases 
but, more generally, all pyridoxal phosphate-dependent 
enzymes involved in amino acid metabolism. Although the 
evidence that AOA is not effective in GPT2-silenced cells 
demonstrates that in the models studied by Hao et al. (6) 
its effect is likely due to GPT2 inhibition, GPT2-specific 
inhibitors would be preferable in order to avoid or reduce 
possible side effects. Interestingly, in both colon cancer (6) 
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and breast cancer (19) xenografts AOA effects are more 
evident in vivo than in vitro. This discrepancy has been also 
observed in hepatocellular carcinoma xenografts with a 
different glutamine-targeting approach (20). As Hao et al. (6)  
underline, these data would suggest that CRCs are more 
dependent on glutamine in the in vivo microenvironment 
than in the in vitro tissue culture conditions.

Finally, the possibility that the mechanism described by 
Hao et al. (6) is not exclusive for colon cancer is intriguing. 
In particular, its presence in other tumors where PIK3CA 
mutations are frequently detected, such as brain and gastric 
cancers (7), should be assessed in the future.
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Figure 1 Mechanisms involved in the increased glutamine dependence of PIK3CA mutated CRCs. Through the activation of the PDK1-
RSK2-ATF4 signaling pathway PIK3CA mutations induce GPT2 upregulation that, in turn, enhances glutamine-derived glutamate 
conversion to α-ketoglutarate. AOA, aminooxyacetate; ATF4, activating transcription factor 4; GLS, glutaminase; GPT2, glutamic-pyruvic 
transaminase 2; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PDK1, 3-phosphoinositide 
dependent protein kinase 1; RSK2, ribosomal protein S6 kinase A3; Ub, ubiquitin; USP8, ubiquitin specific peptidase 8; CRCs, colon-rectal 
cancer cells.
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