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Epidemiology of melanoma

Cancer of the skin is the most common of all cancers. 
Skin cancers that are not melanomas, such as basal cell 
and squamous cell, are often grouped as non-melanoma 
skin cancers because they develop from skin cells other 
than melanocytes and tend to behave very differently with 
minimal tendency for metastasis compared to melanoma. 
Melanoma accounts for only about 1% of skin cancers but it 

represent the majority of skin cancer deaths. The American 
Cancer Society estimated that about 76,380 new melanoma 
cases, 46,870 men and 29,510 women, will be diagnosed in 
2016 in the United States and 10,130 deaths (6,750 men and 
3,380 women) are predicted (1). Overall, rates of melanoma 
incidence are approximately 60% higher among men than 
women. However, among persons aged less than 50 years, 
melanoma is more common among women (2). According 
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to the Surveillance, Epidemiology, and End Results (SEER) 
Program, the annual incidence rate of melanoma among 
whites increased by more than 60 percent from 1991 to 
2011 (3). 

Risk factors for melanoma

There are many known risk factors of melanoma. High 
lifetime sun exposure is one of the most apparent factors, as 
UV-A and UV-B rays damage skin cells and induce tumors 
and cancer cell growth [reviewed in (4)]. People who live 
in southern areas of the US and are repeatedly exposed 
to UV-A and UV-B rays are at a higher risk. People who 
are fair skinned, Fitzpatrick type I–II, and burn easily are 
also more prone to these effects. People have a history of 
blistering sunburns also have higher risk for melanoma (3). 
If an individual has a history of melanoma, or any other 
carcinomas, there is an increased chance of recurrence (5). 
Family history is strongly linked with melanoma (6-8); 
approximately one in every ten individuals with melanoma 
report a family member with a melanoma diagnosis. Moles, 
more specifically, atypical moles, are common precursors 
to melanoma. The more moles and the greater the atypical 
features, the higher the risk for melanoma (9,10). Genetic 
factors have also been shown to contribute significantly 
to melanoma risk [reviewed in (4,11)]. Mutation of 
the BRAF gene is found in approximately half of all 
melanomas [reviewed in (12)], and is one the best-defined 
molecular abnormalities contributing to the pathogenesis 
of melanoma. Mitogen-activated protein kinase (MAPK) 
extracellular signaling pathway is induced by BRAF 
mutation, thus promoting the proliferation of tumor cells. 
Due to the recent advances in cancer genomics, germline 
variants in CDKN2A and CDK4, TERT, MITF, and BAP1 
have been added to the list of genes harboring melanoma 
pre-disposing mutations (8).

Use of tanning beds in the United States

Indoor tanning beds produce concentrated UV rays and can 
be more harmful than the natural rays of the sun (13-16). For 
the past three decades, the use of tanning beds has become 
very popular among Caucasian populations, particularly 
among younger women. An estimated 11.6 million 
persons in the United States, including almost one in three 
Caucasian women aged 16 to 25 years, use indoor tanning 
devices each year [reviewed in (2,17)]. Indoor tanning beds 
use two types of rays, UV-A and UV-B, both of which can 

lead to skin cancers. These tanning beds are designed for 
short duration of use, so the bulbs emit high intensity in 
the short amount of time they are in use. There has been 
claims by the tanning device industry that newer tanning 
devices employ newer electronic ballasts versus previous 
version of magnetic ballasts, which “virtually eliminate 
risk (of melanoma) and are safe” (18,19). Tanning beds 
use, regardless of the old or new model, are at high risk for 
causing melanoma and other harmful effects. Because the 
duration and frequency of use of tanning beds is positively 
correlated with risk, those who tan at younger ages are at 
greater risk for developing melanoma, in part because the 
skin is still developing. When controlling for outdoor sun 
exposure, there is strong evidence that younger users have 
an increased risk for development of melanoma (20-22). 
Dose-dependency also factors into each person’s individual 
risk for melanoma development. This risk depends on the 
length, strength, and duration of the tanning beds used (23). 
UV from indoor tanning devices has been classified by the 
World Health Organization and the U.S. Department of 
Health and Human Services as a known carcinogen (24). 

A meta-analysis published in the British Association of 
Dermatologists concluded that an overall summary relative 
risk (RR) of 1.20 [95% confidence interval (CI), 1.08–1.34] 
for melanoma development in ‘ever use’ of tanning beds 
and a 1.8% increase of risk for each additional session of 
sunbed use per year (25). In a subgroup analysis of subjects 
who first used sunbeds at an age below 35 years, the 
summary RR rose to 1.87 (95% CI, 1.41–2.48) indicating 
a higher melanoma risk with an early start of tanning bed 
exposure. A cohort study of 73,494 female nurses from the 
Nurses’ Health Study revealed that cancer incidence data 
over a 20-year span [1989–2009] among who used tanning 
beds prior to the age of 35 years showed a significantly 
increased risk of basal cell carcinoma and squamous cell 
carcinoma (SCC) and a non-significant positive association 
for melanoma (22).

It has been estimated that more than 400,000 cases 
of skin cancer may be related to indoor tanning beds in 
the US (26,27). These cancers have led to 245,000 basal 
cell carcinomas, 168,000 SCCs, and 6,000 melanomas. 
According to the data from the 2013 Youth Risk Behavior 
Surveillance System, many teens used indoor tanning, 
including 13% of all high school students, 20% of high 
school girls, 27% of girls in the 12th grade, and 31% of 
white high school girls (28). Indoor tanners tended to 
be young, non-Hispanic white (NHW) women (29). A 
closer look at the findings from the 2010 National Health 
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Interview Survey showed the following rates of indoor 
tanning among NHW women: 32% of those aged 18 to 
21 years, 30% of those aged 22 to 25 years, 22% of those 
aged 26 to 29 years, and 17% of those aged 30 to 34 years (29).

Another meta-analysis combining populations from 
North America, Europe and Oceania, with 14,956 melanoma 
cases and 233,106 controls concluded that tanning bed 
use is associated with a subsequent melanoma diagnosis 
and exposure from more than ten tanning sessions is 
most strongly associated with the odds of melanoma (15). 
Although it has been hypothesized that newer models of 
tanning beds are safer, this study found no statistically 
significant difference for the association before and after 
2000, suggesting that newer tanning technology is not any 
safer than older models. Including subjects who never used 
tanning bed as reference, OR for melanoma associated with 
ever using indoor tanning beds was 1.16 (95% CI, 1.05–1.28). 
Similar findings were identified among recent studies with 
enrollment occurring in the year 2000 onward (OR, 1.22; 
95% CI, 1.03–1.45) and in subjects attending more than ten 
tanning sessions (OR, 1.34; 95% CI, 1.05–1.71).

Role of transcription factor nuclear factor 
erythroid 2-related factor-2 (Nrf2) on melanoma

UV irradiation, xenobiotics, and thermal stress disturb 
cell metabolism and lead to the increased reactive oxygen 
species (ROS) generation and to redox imbalance (30). 
All the factors that lead to an increase of ROS generation 
and/or a reduction in the antioxidant capacity subsequently 
contribute to oxidative stress, which expose the skin cells 
to the formation and accumulation of irreversible damage. 
Transcriptional regulation of cytoprotective genes by 
Nrf2 has been proposed as a molecular defense against 
skin cancer, in particular melanoma (31). Nrf2 encoding 
genes constitutively expressed under constant expression 
under physiological conditions. However, the level of 
Nrf2 in the cytoplasm is regulated by the formation of a 
Nrf2-Keap1-Cul3 complex (32). Keap1 binds to Nrf2 and 
directly inhibits its activity, resulting in simultaneous Nrf2 
ubiquitination catalyzed by Cul3. Nrf2 is degraded by the 
proteasome 26S upon the binding of at least four molecules 
of ubiquitin. Nrf2 is disassociated from the complex 
when the cells are in oxidative condition, which leads to 
the oxidation of cysteine residues in the Keap1 molecule 
(30,33,34). Free Nrf2 is translocated to the nucleus and 
forms a complex with a small Maf protein. It is then bound 
to the DNA as antioxidant response element (ARE) and 

subsequently initiates the transcription of antioxidant 
genes (35). Nrf2 cytoprotective action is most relevant 
to antioxidant enzymes, such as glutathione S-transferase 
(GST), quinone reductase NAD(P)H(NQO1), glutathione 
reductase (GR), etc. (36-38). Nrf2 also activates the 
transcription of non-enzymatic antioxidant protein genes 
containing the ARE recognition sequence (39,40). In 
addition, Nrf2 can act as a stimulant of anti-apoptotic 
proteins from the Bcl-2 family (41,42). The fact that Nrf2 
has the ability to control a wide range of antioxidants and 
anti-apoptotic molecules make Nrf2 a significant factor in 
the cellular response to oxidative stress, in particular in the 
skin cells. 

Cancer preventive mechanisms of sulforaphane

Sulforaphane is a member of the isothiocyanate family 
and is abundant in broccoli and broccoli sprouts. 
Isothiocyanates are sulfur-containing compounds including 
allyl, benzyl, phenylethyl, isopropyl, and methyl thiocyanate 
(43,44). They are also widely distributed among cruciferous 
vegetables, such as cauliflower, cabbage, watercress, and 
kale. The mechanism of sulforaphane action involves a 
reduction of the glutathione level, which in turn alters the 
Keap1 conformation and its inhibitory properties such that 
the active Nrf2 is released into cytoplasm and enhances 
the expression of antioxidant enzymes (45). Studies have 
shown that extract containing sulforaphane reduces the risk 
of UV radiation-induced carcinogenesis in the murine cell 
line SKH-1 (46). The extract also resulted in a reduction 
in tumor weight when given to animals with benign skin 
tumor (47). In human, volunteers subjected to UV light 
and treated with sulforaphane showed a decrease in the 
development of skin erythema (48). 

Studies have demonstrated that sulforaphane has 
many physiological effects including anti-cancer, anti-
oxidation, and detoxification, which may be involved in 
the Nrf2 mechanism (49-54). Sulforaphane was found to 
inhibit melanogenesis and tyrosinase expression (44). The 
inhibitory effect of 5 uM sulforaphane on melanogenesis 
was determined to be equivalent to that of 100 uM arbutin, 
a tyrosine inhibitor (44). Western blot analysis indicated 
that sulforaphane suppressed melanogenesis, most likely 
by modulating tyrosinase protein expression. In addition, 
sulforaphane induced phosphorylated extracellular signal-
regulated kinase (ERK) and inhibited phosphorylated 
p38. It has been reported that the phosphorylated MAPK 
family (ERK and p38) controls tyrosinase expression. The 
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results of this study suggested that sulforaphane inhibited 
melanogenesis and tyrosinase expression by affecting the 
phosphorylated MAP kinase family, which might serve as an 
effective skin-whitening agent. 

In living systems, elevated levels of ROS may initiate 
oxidative stress, which can then affect many intracellular 
targets including DNA. Sulforaphane has been reported 
to generate ROS, increase global histone acetylation at the 
Bax and p21 promoters associated with cell cycle arrest 
(both G2/M and G1) and induce mitochondria-mediated 
apoptosis with activation of caspases and the specific PARP 
cleavage [reviewed in (55)]. In addition, sulforaphane 
was reported to stimulate pro-apoptotic signaling via 
transcriptional activation of Ap-1, activation of MAPK and 
death receptors as well as active suppression of pro-survival 
signals such as NF-κB activation (56,57). Together, these 
results suggest that sulforaphane is capable of influencing 
various targets in melanoma cells. Although its efficiency 
is generally lower in vivo compared to the findings from 
that of cell lines, sulforaphane also induces mitochondrial, 
caspase-dependent apoptosis (58,59). Detailed information 
on specific mechanisms and their possible crosstalk in 
human melanoma are still unclear. Further investigation 
proved that in sulforaphane-treated cells, elevated levels of 
ROS stimulate multiple signaling, including activation of 
the DNA-damage response pathway, increased p38 activity, 
and enhanced expression of Bax and Puma proapoptotic 
proteins (55). Thus, DNA damage after sulforaphane 
treatment was measured by means of microfluorometric 
detection of phosphorylated histone H2A.X expression in 
exposed melanoma cells and samples (55). This histone 
becomes phosphorylated on serine 139 (also called gamma-
H2A.X) as a reaction to DNA double-strand breaks, 
and its fluorescence is proportionate to DNA damage. 
Sulforaphane induced DNA damage, which was significant 
and fully comparable at 12 hours of treatment in both cell 
lines as well as primary melanoma samples. The direct link 
between sulforaphane-mediated generation of ROS and 
observed DNA damage in the model was further verified 
by the observation that pretreatment of samples with the 
antioxidant N-acetylcysteine (NAC) significantly reduced 
the number of cells positive for phosphorylated histone 
H2A.X. To investigate further cellular response to DNA 
alterations, the involvement of p53 in treated cells was 
assessed using a p53 DNA-binding assay which measures 
p53 binding to a specific DNA-response element. The 
data from this assay showed a time-dependent increase in 
p53-DNA binding following sulforaphane treatment which 

was fully comparable in Bowes and SK-MEL-28 cells as 
well as in melanoma samples, up to 36 hours of treatment. 
While at 48 hours of exposure, p53-binding activity peaked 
in exposed cells and samples there was nevertheless a 
significant difference between melanoma cell lines versus 
melanoma samples. While p53-DNA binding differed 
little between wild-type p53 Bowes cells and mutant p53 
SK-MEL-28 cells, a significantly lower p53 activity was 
detected in melanoma samples. 

Discussion

Although melanoma is not as common as non-melanoma skin 
cancers, the continuously increased incidence rate among 
Caucasian women in the US is alarming. A proportion of this 
cancer can be attributable to the use of tanning bed. In recent 
years, stricter laws and taxes have been put into place to 
discourage and impede the use of tanning beds, particularly 
in younger women, or to at least lessen their occurrence. 
For example, California, Delaware, Hawaii, Illinois, 
Louisiana, Minnesota, Nevada, New Hampshire, North 
Carolina, Oregon, Texas, Vermont, Washington, and some 
cities and counties have banned indoor tanning by minors 
younger than 18 years (60). However, the use of tanning bed 
remains popular among certain groups of young females. 
Additional preventive strategies may need to be explored to 
reduce the societal burden of this potentially deadly disease. 
Sulforaphane is a compound found in broccoli extracts 
and other cruciferous vegetables, and is widely available 
as a dietary supplement. The safety and lack of toxicity of 
sulforaphane have also been demonstrated (61). Given the 
potential biological mechanisms and demonstrated effects 
of sulforaphane in inhibiting melanoma carcinogenesis, 
chemopreventive strategies that include sulforaphane 
present an excellent opportunity to further investigate the 
mechanistic preventive pathways for melanoma. At the same 
time, studies employing sulforaphane as dietary supplement 
may offer a way to prevent melanoma for those who are not 
voluntarily exposed to high level and long period of sunlight. 
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