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The physical organization of chromatin in the nucleus plays a 
fundamental role in directing developmental cell fate decisions. 
The nuclear lamina in particular is a critical regulator of 
silencing specific genomic regions and establishing facultative 
heterochromatin (1). Chen et al. now demonstrate the 
connection between Xist-mediated silencing of the inactive X 
chromosome (XCI) and the repressive properties of the nuclear 
lamina (2). The absence of the inactive X chromosome has long 
been associated with tumors (3), and lately Xist, along with 
other long noncoding RNAs (lncRNAs), has been implicated in 
cancer etiology in addition to its role in dosage compensation 
(4,5). These new findings emphasize the links between the Xist 
lncRNA, repressive epigenetic modifiers such as the polycomb 
repressive complexes (PRC1, PRC2), histone deacetylase 3 
(HDAC3)-containing complexes, and the nuclear lamina, 
pointing towards new directions in the role of epigenetic 
silencing in translational cancer research.

The identity of the XCI as a lamina-associated domain 
is often visible to the eye, as labeled Barr bodies frequently 
occur at the nuclear periphery, and with reduced frequency 
at the nucleolus. However, a mechanistic description of this 
phenomenon has been lacking, with experiments focused 
on the biochemical establishment of repressive marks via 
PRC complexes in the absence of information about nuclear 
organization. Recent studies of the Xist proteome identified 
among other repressive epigenetic modifiers (PRC and 
SMRT complexes), architectural factors (SAF-A), RNA-
binding proteins (SHARP and RBM15), and several nuclear 
lamina components including lamin B receptor (LBR) (6-8).  
LBR, an integral protein of the inner nuclear membrane, plays 
an essential role in developmentally regulated silencing through 
establishment and maintenance of facultative heterochromatin 

formation at the nuclear lamina by multiple epigenetic 
modifying complexes (9).

The authors analyzed Xist positioning and gene silencing 
in mouse ES cells treated with LBR siRNAs, and observed 
a concomitant loss of lamina-associated Xist signal and gene 
silencing activity. This behavior was also observed in LBR 
knockout ES cells. Using a cross-linking immunoprecipitation 
(CLIP) readout, they pinpointed LBR association to three 
main regions of the Xist transcript, including a SHARP-bound 
region previously identified as necessary for silencing. The use 
of the BoxB/λN tethering system to force association of Xist 
transcripts to the nuclear periphery provided clear evidence 
that the activity was reversible in the siLBR cells, as well as 
in mutants of the Xist-interacting LBR region and the LBR-
binding region of Xist. The absence of Xist spreading to other 
regions of the inactive X chromosome was confirmed by RAP-
DNA experiments showing decreased Xist RNA occupancy 
across the genomes of cells lacking the LBR-binding region 
of Xist (ΔLBS). However, knockdown of SHARP reduced 
silencing of the XCI despite maintenance of proximity to the 
lamina, indicating a multi-step mechanism, not simply lamina 
association, is necessary for silencing. Together, these findings 
led the authors to propose a model whereby Xist, silencing 
mechanisms, and the nuclear lamina are linked together for 
proper XCI silencing, but not independently sufficient for Xist 
spreading and silencing.

Several mechanistic questions are now raised by these studies. 
Super-resolution microscopy identifies on the order of 50–100 
Xist foci per Barr body (10,11) and many of these foci are not 
within a physical range (100s of nm) of the nuclear lamina to 
interact with LBR or other lamina-associated proteins (12). 
Thus, only a fraction of Xist molecules at any given time will 
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be mediating lamina-directed silencing. It is unknown whether 
each of these molecules will interact with the peripheral silencing 
compartment over the lifetime of an individual cell, or whether 
silencing activity, promoted by the lamina, will spread after 
nucleation at a subset of Xist foci. A finer time course of Xist 
association with the lamina, at super-resolution level, may 
resolve this question. Additionally, a method of determining 
what proportion of Xist molecules interact biochemically with 
LBR in particular or the lamina in general, such as a DAM-ID/
CLIP approach, could resolve the necessary questions about 
stoichiometry.

Another source of uncertainty is the timing and order 
of establishment of Xist interactions with the lamina. 
Repositioning experiments indicate that Xist- and LBR-
mediated silencing spread to loci such as Gpc4 over a  
16-hour timespan following Xist induction (in the SHARP 
knockdown, and presumably in WT cells as well), and that 
knockdowns of LBR or the ΔLBS and ΔA mutants maintain a 
larger distance between the Gpc4 locus and Xist signal within 
this timeframe. The authors hypothesize that interactions 
between Xist and LBR are initiated by a dynamic sampling of the 
nuclear space by Xist-coated chromatin over a timespan of hours. 
However, lamina-associated domains are generally thought to 
be established across mitotic divisions, as the nuclear lamina re-
forms in the proximity of regions containing sequence-specific 
factors that engage with lamina components, such as in the 
interaction between GAGA dinucleotide repeats, the GAGA-
binding factor cKrox, the nuclear lamina protein Lap2ß, and 
HDAC3 in the establishment of lamina-associated domains (13). 
Controlling for cell division, and extending the time-resolved 
analysis of Xist positioning in normal and mutant cells, perhaps 
with a live-cell approach using MS2-tagged Xist transcripts, 
would help answer this question.

The previous identification of a SHARP-HDAC3 complex 
as critical for Xist-mediated silencing (6) by the same group 

also reinforces the potential role of the nuclear lamina, as 
HDAC3 catalytic activity is enhanced at the nuclear lamina (14).  
Previous studies looking at the effect of various nuclear 
membrane components such as LMNB1, LBR, or emerin in 
developmental contexts make this discovery a logical progression 
of known lamina-mediated silencing phenomena. It would be 
informative to examine the role of nuclear lamina association 
in relation to other mechanisms, such as PRC-mediated 
H3K27me3 deposition, RBM15-mediated m6A methylation 
(15), and silencing at non-Xist regulated regions, to determine 
the degree to which lamina association is required for these 
events. For example, Xist could be tethered to another nuclear 
compartment, such as the nucleolus, via the BoxB/λN system, 
and the XCI assayed for silencing and PRC-mediated histone 
modifications to test the absolute necessity for lamina association 
in these processes. Further, assessing the effect of LBR depletion 
on the positioning behavior of both the active X chromosome 
and inducible Xist transgenes integrated on autosomes would 
help dissect the specificity of the proposed mechanism. 

The work of Chen et al. is an important step towards 
establishing how the heterogeneous nuclear environment 
functions as a transcriptional regulator, as well as suggesting 
additional mechanisms of how Xist in particular, and 
lncRNAs in general, may establish developmentally regulated 
transcriptional silencing. As a similar process has recently 
been shown in C.elegans, this is likely an evolutionarily 
conserved mechanism coupling dosage compensation, 
developmentally regulated silencing, and the nuclear  
lamina (16). These findings have broad applicability to 
translational cancer research, particularly in breast cancer, 
where the Xist transcript shows increased transcriptional 
activity in cultured cells and patient samples (17). As the 
cooperative nature of HDAC3 complexes and Xist have 
recently been shown to regulate AKT phosphorylation in 
human breast cancer samples through a PHLPP1-dependent 
interaction (18), the connection to specific cancer-regulating 
mechanisms is clear. While this provides an informative 
network of interactions at the nuclear lamina involving Xist 
and HDAC3 leading to cancer-related outputs (Figure 1),  
many connections are indirect and merit further investigation. 
The ability to tether or release genomic regions via lncRNAs 
to the nuclear periphery or other compartments may become 
a useful tool in modulating gene expression across larger 
genomic regions, or provide a fine-tuning mechanism in 
genomic-based therapies. Further experiments, utilizing a suite 
of imaging and biochemical tools, will clarify this complex set 
of mechanisms and should point the way towards improved 
clinical outcomes through diagnostic and therapeutic strategies 
that leverage our growing knowledge of functional nuclear 
organization.

Figure 1 Interactions between Xist, the nuclear lamina, silencing 
factors, and cancer outcomes. Solid lines represent direct 
interactions, dashed lines represent indirect interactions. LBR, 

lamin B receptor.
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