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Introduction 

DNA crosslinking damage occurs when crosslinking agents 
covalently connect two nucleotide residues from the same 
DNA strand (intrastrand crosslink) or from opposite strands 
[interstrand crosslink (ICL)]. Intrastrand crosslinks can be 
readily removed by the nucleotide excision repair (NER) 
mechanism (1). An ICL, however, constitutes an absolute block 
to DNA strand separation, thus interrupting essential DNA 
metabolic processes such as replication and transcription. Left 
unrepaired, ICLs can be extremely toxic especially in dividing 
cells, stalling DNA replication and leading to cell death. As 
such, ICL-forming antitumor drugs including melphalan and 
cisplatin are among the most widely-used chemotherapeutic 
agents. The first clinical application of an ICL drug, nitrogen 
mustard, dated back to the 1940s (2).

Earlier understanding of ICL repair mechanism was 
obtained primarily from studies in model systems such 
as Escherichia coli and yeast (3). The availability of genetic 
mutants and well-defined biochemical assays made it 
possible to establish the first ICL repair pathway, which 
combines NER and homologous recombination. More 
recently, investigations in patients with Fanconi anemia 

(FA) revealed an important mechanism exclusive in higher 
eukaryotes (vertebrates). FA patient cells are hypersensitive 
to ICLs as demonstrated by reduced survival rates and 
elevated chromosomal abnormalities. Genomic instability of 
FA patients is closely correlated with cancer development. 
Understanding of the ICL repair mechanism and their 
roles in cancer development and treatment is extremely 
important for patients with ICL repair-related diseases 
and for ICL-based chemotherapeutics. In this review, 
we describe the basic concepts of ICL repair and their 
implications in cancer development and treatment.

Formation of interstrand crosslinks

Formation of DNA crosslinks relies on two independently 
reactive groups in a single alkylating molecule. When 
the two reactive groups react with two bases residing on 
opposing DNA strands, an ICL is formed. The covalently 
targeted sites on DNA are usually the N7 position of 
guanine or the exocyclic N2-amino group of guanine from 
nucleotide residues from the opposite strands (4). 

ICL agents exist from naturally occurring as well 
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as synthetic sources. Naturally occurring crosslinking 
agents include psoralens, mitomycin C, nitrous acids, etc. 
Mitomycin C was originally found in fungi with antibiotic 
activity mediated by its DNA crosslinking ability since 
bacteria are easily killed by a single unrepaired ICL (5). 
Psoralens are natural compounds derived from plants. 
Psoralens target specifically the TA sequences and react 
with the opposing thymines to form ICLs upon photo 
activation by UV radiation. Because of this unique feature, 
psoralens are effective ectopical treatment of psoriasis (6). 
Certain metabolites of alcohol, cigarette, and high fat diet, 
such as acetaldehyde and malondialdehyde, also act as DNA 
interstrand as well as DNA-protein crosslinkers. Recent 
studies demonstrated that ICL repair-deficient mice are 
sensitive to aldehyde (7-9), indicating that these endogenous 
crosslinking agents present an internal risk of genomic 
instability. Another endogenous interstrand crosslinking 
agent is nitrous acid, which is formed in the stomach during 
consumption of nitrite-containing food additives.

Synthetic ICL agents consist of a broad array of bi-functional 
alkylators such as nitrogen mustard, carmustine, platinum 
compounds, and diepoxybutane. Nitrogen mustard gas was used 
as a chemical weapon during World War I. The observation 
that white blood cell counts decreased drastically from nitrogen 
mustard exposure led to the exploratory application of this 
compound in cancer therapy. Nitrogen mustard was used as 
a chemotherapeutic agent for lymphoma and leukemia for 
a period of time (10,11). Since then, many more ICL agents 
have been used for cancer treatment, including derivatives of 
nitrogen mustard such as melphalan and cyclophosphamide, and 
platinum-containing drugs such as cisplatin and caboplatin. 

As described above, human bodies are subjected to 
endogenous and therapeutic ICL exposure. As an exceedingly 
genotoxic and cytotoxic DNA lesion, one unrepaired DNA 
ICL could yield lethality in monocellular organisms whereas 
20 to 40 unrepaired ICLs are fatal to mammalian cells 
(5,12). As a result, ICL repair mechanisms are essential in 
maintaining genomic integrity and cell viability. 

ICL repair mechanisms

ICL repair mechanism is highly conserved in most 
unicellular organisms. Studies in Escherichia coli in the early 
1970s demonstrated a recombination-dependent and error-
free ICL repair pathway. In this model (Figure 1), NER 
factors initiate a strand-unhooking step by introducing 
dual incisions flanking the ICL lesion. Homologous 
recombination then fills the resulting gap by invading an 

undamaged chromosome. A subsequent round of NER 
reaction removes the remaining lesion and results in 
error-free repair of ICLs (13,14). This model, also called 
the Cole’s model (13), is supported by both genetic and 
biochemical evidence (15-18). A similar repair mechanism 
also operates in yeast (19,20). A minor ICL response 
pathway was shown to be recombination-independent 
since the recombinase RecA is not required. It was shown 
that polymerase Pol β is involved in a lesion bypass process 
leading to error-prone ICL removal (21,22). 

In higher eukaryote and particularly in vertebrate cells, a 
complex ICL processing mechanism has evolved to facilitate 
ICL damage response. The importance of this pathway 
is reflected by the hypersensitivity of FA patient cells to 
crosslinking agents. Essentially, two types of mechanisms 
for ICL removal have been observed in eukaryotes: 
recombination-dependent and recombination-independent. 

The recombination-dependent ICL repair pathway, 
alternatively termed as replication-dependent ICL repair, 
functions during late S or G2 phases of the cell cycle, where 
the ICL-damage sites are adjacent to an undamaged sister 
chromatid. Initiation of this repair mechanism depends on 
stalling of the replication fork, and the lesion removal process 
includes translesion synthesis, homologous recombination, 
and NER. In a model (Figure 2) based on studies from 
Xenopus laevis egg extracts (23), two replication forks converge 
at the ICL site and are both blocked. Unhooking of ICL 
takes place when structure-specific nucleases such as XPF/
ERCC1 make dual incisions flanking the crosslinked site on 
the same DNA strand. This step releases the covalent linkage 
between the complementary strands. The resulting gap is 
filled by translesion polymerases to bypass the remaining 
lesion and join the downstream Okazaki fragment. The 
restored duplex DNA, with the crosslinked oligonucleotides 
attached to one strand, is further repaired by NER factors. 
This fully repaired sister chromatid is subsequently utilized 
to remove the double strand break on the sister chromatid via 
a classical homologous recombination pathway. 

The FA pathway is involved in ICL repair from the initial 
recognition of stalled forks to the final step of homologous 
recombination (24). Two important steps seem to require 
the FA mechanism in the recombinational ICL repair. 
First, an active FA pathway is crucial for the recruitment 
of incision factors, as two of the potential incision factors, 
SLX4 and FAN1, depend on monoubiquitinated FANCD2 
for their loading to ICL site via ubiquitin-binding domains 
(25,26). Secondly, FA pathway may tether the secondary 
NER incision with the ensuing homologous recombination 
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to restore the disconnected sister chromatid (27). 
The recombination-independent ICL repair mechanism, 

also called mutagenic ICL repair, mainly occurs in cells 
during the G1 phase (Figure 3). Initiation of recombination-
independent ICL repair depends on the native damage 
recognition proteins such as XPC and utilizes the NER 
dual incision to achieve the unhooking step (28,29). NER 
nucleases, XPF/ERCC1 and XPG provide the 5' and 3' 
incision, respectively. Repair synthesis of the resulting 
gap is aided by lesion bypass DNA polymerase ζ (30). 
The involvement of lesion-bypass polymerases in the 
recombination-independent ICL repair dictates the 
mutagenic nature of this pathway, which also underlines 
why cancer patients under ICL agent treatment are prone 
to chemotherapy-induced secondary malignancies (31,32). 

Factors in ICL repair pathways

As described in the previous model (Figure 2), proteins 
involved in ICL repair include but are not limited to the 
15 known FA genes (A, B, C, D1, D2, E, F, G, I, J, L, M, 
N, O, and P) (33-35). Essential recombination factors such 
as RAD51, structure-specific endonucleases such as XPF/
ERCC1 and MUS81/EME1, Holliday junction processing 
factors, and translesion DNA polymerases are also parts of 
the orchestrated process during ICL repair.

FA is a rare human genetic disease characterized 
by pancytopenia, a broad spectrum of developmental 
abnormalities, and a high risk of cancer (36). Each FA subtype 
is associated with a distinct gene encoding a corresponding FA 
protein. Cells derived from FA patients exhibit high levels of 
chromosomal breakage and formation of radial chromosomes 
(37,38), indicating that ICL repair-deficient cells have high 
levels of genomic instability. In the classical FA pathway, FA 
core complex (consisting of A, G, FAAP20, C, E, F, B, L, and 
FAAP100) has E3 ubiquitin ligase activity with the catalytic 
function attributed to the RING domain-containing FANCL 
protein. The major function of the core complex is to execute 
DNA damage-induced monoubiquitination of the FANCI/
D2 complex (39). The activated FANCI/D2 complex is 
suggested to recruit downstream effectors, including nucleases, 
translesion polymerases, and homologous recombination 
factors to repair ICLs (25,26,40). The exact role of FANCD2 
monoubiquitination remains unclear. 

FANCM is a DEAH domain helicase with ATP-
dependent DNA translocase activity (41,42). FANCM forms 
a complex with FAAP24 and with the MHF1/MHF2 histone-
fold complex (43,44). FANCM is important but not essential 

Figure 1 Interstrand crosslink repair pathway in prokaryotes. 
This pathway includes nucleotide excision repair and homologous 
recombination, which is error free (indicated as blue DNA 
patches). Note, this model is adapted from the one proposed by 
Cole. et al. in 1973 (13)
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Figure 2 Recombination-dependent interstrand crosslink repair pathway in vertebrates. This pathway includes initiation, unhooking, 
SNMA1 digestion, translesion synthesis, nucleotide excision, gap filling, and homologous recombination. Note, this model is adapted from 
the one proposed by Raschle, M. et al. in 2008 (23). In their study, however, SNM1A digestion is not required. Instead, as the green-arrowed 
strands indicated, the new strand is extended to one base ahead of the lesion site before excision occurs. After unhooking, Rev1 inserts a 
cytosine into the position across the lesion on the complementary strand. Then Pol ζ, the key translesion polymerase, processes the DNA 
synthesis beyond the lesion site
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in the activation of the FA pathway (45). Biochemical studies 
suggest that the FANCM/FAAP24 complex stabilizes and 
remodels stalled DNA replication forks (44,46,47). FAAP24 
complex is found to play a role in ATR-mediated checkpoint 
activation (48-50), whereas FANCM is shown to be involved 
in recombination-independent ICL repair by promoting 
PCNA ubiquitination thus facilitating the recruitment of 
NER incision factors to the ICL sites (45). 

The FA gene group consisting of FANCD1 (BRCA2), 
FANCN, FANCJ, and FANCO are also previously 
established recombination factors that connect FA with 
breast/ovarian cancer susceptibility. Mutations of both alleles 
of these genes lead to a corresponding subset of FA, whereas 
mutation of one allele causes breast cancer predisposition. 
The recombination factors are likely to act downstream of 
ICL processing, especially when DNA double strand break 
forms (51,52). FANCO, also named RAD51C, is a paralogs 
of RAD51 (35,53). RAD51C forms complexes with RAD51B, 
RAD51D, XRCC2, and XRCC3 (54,55). One of the major 
roles of these paralogs is the recruitment and regulation of 
the recombinase RAD51 onto single-stranded DNA (54). 
Cells deficient in any of the RAD51 paralogs are sensitive 
to ICLs and double strand breaks because of the resulting 
deficit in homologous recombination (56). 

Three heterodimeric structure-specific endonucleases 
involved in ICL repair are XPF/ERCC1, SLX1/SLX4, and 
MUS81/EME1. SLX4 is found to be mutated in the FANCP 
complementation group (34,57,58). SLX4 and SLX1 form a 
heterodimeric nuclease that functions as a Holliday junction 
resolvase in ICL repair (59-62). During ICL repair, SLX4 also 
serves as a scaffold protein to assemble a multi-activity nuclease 
complex involving XPF/ERCC1 and MUS81/EME1. XPF/
ERCC1 functions in both NER and ICL repair (63,64). The 
NER activity of XPF/ERCC1 is SLX4 independent, which 
was supported by studies demonstrating that FANCP patient 
cells were not sensitive to UV radiation (57,65). A recent 
study also demonstrated that SLX4-dependent XPF/ERCC1 
activity in replication-dependent ICL repair is to complete 
the unhooking during ICL repair (65). The unhooked 
oligonucleotides might be digested by another nuclease, 
SNM1A (66), which provide a promising alternative to the 
more difficult lesion bypass synthesis step. 

In addition to the heterodimeric nucleases, the newly 
discovered nuclease FAN1 plays a moderate role in 
ICL repair. FAN1 is recruited to the ICL sites by the 
ubiquitinated FANCD2 via an ubiquitin-binding zinc finger 
domain in FAN1 (25). The other important domain of 
FAN1, the virus-type replication-repair nuclease domain, 

Figure 3 Recombination-independent interstrand crosslink 
repair pathway in vertebrates. This pathway includes initiation, 
unhooking, translesion synthesis, nucleotide excision, and gap 
filling. Note, this model is adapted from the one proposed by 
Zheng H. et al. in 2003 (28)
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displays 5'-3' exonuclease activity and structure-specific 
5'-flap endonuclease activity (25,67-69). These activities 
enable FAN1 to excise the exposed DNA ends as well as the 
stalled DNA replication structures. 

Trans le s ion  DNA po lymerases  a re  impor tant 
components of ICL repair. Normal replicative DNA 
polymerases are usually blocked ahead of the ICL site. 
Studies in Xenopus laevis egg extracts demonstrated that 
the translesion polymerases including Y-family polymerase 
Rev1 and the B-family polymerase Pol ζ (Rev3/Rev7) have 
essential roles in the complete removal of ICLs. In this 
models, the ICL repair intermediate utilizes replisome 
remodeling machinery to extend the stalled DNA strand to 
one base ahead of the ICL site (23). Upon unhooking, the 
deoxycytidyl transferase of Rev1 inserts a cytosine into the 
position across the ICL lesion on the complementary strand 
(70,71), followed by Pol ζ to extend the unpaired strand. 

Interstrand crosslinking damage and 
development of cancer

Unrepaired or misrepaired DNA ICLs are major sources 
of genomic instability. ICL-inducing agents are known to 
be potent carcinogens. Nitrogen mustard gas exposure, 
aside from acute impacts, is known to cause high incidence 
of cancer especially leukemia (72). The onset of acute 
myeloid leukemia is much higher in cancer patients treated 
with ICL agents than those without (31,32). Clinical 
observations clearly indicate that administration of ICL 
drug has accumulative effect and the leukemogenicity 
of these agents is dose-dependent. However, the risk of 
developing leukemia is justifiable considering the benefit of 
chemotherapy for advanced primary malignancies.

Studies in animal models in recent years suggest that 
acetaldehyde, an endogenous metabolic product from 
alcohol, was carcinogenic (73). For example, rats exposed 
to acetaldehyde vapor had increased risk of squamous cell 
carcinoma in the respiratory epithelium, including nasal 
and laryngeal carcinomas. Epidemiological studies also 
support this notion as alcohol consumption has been linked 
to increased tumor incidents (74,75). More recently, mice 
defective in both FA pathways and Aldehyde Dehydrogenase 
2 are found to be embryonic lethal (8,9). The types of DNA 
damage, as a result of accumulating aldehyde, may be both 
DNA crosslinks and DNA-protein crosslinks. 

Mutation of ICL repair genes resulting failure in 
ICL repair, mimics ICL agent exposure. FA patients in 
particular exhibit high risk of hematopoietic malignancies, 

including myelodysplastic syndrome and acute myeloid 
leukemia, which account for 52% of tumors in FA patients 
by the age of 40 (76). The risk of all cancers, solid tumors, 
and acute myeloid leukemia is 50-fold, 48-fold, and 800 
fold higher, respectively, in FA patients than in the general 
population (77). Of the solid tumors diagnosed in FA 
patients, head and neck squamous cell carcinoma is the most 
common (700-fold increase in risk) followed by esophageal 
cancer and gynecological cancers. The FA patients with 
FANCN or FANCD1 mutations usually exhibit early 
onset of cancer during childhood, contributing to the early 
mortality (78-81). FA patients defective in the homologous 
recombination process, (FANCD1, FANCN, and FANCJ) 
are more prone to breast cancer (82-84), whereas FANCO 
mutation carriers are more susceptible to ovarian cancer 
(53,85). The varying spectrum of cancer susceptibility and time 
of tumor onsets from different groups of FA patients underline 
distinct functions of FA genes during ICL removal. 

Two potential mechanisms may also account for ICL-
related cancers in FA patients. First, unrepaired DNA ICLs 
is a strong apoptosis inducer in hematopoietic cells (86), the 
resulting selection pressure and an increased requirement of 
clonogenicity for the remaining hematopoietic stem cells proved 
to be a key factor in the heightened risk of hematopoietic 
dysplasia and cancer in FA patients (87). Second, FA patients are 
known to have an increased risk to human papilloma virus or 
other oncogenic viral infection, which increases the risk of head 
and neck squamous cell carcinoma and other solid tumors (88). 
Current model suggests that the typical extension of G2 phase 
in FA cells (from unrepaired ICLs) increases the susceptibility to 
human papilloma virus infection. About 85% of head and neck 
squamous cell carcinoma in FA patients are positive for human 
papilloma virus (89). 

ICL and cancer therapy

Because DNA ICLs are profoundly cytotoxic and are 
especially effective in killing dividing cells, ICL-inducing 
agents are widely used for cancer treatment, especially for 
solid tumors. These agents include but are not limited to 
nitrogen mustards, platinums, mitomycin C, and psoralens.

Clinical use of nitrogen mustards dates back about 70 years. 
Two of these agents, cyclophosphamide and melphalan, are 
still administrated as front line treatments for many forms 
of leukemia and myeloma. Cyclophosphamide, also known 
as cytophosphane with trade names including Cytoxan, 
Endoxan, Neosar, Procytox, and Revimmune, is routinely used 
in treatment of lymphoma and some types of leukemia (90) 
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and in phase 3 clinical trials for treatment of node-positive 
breast cancer (91). The adverse effects of cyclophosphamide 
administrated at high doses include neutropenia and acute 
myeloid leukemia, which is the major limiting factor (92). 
The original clinical use of melphalan, also known as 
L-Phenylalanine Mustard and the trade name Alkeran, was 
melanoma treatment. Later, it proved to be more effective in 
treating myeloma (93,94). Currently, melphalan is a standard 
regimen for multiple myeloma (95). It is occasionally used in 
ovarian cancer and melanoma, though. The primary side effect 
of this agent is bone marrow suppression. 

Other nitrogen mustard derivatives used in chemotherapy 
include chlorambucil (Leukeran) and ifosfamide (Ifex). 
Chlorambucil is primarily used for chronic lymphocytic 
leukemia, but replaced with Fludarabine in pediatric patients 
for the management of neural and bone marrow toxicity (96). 
Ifosfamide is used for various cancers, including testicular, 
lung, and breast cancer with similar side effects. Interestingly, 
the ifosfamide metabolite chloroacetaldehyde has chemical 
properties similar to those of acetaldehyde and chloral hydrate, 
which may explain its encephalopathy complications (97). 

Platinum compounds are another class of DNA ICL-
inducing agent. Cisplatin is widely used in the treatment 
of various solid tumors including lung cancer, ovarian 
cancer, lymphoma, and testicular cancer. The cure rate for 
testicular cancer increased from 10% to 81% with the use of 
adjuvant therapy with cisplatin (98). The main side effects 
of treatment with cisplatin are nephrotoxicity, neurotoxicity, 
and bone marrow suppression. Carboplatin is a second-
generation platinum drug with less severe side effects in the 
kidney. Platinum agents developed more recently include 
oxaliplatin, satraplatin, picoplatin, nedaplatin, and triplatin.

In addition to the nitrogen mustard- and platinum-
based drugs, mitomycin C and psoralens are also common 
ICL-based anticancer drugs. Mitomycin C is often used 
to treat esophageal, breast, and bladder cancer. The main 
toxic effect of intravenous mitomycin C is bone marrow 
suppression. Psoralens have an advantage over other ICL-
based chemotherapy in the treatment of skin cancer in 
that psoralen-mediated ICLs are formed upon UV photo 
activation. Psoralens are given topically to treat cutaneous 
T-cell lymphoma within a defined surface area. The most 
common side effect of treatment with psoralens is dermatitis, 
which has appeared in long-term follow-up studies (99). 
Furthermore, psoralen exposure-induced secondary cancer 
is also reported from psoriasis treatment, presumably from 
mutations arisen from mutagenic ICL repair (100,101).

Cancers bearing BRCA2 mutations, such as breast and 

ovarian cancer, respond better to ICL-based chemotherapy 
than do cancers without these mutations. The main reason 
is that cancer cells with deficient homologous recombination 
mechanism are deficient in the later stage of ICL repair 
and thus sensitive to this chemotherapy. Therefore, genetic 
mutations affecting ICL repair actually provide tumor 
selectivity for ICL-based therapy. For example, platinum-
based chemotherapy has improved survival rates in patients 
with ovarian cancer carrying BRCA2 mutations over 
those in patients with sporadic ovarian cancer (102,103). 
However, solid tumors in FA patients are mostly treated 
with radiation and surgery rather than ICL agents, because 
somatic cells in FA patients are overly sensitive to ICL 
agents, even much reduced ICL exposure can be fatal. 

Given the effectiveness of ICL-based chemotherapy, 
future translational research effort may be applied in two 
directions. First, improvement of toxicity profile will extend 
the clinical benefit of ICL drugs. Reduced or reversible 
side effects will allow patients to tolerate prolonged  
treatment (104). Second, sensitization of cancer cells to ICL 
drugs could be another strategy to achieve additional tumor 
control. As the mechanisms of ICL repair emerge, key repair 
factors can be legitimate targets for sensitization. Although 
ICL-based chemotherapeutic drugs have been used since  
70 years ago, much potential exists for future development 
and refinement of this classical regimen. 

Conclusions

DNA ICLs is a complex and severely genotoxic lesion. 
Cellular mechanisms dealing with ICLs have proven to 
be complicated and await further investigation. On the 
one hand, failure in the proper repair of ICLs is likely a 
significant source of genomic instability and hence cancer 
development. The manifestations of FA, especially its cancer 
risk, have fully demonstrated this notion. On the other 
hand, the profound cytotoxicity of ICL-inducing agents 
yielded a major class of cancer chemotherapeutic drugs. 
This class of bifunctional alkylating drugs has continuously 
evolved with increasing variety and efficacy. Future studies 
of cellular mechanism of ICL response are expected to 
advance cancer etiology as well as therapy. 
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