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TP53 (p53) is one of the oldest and best studied genes 
implicated in cancer formation or progression. Although 
originally identified as an oncogene (1,2), it has been known 
for several decades that wild-type (WT) p53 functions as 
a tumor suppressor gene. Suppression of cancer formation 
involves the binding of p53 to specific DNA response 
elements, followed by the induction of genes involved in 
one or more of the following processes, apoptosis, cell cycle 
arrest, senescence, DNA repair, metabolism or reactive 
oxygen species (ROS) modulation (3). Because of its ability 
to prevent cancer formation, p53 has been referred to as the 
“Guardian of the Genome” (4). 

In most if not all human cancer however, the “Guardian 
Angel” is transformed into a “Rebel Angel” (5), as 
p53 becomes dysfunctional and is unable to suppress 
carcinogenesis. Two main mechanisms are responsible for 
p53 inactivation; mutation and negative regulation of WT 
p53 mediated by MDM2, MDM4 or other proteins (3).  
Both these processes negate the ability of WT p53 to 
prevent cancer development or progression. Because 
inactivation of p53 is effectively universal in human 
malignancy, targeting this dysfunction is currently a highly 
active area of research. Although a variety of approaches for 
targeting p53 are undergoing investigation (Table 1), most 
work is focusing on blocking the degradation of WT p53, 
depleting mutant p53 and reactivation of mutant p53 to a 
WT-like form (6-8).

Blocking interaction between WT p53 and MDM2/
MDM4

In many cancers that lack p53 mutations, the WT gene 
is maintained at low levels by interaction with negative 

regulators such as MDM2 and MDM4 (9). MDM2 
negatively regulates p53 protein using 2 main mechanisms, 
i.e., by promoting its degradation and preventing it from 
activating its target genes. MDM4, although exhibiting 
strong sequence homology to MDM2, lacks ubiquitin ligase 
activity and is thus unable to target p53 for proteasomal 
degradation. However, like MDM2, MDM4 can bind to 
p53 and block it transcriptional activity. Furthermore, 
MDM4 can complex with MDM2 and thereby indirectly 
modulate levels of p53.

Inhibiting the binding of these proteins to p53 would 
thus be expected to block its degradation and maintain 
WT function. However, traditionally, preventing protein-
protein interaction with low molecular weight compounds 
has proved difficult as their binding surfaces are frequently 
too flat or large for efficient blockage (9). However, in the 
case of p53-MDM2 interactions, structural studies have 
shown that the MDM2 N-terminal domain contains a 
deep hydrophobic pocket into which the transactivation 
domain of p53 can bind. Three amino acid residues in 
p53, i.e., Phe19, Trp23 and Leu26 appear to be primarily 
responsible for this protein-protein interaction (10). Based 
on this knowledge, several compounds (both low molecular 
weight organic compounds and peptides) were synthesised 
to inhibit the interaction between p53 and MDM2 (11,12). 

Amongst the earliest investigated were the nutlins, 
especially nutlin 3a (11). Nutlin 3a mimics the 3 critical 
residues in p53 mentioned above that are necessary for 
interaction with MDM2. It thus acts as a competitive 
inhibitor of p53 binding to MDM2. Although preclinical 
studies showed that nutlin 3a increased p53 concentrations, 
enhanced apoptosis and decreased tumorigenicity in p53 
WT cancer cells (11), this compound was not pursued for 
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potential clinical use because of poor pharmacokinetic 
properties and limited efficacy. Rather, more potent p53-
MDM2 inhibitors with superior pharmacokinetic properties 
and enhanced anticancer efficacy were developed, some 
of which recently entered clinical testing (Table 1) (13). 
Compared with the wide availability of p53-MDM2 
inhibitors, fewer pure MDM4 or dual MDM2/MDM4 
inhibitors have been described. To the author’s knowledge, 
only one dual MDM2/MDM4 inhibitor has entered clinical 
trials, i.e., the stapled peptide known as ALRN-6924 
(Aileron Therapeutics) (NCT 02264613).

MDM2/4 antagonists would be expected to be of most 
value in malignancies with WT p53 and high expression 
of either MDM2 or MDM4. These include sarcomas, 
leukemias, neuroblastomas and retinoblastomas for MDM2 
inhibitors and both melanomas and retinoblastomas for 
MDM4 inhibitors (9). Potential side effects from the 
administration of MDM2/4 inhibitors include the possibility 
that in addition to stabilising p53 in tumor cells, these 
compounds might also stabilise the protein in normal cells. 
Levels of WT p53 could thus accumulate in normal cells 
and induce inappropriate apoptosis and cell death. However, 
the reported side effects relating to the preclinical use of 
MDM2 inhibitors are minimal. This limited toxicity in 
normal cells may be due to p53 primarily inducing cell cycle 
arrest rather than apoptosis in non-malignant cells (14).  
MDM2 inhibitors may thus exhibit selective toxicity for 
malignant cells over their normal counterparts. A further 
concern with the use of MDM2 antagonists is that if mutant 
p53 is present in the malignancy undergoing treatment, its 
stabilisation and the subsequent increased concentrations 
could increase the risk of cancer progression (15). Indeed, 
the presence of mutant p53 has been shown to confer 
resistance to MDM2 inhibitors (16).

Also, in the context of potential side effects from the 
use of MDM2/MDM4 antagonists, it should be borne in 
mind that in addition to p53, MDM2 can ubiquitylate other 
proteins (e.g., estrogen receptor, androgen receptor, p21 
and Rb), resulting in their degradation (9). Furthermore, 
MDM2 has p53-independent activities including the ability 
to regulate gene expression, participate in DNA repair and 
modify chromatin structure (17). The impact, if any, of the 
available MDM2 inhibitors on these processes is unclear.

Reactivation of mutant p53

Several low molecular weight compounds (PhiKan083, 
MIRA-1, STIMA-1, ZMC1, PK7088, PK11000, PK11007 
and PK11011, PRIMA-1 and APR-246/PRIMA-1MET) 
as well as specific peptides (ReAcp53, pCAP-250) have 
been shown to reactivate mutant p53 and restore its 
transcription activity (6-8). Of these, the most widely 
studied are PRIMA-1 and APR-246 (Aprea Therapeutics). 
Both PRIMA-1 and APR-246 are pro-drugs that must 
first be converted to methylene quinuclidinone (MQ) in 
order to bind to p53 (18). MQ acts by attaching to specific 
thiol groups in mutant p53, converting it to a WT-like 
conformation (18). As well as binding to p53, APR-246 
has also been shown to inhibit thioredoxin reductase 1 and 
decrease levels of GSH (7). Both of these interactions result 
in increased levels of ROS. Thus, PRIMA-1 and APR-
246 exhibit a dual mechanism of action, i.e., reactivation of 
mutant p53 and generation of ROS (7).

Both PRIMA-1 and APR-246 have been shown to exhibit 
anticancer activity in a wide variety of preclinical models 
(6-8). The preclinical findings with APR-246 led to a phase 
I/IIa clinical trial which was carried out in patients with 
refractory leukemia and prostate cancer (19). In this trial, 

Table 1 Approaches used for targeting p53 in order to treat cancer

Mechanism of action Drugs in clinical trials/clinical use

Inhibit WT p53-MDM2 interaction RG7112, RG7388, MI-77301, AMG232, MK-8242, CGM097, DS-3032b, RO6839921

Reactive mutant p53 APR-246

Deplete mutant p53 Ganetespib, onalespib, luminespib

Gene replacement (gene therapy) Gendicine (Ad-53)*

Restore zinc to zinc-deficient mutant p53 None

Promote readthrough of premature termination None

*Gendicine is commercially available (Shenzhen SiBiono GeneTech Co.) and is currently approved for clinical use in China. WT, wild-type.
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APR-246 was administered as a 2-hour intravenous infusion 
once per day for 4 consecutive days. Overall, the treatment 
was well tolerated, the most common adverse effects being 
fatigue, dizziness, headache and confusion. Evidence that 
APR-246 acted via p53 activation included induction of cell 
cycle arrest, increased apoptosis and upregulation of several 
p53 target genes in leukemic cells recovered from the 
treated patients. In an extension of this trial, carried out in 
patients with CLL and AML, administration of APR-246 at 
a dose regimen of 67.5 mg/kg, given as a 6 h infusion on 4 
consecutive days was found to be safe and well tolerated (20).  
APR-246 is currently undergoing a phase Ib/II clinical 
trial in patients with platinum sensitive relapsed high 
grade serous ovarian cancer (PISARRO trial) (21). In the 
phase Ib part of this study APR-246 is being administered 
in combination with carboplatin and pegylated liposomal 
doxorubicin. 

Depletion of mutant p53 

In order for mutant p53 protein to exert its oncogenic 
functions, it must be stabilized and accumulate in cancer 
cells (22). Stabilization is achieved by interaction with 
various chaperone proteins, the best known of which is 
HSP90. Preventing this stabilization would be expected to 
result in depletion of mutant p53 and thus the possibility 
of a reversion of the malignant phenotype. Proof of this 
principal emerged when it was demonstrated that inhibition 
of expression of HSP90 by RNAi led to accelerated MDM2 
and CHIP-mediated degradation of mutant p53 (22,23). 

Subsequently, several low molecular weight HSP90 
inhibitors were identified (24). Most of the early compounds 
acted by binding to the N-terminal domain of HSP90, 
thus blocking ATP binding. This leads to inhibition of 
HSP90 which is followed by E3 ubiquitin ligase-mediated 
degradation of mutant p53 as well as several other 
HSP90 client proteins, see below. The original HSP90 
inhibitors included the naturally occurring compounds, 
ansamycin, geldanamycin and its derivative 17-allylamino-
17-demethoxygeldanamycin (17-AAG). While these 
compounds showed proof-of-principle that targeting 
HSP90 could be used to inhibit cancer cell growth, their 
clinical potential was limited by excessive toxicity and 
modest clinical efficacy (24). Some HSP90 inhibitors 
however, were shown to exhibit preferentially growth 
inhibition for malignant versus non-malignant cells (24). 

One of the most widely investigated of the cancer-selective 
compounds is ganetespib {also known as known as STA-

9090 or 5-[2,4-dihydroxy-5-(1-methylethyl)phenyl]-4-1-
methyl-1H-indol-5-yl-2,4-dihydro-1,2,4-triazol-3-one} (25). 
Indeed, in some of these experimental systems investigated, 
ganetespib was shown to exhibit enhanced cytotoxicity 
for mutant p53 versus p53-null or p53 WT cells (26).  
Ganetespib is currently undergoing clinical trials in a 
number of different cancers including non-small cell lung 
cancer. Other HSP90 inhibitors that have undergone or are 
currently undergoing clinical trials include onalespib (27)  
and luminespib (28).

Before concluding this section, it should be stated 
that HSP90 is responsible for the stabilization of several 
other proteins in addition to mutant p53. Amongst the 
other proteins stabilised by this chaperone are EGFR, 
HER2,  AKT, CDK4 and estrogen receptor  (22) . 
Inhibition of HSP90 would thus be expected to results 
in the destabilization and degradation of several proteins 
involved in oncogenesis. HSP90 inhibitors, in contrast to 
other anti-cancer compounds, could thus simultaneously 
block multiple oncogenic pathways. However, this ability 
to block multiple pathways could also have detrimental 
effects in normal cells as HSP90 plays an essential role in 
normal cellular homeostasis (24). Treatment with HSP90 
inhibitors might thus be expected to result in multiple 
toxicities, especially with long-term treatment. Whether 
such toxicity will emerge should soon become evident from 
the ongoing clinical trials (23). A further downside with 
HSP90 inhibitors is that although they eliminate mutant 
p53 (as well as other proteins) they are unable to reactivate 
the mutant protein.

Conclusions

Although originally discovered in the late 1970s (1,2), it 
has taken over 3 decades for clinical trials on targeting the 
p53 dysfunction in cancer to begin. The ongoing clinical 
trials are still at a preliminary stage. Thus, it is too early 
to conclude if targeting p53 will have efficacy for the 
treatment of cancer. If however, any of the compounds 
currently being evaluated in clinical trials exhibit potent 
anticancer activity, it is likely to usher in a new era in cancer 
treatment, especially as p53 dysfunction is so prevalent in 
human cancer.
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