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General p53 function and post-translational 
modifications

p53 is a transcriptional regulator that suppresses oncogenesis 
in response to a variety of stresses including DNA damage, 
oxidative reactions, hypoxia, compromised energy levels 
and oncogenic signaling (1-6). p53 transcribes a diverse set 
of genes that promote apoptosis (53BP1, BAX, Killer, Scotin, 
FAS, BBC3, PERP, LRDD), cell cycle arrest (p21, 14-3-3, 
GADD45, RPRM), PMAIP1) and oxidative phosphorylation 
(SCO2, AIF), suppress aerobic glycolysis (GLUT1, TIGAR, 
Hexokinase, Phosphoglycerate mutase) and cell growth 
(PTEN, TSC2, AMPK beta, IGF-BP3) (7) and modulates 
protein synthesis [sestrins 1 & 2 (8-10)]. In addition, p53 has 
activities that are distinct from transcription, including the 
regulation of microRNA processing (11), DNA repair (12), 

mitochondrial function (13) and ribosome biogenesis (14,15). 
Thus, p53 is a multi-functional protein that responds to a 
diverse array of stresses.

Post-translational modifications to p53, in response to 
stress, regulate its activity (16). Among the best-known p53 
regulators are MDM2 (murine double minute 2) and MDM4 
(a.k.a. MDMX). MDM2 is a ubiquitin ligase, while MDM4 
enhances p53 ubiquitination in a complex with MDM2. 
MDM2 regulates p53 stability, while MDM4 regulates 
p53 activity (17), with tissue-specific differences (18).  
Deletion of either MDM2 or MDM4 is embryonic 
lethal due to widespread cell cycle arrest and apoptosis, 
and deletion of p53 rescues these mutant embryos  
(19-22). Thus, unfettered p53 activity is toxic to a 
developing embryo.
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A variety of protein kinases phosphorylate p53 on 
multiple Ser/Thr residues in response to stress. For 
example, in response to DNA damage, ATM and other 
kinases phosphorylate Ser 15 (Ser 18 in mouse p53) and 
Ser 20 (Ser 23 in mouse). These modifications interfere 
with MDM2 binding, resulting in increased expression of 
p53. Interestingly, mice carrying a modified p53 (S18A) 
that can no longer undergo phosphorylation exhibit late-
onset cancer and accelerated aging; fibroblasts from these 
mice undergo premature replicative senescence, suggesting 
that this response suppresses aging as well as cancer (23). 
Similarly, mice carrying p53 T21D and S23D (which 
activate p53) show reduce stem cell populations and early 
aging (24). Depletion of the pro-apoptotic p53 target, 
PUMA rescues this phenotype, suggesting that apoptosis 
reduces stem cell populations to accelerate aging. 

Lysine acetylation is another p53 modification. Potential 
p53 deacetylases include p300, CBP, PCAF, TIP60 and 
hMOF (25). Acetylation stabilizes p53 by interfering with 
the MDM2 interaction (26). Acetylation can also recruit 
cofactors influencing p53 activity. Deacetylases counteract 
acetyltransferase activity. In particular, SIRT1 deacetylates 
K382 to negatively regulate p53-mediated apoptosis. This 
deacetylation could impact aging since a natural molecule 
found in wine, resveratrol (3,5,4'-trihydroxystilbene), 
activates SIRT1 (27) and improves survival for multiple 
species, including mice fed a high fat diet (28). Thus p53 
post-translational modifications could influence the aging 
process and longevity.

The integration of p53 with anti-growth 
interventions that improve survival

Rapamycin, a bacterial metabolite, was the first chemical 
to reproducibly extend longevity in mice (29-31). At least 
part of the life span extension was due to cancer suppression 
(32,33), but rapamycin also ameliorated other age-related 
maladies (31,34,35). Furthermore, rapamycin improved 
survival for species that do not develop cancer (36).  
Rapamycin inhibits mTOR (mechanistic Target of 
Rapamycin), a highly conserved serine/threonine kinase 
in the same family as ATM (37-40). mTOR forms a 
complex with multiple proteins, including Raptor to form 
mTORC1 (mTOR complex 1). mTORC1 promotes cell 
growth (mass) and proliferation (cell division) in response 
to mitogenic signals. Rapamycin inhibits mTORC1 by 
binding to the protein folding chaperone FKBP12 (FK506 
binding protein); the rapamycin/FKBP12 complex binds to 
and inhibits mTORC1 (41-43). Thus, rapamycin improves 

survival in mice and other species by inhibiting mTORC1-
anabolic signaling (44).

p53 also inhibits mTORC1, but as a part of a stress 
response that does not involve FKBP12. Instead, p53 
induces the transcription of sestrins 1 and 2 to activate a 
negative mTORC1 regulatory pathway involving AMPK 
and TSC2 (5’ adenosine monophosphate-activated kinase 
and tuberous sclerosis 2) (8). As a negative regulatory loop, 
mTORC1 elevates p53 function after DNA damage (44),  
similar to the activity of ATM. These data indicate that 
mTORC1 induces p53 in response to DNA damage, 
thereby coupling the genotoxic stress response to energy 
levels (44). Because p53 and rapamycin inhibit mTORC1 
through different mechanisms, their impact should 
be additive. In support this prediction, p53 enhanced 
rapamycin’s ability to suppress the ionizing radiation-
induced senescence-associated secretory phenotype (SASP) 
in human cells (45). In mice, p53 levels directly correlate 
with rapamycin’s ability to extend life span, although a 
higher rapamycin dose extends the life span for p53−/− (46),  
suggesting that the activity of rapamycin is not p53-
dependent and that the dose of rapamycin and p53 can 
affect outcome. Indeed, escalating rapamycin concentrations 
proportionately increase life span (47) and suppress 
intestinal adenomas (33), whereas p53 haploinsufficiency 
leads to cancer (48). These findings indicate that p53 and 
rapamycin likely blunt mTORC1 activity through different 
pathways and therefore have additive effects (Figure 1).

The above results showing that p53 enables rapamycin 
to extend longevity might seem antithetical to its role in 
establishing cellular senescence (permanent G1 arrest). In 
response to stress, p53, acting in part by stimulating p21 
transcription, induces a G1 checkpoint to drive cells into 
quiescence (reversible G1 arrest). In DNA repair defective 
mice, p53 is constitutively active (49) and essential for the 
rapid senescence of fibroblasts from those mice (50,51). Yet 
as noted above, p53 also suppresses the SASP in conjunction 
with rapamycin in human cells (45). In addition, p53 
overexpression suppresses senescence in p21-overexpressing 
cells to maintain quiescence (52), and elevated mTORC1 
activity, achieved through TSC2 knockdown, induces 
quiescent cells to enter senescence after nutlin-3a-mediated 
growth arrest (53). Nutlin-3a is a cis-imidazoline analogue 
that disrupts the p53-MDM2 interaction to enhance p53 
stability. Rapamycin reversed this growth arrest, indicating 
that mTORC1 can promote senescence. Similarly, TSC1 
maintains naive T cells in quiescence (54). Thus, it appears 
p53 drives cells into quiescence in response to stress, and 
suppresses mTORC1-induced senescence (44,55).
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Caloric restriction (CR) improves survival and ameliorates 
aging in many species, including mammals (56). p53 does 
not appear to be a major player in CR-mediated life span 
extension. Yet, CR promotes SIRT1-mediated deacetylation 
of p53, thereby facilitating MDM2-induced degradation 
of p53 (57,58). Further, CR improved the survival of p53−/−  
mice (59) even when initiated late in life (59).

p53 mouse models show a diverse impact on 
aging and longevity

Mouse models reveal a contradictory impact of p53 on 
aging and longevity. These models were originally designed 
to study cancer but some appear to impact aging and 
longevity as well. They range from complete p53 null 
mutations to truncations or point mutations that alter 
activity. A comparison of these models reveals the complex 
influence p53 has over organismal aging—which can be 
independent or a consequence of its tumor suppressor role.

The initial mouse models were simple knockouts that 
produced null alleles (no protein). These p53−/− mice 
exhibited a developmental defect that killed a subset of 
animals by reducing apoptosis in the mid-brain, leading 
to exencephaly (60). Yet, most p53−/− embryos developed 
into apparently healthy adults, almost all of which succumb 
to cancer in about half a year. Heterozygous (p53+/−) mice 
develop cancer at a later age (61). Cancer development 
in p53+/− mice is often due to loss of heterozygosity 
(spontaneous inactivation of the wild type copy). But there 
is also evidence for haploinsufficiency (reduced protein 
levels) since some cancers from p53+/− mice retain p53 

function (62). p53 mutation is also sensitive to genetic 
background, as measured by cancer onset and spectrum, 
and to environmental conditions, as seen with exposure to 
carcinogens (63-66). Due to cancer-related death at a young 
age, p53-null mice cannot be studied for late-onset maladies 
that are typically seen in old wild-type mice (67,68).

Since simple p53-deletion increases cancer, simple 
overexpression should reduce cancer. Indeed, mice 
harboring an extra p53 gene contained within a BAC 
(bacterial artificial chromosome) had a lower incidence of 
cancer with no obvious effect on aging (69). Furthermore, 
increased gene dosage of p53 together with Arf lowered the 
cancer incidence and improved overall survival (70). ARF 
elevates p53 levels by inhibiting MDM2 (71,72). Similarly, 
mice with a hypomorphic MDM2 allele, which increased 
p53 levels, showed a reduced cancer incidence without 
deleterious side effects (73). Thus, enhanced p53-mediated 
cancer suppression was not toxic to adult mice. It is possible 
that the pro-aging side effects of p53 are manifest only 
when p53 overwhelms the many regulatory mechanisms 
that modulate its activity.

The p53-null and p53-elevated mouse models support 
a simple notion of function; that is, p53 suppresses cancer 
without toxic side effects. However, other p53-altered 
mouse models confound this notion. First, p53 caused 
lethality in Mdm2- or Mdm4-deficient mouse embryos 
(20-22). This observation is in stark contrast to the p53-
overexpressing mice described above and suggests that p53 
regulation is essential to prevent toxicity. Furthermore, p53 
levels influenced aging in mice defective for BRCA1 (breast 
cancer susceptibility gene 1). BRCA1 repairs DNA double 
strand breaks (DSBs) created during DNA replication as a 
part of the homologous recombination repair pathway (74).  
Deleting one copy of p53 rescued brca1−/− mice from 
embryonic lethality but these mice displayed an early aging 
phenotype (75,76). Moreover, decreased capacity to repair 
DSBs by nonhomologous end joining caused p53-dependent 
early cellular senescence in cells and early organismal aging 
(50,77-79). Another genetic alteration that implicates 
p53 in aging is REGγ (REG: 11S regulatory particles,  
28-kDa proteasome activator) (80). REGγ-deficient mice 
display early aging. Elevated p53 might contribute to this 
phenotype because REGγ is a proteasome activator that 
regulates p53. These mice accumulate casein kinase (CK) 
1δ, which degrades MDM2, resulting in elevated p53 levels. 
A p53+/− background ameliorated the aging phenotype in 
REGγ-mutant mice, establishing unregulated p53 as causal. 
Finally, skin-specific MDM2 deficiency resulted in p53-
induced senescence in epidermal stem cells and precocious 

Figure 1 p53 integrates multiple stress signals to induce a G1 
arrest and inhibit mTORC1. Mitogenic signals induce a pro-
growth pathway that enables G1 arrested cells to become 
senescent and exhibit a SASP. Cellular senescence prevents the 
cell from developing a cancer, but the SASP can alter the tissue 
microenvironment to fuel the development of cancer from non-
senescent cells, promote tissue degeneration and reduce longevity. 
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skin aging (81). These examples are interesting contrasts 
to the MDM2 hypomorphic allele described above, which 
reduced cancer without side effects (73), and suggests that 
different aspects of p53 regulation, coupled with genetic 
and environmental variances, can drive distinct biological 
outcomes.

Further complicating the picture, there are multiple p53 
isoforms and family members (p63 and p73) generated from 
variant promoter usage, alternative splicing and alternative 
translation initiation (82,83). How these isoforms differ 
functionally is not fully understood (84). There is evidence 
that some of these isoforms could influence aging. For 
example, expression of the N-terminally truncated p53 
isoform in mice lowered cancer risk at the expense of early 
aging (85,86). These mice showed poor tissue regeneration, 
implicating a defect in stem and progenitor cells (87). 
Supporting this possibility, old p53+/− mice exhibited 
increased levels of hematopoietic stem and progenitor cells, 
but not if N-terminally truncated p53 was present (88). The 
truncated p53 likely forms a tetramer with full-length p53 
to improve stability and nuclear localization (89). Another 
isoform stabilized p53 in the presence of MDM2 (90). Thus, 
p53 isoforms have the potential to influence p53 function in a 
manner that affects aging. 

A polymorphism in human p53 that improves 
survival in spite of enhanced cancer risk

A polymorphism in human p53 supports the notion that 
p53 can influence longevity independent of suppressing 
cancer, as suggested by some of the mouse models described 
above. In the human population, the p53 amino acid 72 can 
be either an Arg (most common) or Pro. Arg72 is better at 
inducing apoptosis than Pro72 (91). As expected, p53 Pro72 
is associated with an increased cancer risk, but surprisingly 
is also associated with increased survival (92,93). Since 
cancer shortens life span, the increased survival supports 
the possibility that p53-mediated apoptosis has unintended 
consequences that lowers survival for people with p53 
Arg72, possibly by limiting stem/progenitor cell pools. 
This observation is consistent with the mouse model that 
expresses N-terminally truncated p53, which shows early 
aging and lower levels of stem and progenitor cells (87-90).

Conclusions

p53 is a tumor suppressor that responds to numerous 
stresses to regulate a myriad of cellular outcomes that 
protect the organism by either cell maintenance or 

removal. This protection is best known in the light of 
tumor suppression, but might also have an impact on aging 
independent of cancer. Interestingly, p53’s non-selected (not 
subject to evolutionary pressure) impact on aging might 
promote or inhibit aging phenotypes, depending on the 
genetic background and environment. Indeed, p53 both 
promotes and inhibits cellular senescence by inducing a 
reversible G1 arrest that is a prerequisite for senescence and 
by inhibiting mTORC1-mediated growth and the SASP. 
p53-altered mouse models show diverse phenotypes with 
regard to aging, supporting the general notion that p53-
mediated responses can result in contrasting biological 
outcomes with regard to aging. 
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