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Background: Radiotherapy is one of the most important modalities for cancer treatment. However, 
the radio-resistance of malignant tumor cells is the major cause of radiation treatment failure. Although 
several biochemical pathways are disturbed in response to radiation, the metabolite profiles related to 
radio-resistance have not been well investigated in malignant non-small cell lung carcinomas (NSCLCs). 
Malignant lung cancer cells, CL1-5, were more resistant to radiation than were the parental CL1-0 cells. 
Therefore, the two cell lines provide a suitable cell model to investigate changes in metabolite profiles 
related to radiation exposure.
Methods: Two human lung cancer cell lines, CL1-5 and CL1-0, with differential radiation sensitivities, 
were irradiated at a dosage of 10 Gy and harvested at 1, 4, and 24 hr after radiation treatment. Proton 
nuclear magnetic resonance (1H-NMR) was used to analyze the metabolic profiles of the CL1-0 and CL1-5 
cell lines. The metabolite profiles of the cell extracts were subjected to principal component analysis (PCA). 
Both PCA and specific metabolite data were used to examine metabolic differences between the two cell 
lines.
Results: The colony formation assay results demonstrate that CL1-5 cells are more sensitive than CL1-0 
cells to irradiation. The PCA score plots for NMR spectra of CL1-0 and CL1-5 cells identified metabolites 
such as glutathione, creatine phosphate, glutamate, o-phosphocholine, pyroglutamate, taurine, and 
trimethylamine n-oxide (TMAO) as key molecules with high correlation in response to different irradiation 
tolerance. The metabolite profiles of the cell lines were inherent different, but following 24-hr irradiation, 
common metabolite alterations were induced in both cell lines. Moreover, CL1-0 cells showed a larger 
difference in the elevation of glutathione levels than CL1-5 cells.
Conclusions: Our study demonstrates a clear difference in metabolite profiles between irradiation-
resistant and irradiation-sensitive cells. These metabolite profile changes could be used to elucidate the 
possible mechanism of radio-resistance.
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Introduction

Lung cancer is the leading cause of cancer death in the 
United States and many other countries in the world. It 
accounted for 26% and 30% of all female and male cancer-
related deaths, respectively, and a total of 160,000 deaths in 
the United States in 2009 (1). The majority of lung tumors 
are non-small cell lung carcinomas (NSCLCs), particularly 
adenocarcinoma and squamous cell carcinoma (2).  
Radiotherapy is one of the most important modalities for 
cancer treatment (3-5), particularly for elderly patients, 
because they generally have multiple co-morbidities and/or 
poor performance status (6,7), thus excluding surgery and/
or chemo-radiation therapy as treatment options. However, 
the induction of radio-resistance and the subsequent 
proliferation of tumor cells have become the major causes of 
radiation treatment failure. Although DNA repair signaling 
plays an important role in inducing radio-resistance (8), 
more molecular mechanisms that contribute to radio-
resistance need to be clarified.

Compared to genomics and proteomics, metabolomics 
is an emerging science. It represents the phenotype of 
the cellular responses to pathophysiological stimuli or 
genetic modification (9). The metabolite profile comprises 
hundreds to thousands of endogenous organic metabolites. 
Changes in the metabolite profile can be used to understand 
the perturbation of a biochemical pathway in an organism. 
Several biochemical pathways have been found to be 
disturbed in response to radiation, including energy 
utilization (10), detoxification (11,12), osmoregulation (13), 
and synthesis and degradation of cellular membranes (14). 
However, metabolite profiles related to radio-resistance 
have not been well addressed.

Two human lung cancer cell lines were investigated in 
the present study: CL1-5 and CL1-0. The CL1-5 cell line 
was derived from the human lung adenocarcinoma CL1-
0 cell line using a transwell invasion chamber to select 
progressively more invasive cancer cell populations. The 
invasive ability of the CL1-5 cell line is approximately six-
fold higher than that of CL1-0 (15). Analysis of differential 
gene expression patterns indicated that the expression 
levels of invasion-related genes, such as proteases, adhesion 
molecules, cytoskeletal proteins, motility proteins, cell 
cycle regulators, and signal transduction molecules, differed 
between the CL1-0 and CL1-5 cell lines (16). Moreover, the 
previous study indicated that CL1-5 cells are more sensitive 
than the CL1-0 cells in their response to radiation (17).  
Therefore, the two cell lines provide a cell model to further 

investigate metabolite profile changes depending on 
different radiation exposure levels.

Based on differential radiation sensitivity between the 
two cell lines, we hypothesized that these cells may exhibit 
different metabolic profiles both before and after radiation 
exposure. Therefore, we used proton nuclear magnetic 
resonance (1H-NMR) to analyze the metabolic profiles of 
the CL1-0 and CL1-5 cell lines in the study. We further 
investigated the responses of these two cell lines following 
exposure to radiation. The possible mechanisms of radio-
resistance are discussed, which may provide new insights for 
radiotherapy.

Methods

Cell culture and radiation treatment

Two human lung cancer cell lines, CL1-0 and CL1-5, were 
maintained in RPMI1640 medium supplemented with 10% 
fetal bovine serum (Gibco BRL, Gaithersburg, MD, USA), 
100 units/mL penicillin (Invitrogen, Carlsbad, CA, USA), 
and 100 g/mL streptomycin in a humidified atmosphere 
containing 5% CO2 at 37 ℃. Cells were plated into 100 mm 
dishes, incubated overnight, and then treated with single 
doses of 10-Gy radiation using a cobalt 60 (Picker V9) 
source at dose rates between 200 and 250 cGy/min. Cells 
were harvested at 0, 1, 4, and 24 hr after irradiation for 
further study.

Colony formation assay

Following radiation treatment, different numbers of lung 
cancer cells treated or untreated with exposure to irradiation 
at 2, 5, or 10 Gy were seeded into 10 cm dishes for the 
colony formation assay. Colonies formed after 12 days 
of incubation were counted. Cells were first washed with 
PBS, fixed with methanol and acetic acid (3:1, v/v) for 1 hr, 
stained with crystal violet (0.1%) for 1 hr, and then washed 
with water. The surviving cell fraction was determined by 
dividing the plating efficiency of the treated culture by the 
plating efficiency of the CL1-0 and CL1-5 cells with or 
without treatment.

Sample preparation for 1H-NMR spectroscopy

Cells were harvested at the indicated time points post-
irradiation (n=3). The culture medium was quickly removed, 
and the cells were washed twice with 1 mL ice-cold PBS. 
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After washing with PBS solution, the remaining cells were 
placed on ice and then suspended in 1 mL ice-cold MeOH 
and deionized (DI) water (1:1, v/v) for 10 min. The extract 
was transferred to an eppendorf tube and centrifuged at 
1,800 ×g at 4 ℃ for 15 min. The supernatant was collected 
and stored at −80 ℃ until use. The cell extract was thawed 
at room temperature and evaporated to dryness using 
nitrogen gas. The sample was reconstituted with 200 μL 
D2O containing 1 mg/mL of 3-trimethylsilyl-(2,2,3,3-2H4)-
1-propionate (TMSP). The D2O provided an NMR lock 
signal for the NMR spectrometer. Two hundred microliters 
of the sample was then transferred into a NMR tube (2 mm) 
for the analysis.

NMR analysis and data pre-processing

Conventional 1H-NMR spectra of the cell extraction samples 
were obtained using a Bruker Avance 600 spectrometer 
(Bruker Biospin, Rheinstetten, Germany) operated at  
600.04 MHz at 25 ℃. The one-dimensional 1H-NMR spectra 
were acquired using a standard NOESYPR1D pulse sequence 
(recycledelay-90°-t1-90°-tm-90°-acquisition; XWIN-
NMR3.5) with a recycle delay time of 2 s and a mixing time 
of 150 ms. The 90° pulse length was adjusted to ~4 μs at  
0.17 dB, and t1 was set to 4 μs, which provided an acquisition 
time of 2.73 s. For each sample, 128 free induction decays 
(FID) were collected using 32k data points within 10 ppm, 
and the total data collection time was 11 min. FIDs were 
then multiplied by an exponential weighting function 
corresponding to a line broadening of 0.3 Hz, and the data 
were zero-filled to 64k data points.

All acquired FIDs were Fourier transformed, phase 
corrected, and aligned to the chemical shift of the alpha-
glucose anomeric doublet at 5.223 ppm using ACD/Labs v. 
10.0 1D NMR Manager (Advanced Chemistry Development, 
Inc., Canada). The FIDs were further imported into R v. 
2.8.1 for water deletion, scaling, baseline correction and 
normalization. The region of the peak containing H2O 
was removed within 4.5 to 5 ppm. Spectral intensities were 
scaled to the ratio of TMSP intensity at unit resolution in 
each NMR spectra. Then, an in-house baseline correction 
process and robust mean normalization were applied to each 
spectrum. The spectra region within 0.2 to 4.4 ppm was 
binned into 420 bins with a binning size of 0.01 ppm.

NMR data analysis

A principal component analysis (PCA) of the spectral 

binning data was performed using R v. 2.8.1. PCA is an 
unsupervised method of analysis and serves to project 
the data set to a new set of orthogonal variables known 
as principal components (PCs). These PCs are related 
to the original data set because each PC is caudated by a 
linear combination (loading) of the original variables (18).  
I t  has  frequently been applied to summarize the 
similarities and differences between multiple NMR 
spectra (19-21). The PCA score plots demonstrate the 
clustering time-dependence of CL1-0 and CL1-5 cells, 
and the PCA loadings indicate potential statistically 
significant peak regions. Metabolite identification was 
performed according to the PCA loadings of PC1 and 
PC2.

Results

Determination of cell survival rate

Previous studies have indicated that CL1-5 cells are more 
sensitive than CL1-0 cells to irradiation (17,22). Our colony 
formation assay results show that the exposure of CL1-0 
cells to 2-, 5-, and 10-Gy radiation reduced survival rates 
to 80%, 48.71%, and 17.32%, respectively. However, the 
exposure of CL1-5 cells to the same doses of radiation 
reduced their survival rates more significantly to 71%, 
20.58%, and 2.44%, respectively (Figure 1). This result 
demonstrates that CL1-5 cells are more sensitive than CL1-
0 cells to irradiation.

1H-NMR analysis for CL1-0 and CL1-5 at different time 
points after radiation exposure

Our colony formation assay results showed that the 
surviving fraction of CL1-0 was dramatically larger than 
that of CL1-5 cells post 10-Gy exposure. Therefore, 
the CL1-0 and CL1-5 cells were treated with 10 Gy 
and harvested at 1, 4, and 24 hr to identify metabolites 
at different time points after 10-Gy exposure. The cell 
extracts were collected and evaluated using 1H-NMR. 
1H-NMR spectra of representative extracts from CL1-
0 and CL1-5 cells at 0, 1, 4, and 24 hr after irradiation 
treatment are shown in Figure 2 (0 and 24 hr) and Figure S1  
(1 and 4 hr). Approximately 240 signals were detected 
by 1H-NMR. Of these signals, approximately 195 were 
concentrated in the range from 0 to 4.5 ppm. Therefore, 
1H-NMR spectra in the range of 0 to 4.5 ppm were 
subjected to PCA analysis.
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Multiparametric statistical analysis for CL1-0 and CL1-5 
after radiation exposure

The PCA score plots for NMR spectra of CL1-0 and CL1-
5 cells with or without radiation treatment are shown in 
Figure 3. The first two PCs capture a high proportion (85%) 
of the total variability, and a clear separation of the two cell 
lines can be seen. The clear separation of the two cell lines 
at the 0 hr time point indicates that the metabolite profiles 
of these two cell lines are inherently different. Moreover, 
the CL1-0 and CL1-5 cells follow similar trajectories from 
the upper left to the bottom right region of the plot from 0–4 
to 24 hr.

Identification of metabolites in CL1-0 and CL1-5 with 
different radio-sensitivities

Since CL1-0 and CL1-5 cells presented inherently different 
metabolite profiles, the loading plots from the PCA plot 
were used to obtain the ppm value for further identification 
of specific metabolites from these two cell lines (Figure 4).  
The loading profile of PC1 explains 52% of the total 
variation in the spectra (Figure 3). The result shows 

that differences in relative concentrations of leucine, 
isoleucine, lactate, alanine, glutathione, glutamate, 
pyroglutamate, glutamine, creatinine, creatine, creatine 
phosphate, o-phosphocholine, taurine, trimethylamine 
n-oxide (TMAO), glucose, and sucrose are the main 
reasons for the appearance of the clusters. In addition to 
identifying the metabolites in the two cell lines, the fold 
changes of the differentially expressed metabolites were 
also measured. The fold change was calculated by dividing 
the median concentration in the CL1-0 cell line by that 

Figure 1 Surviving fractions of CL1-0 and CL1-5 cells after 
treatment with 2-, 5-, and 10-Gy radiation. A colony formation 
assay was performed to compare the survival rate between CL1-
0 and CL1-5 cells. CL1-5 cells exhibit higher radiosensitivity 
compared to that of CL1-0 cells. The experiments were repeated 
three times. Bars, standard deviation; *, indicates P value less than 
0.05.
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Figure 2 Representative 1H-NMR spectra of CL1-0 or CL1-5 
cell extracts with or without radiation treatment. (A,B) CL1-0 cells 
not treated with radiation (A) or treated with radiation at 24 hr 
(B); (C,D) CL1-5 cells not exposed to radiation (C) or exposed to 
radiation at 24 hr (D).
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in the CL1-5 cell line. Table 1 shows the metabolites with 
greater than 1.25-fold changes between the two cell lines 
before irradiation. As shown in Table 1, the glutathione 

concentration in the CL1-0 cells was found to be 4.56-fold 
higher than in the CL1-5 cells. The minus sign indicates 
that the glutamine concentration in the CL1-0 cells is lower 
than in the CL1-5 cells.

PCA analysis of H-NMR data for CL1-0 and CL1-5 at 
different time points after radiation exposure

In order to identify the specific metabolite changes in 
response to radiation in CL1-0 or CL1-5 cells at different 
time points, the individual PCA score plots were further 
analyzed. In CL1-0 cells, the first two PCs capture a high 
proportion (88%) of the total variability, and each group 
of CL1-0 cells has its own specific scores along the PC2 
direction that were gathered into a cluster (Figure 5A). The 
PCA score plots revealed that the clusters at 0, 1 and 4 hr 
time points were close to each other, indicating similarity at 
these times, while they were farther from the 24 hr point, 
indicating a large change at 24 hr following radiation. The 
PCA score plot for the CL1-5 cells is shown in Figure 5B. 
The first two PCs captured a high proportion (81%) of the 
total variability. The metabolite profiles of the CL1-5 cells 
changed with time after irradiation, and each time point was 
distributed along the PC1 axis.

Temporal dynamics of metabolite profiles

To better visualize the time-related changes for each 
metabolite, the changes in concentration of the sixteen 
metabolites at each time point in the CL1-0 and CL1-5 

Figure 3 PCA score plot for CL1-0 and CL1-5 cells treated with 
radiation at different time points. The plot shows the changes from 
before irradiation over a 24 hr period following a single dose of 10-Gy 
radiation in both CL1-0 and CL 1-5 cells. ●, 0 hr; ▲, 1 hr; ■, 4 hr; 
×, 24 hr for CL1-0 cells; ○, 0 hr; ∆, 1 hr; □, 4 hr; and +, 24 hr for 
CL1-5 cells. PCA, principal component analysis.
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cells is shown in Figure 6. Several metabolite concentration 
profiles were changed similarly at the indicated time points 
after irradiation between the two cell lines including 
alanine, glutamine, isoleucine, lactate, leucine, sucrose, and 
glucose. Conversely, the metabolite concentration profiles 
of creatine, creatinine, creatine phosphate, glutamate, 
glutathione, o-phosphocholine, pyroglutamate, taurine, 
and TMAO were distinct between the two cell lines. 
The temporal dynamics of the metabolite concentrations 
uncover the different responses of the two cell lines upon 
irradiation.

Discussion

In this study, we aimed to identify distinct metabolic 
changes in human lung cancer cells with differential 
radiation sensitivities. We observed that the creatine 
phosphate, glutamate, glutathione, o-phosphocholine, 
pyroglutamate, taurine, and TMAO concentration profiles 
at 24 hr after irradiation are different in the two cell lines. 
Among these metabolites, the glutathione concentration 
in CL1-0 cells was inherently higher than in CL1-5 cells, 
and its concentration was elevated to a greater extent 
in CL1-0 cells compared to CL1-5 cells over time after 
10-Gy irradiation. Some cancer cells with higher levels 
of glutathione are more drug-resistant to anticancer 
therapies (23). Glutathione has also been identified as 
a radio-protector as it removes free radicals, donating 
hydrogen to the damaged DNA radicals; reduces peroxides; 
and maintains protein thiols in the reduced state (24).  
Therefore, it is not surprising that radioresistant cells have 

higher glutathione levels compared to radiosensitive cells 
(25,26). After cells were irradiated, reactive oxygen species 
(ROS) were generated and accumulated within cells to induce 
cytotoxicity. Glutathione, as a ROS scavenger, detoxifies 
ROS by either spontaneous reduction or glutathione 
peroxidase-mediated reduction to reduce ROS induced cell 

Table 1 Fold changes of metabolites between CL1-0 and CL1-5 
cell lines without radiation treatment

Metabolites Fold change (CL1-0/CL1-5)

Glutathione 4.56

Creatine 2.7

O-phosphocholine 1.86

Creatine phosphate 1.86

Glutamate 1.27

Taurine 1.27

Pyroglutamate 1.27

Glutamine 0.67
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Figure 5 Individual PCA score plots for CL1-0 and CL1-5 cells at 
identified time points after radiation treatment. (A) In CL1-0 cells, 
the first two principal components capture a high proportion (88%) 
of the total variability. The PCA score plots reveal that the clusters 
at 0, 1 and 4 hr time points are close to each other, while they are 
farther from the 24 hr cluster; (B) in CL1-0 cells, the first two 
principal components capture a high proportion (81%) of the total 
variability. The metabolite profiles of the CL1-5 cells changed at 
the identified time point after irradiation along the PC1 axis. ●,  
0 hr; ▲, 1 hr; ■, 4 hr; ×, 24 hr for CL1-0 cells; ○, 0 hr; ∆, 1 hr; □,  
4 hr; +, 24 hr for CL1-5 cells. PCA, principal component analysis.
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Figure 6 Concentration profile from 0 to 24 hr post-irradiation of sixteen metabolites in CL1-0 cells (filled square) and CL1-5 cells (hollow 
circle). TMAO, trimethylamine n-oxide.
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death (27-31). Furthermore, targeting glutamine-dependent 
antioxidant capacity or glutathione metabolism increased 
cell death in radio-resistant cells (32,33). Therefore, the 
higher concentration of glutathione in CL1-0, as compared 
to CL1-5, might protect this cell line from ROS induced 
damage after radiation exposure. In addition to addressing 
the importance of glutathione in radiation treated CL1-0 and 
CL1-5 cells, the changes in other metabolites after radiation 
in these two lung cancer cells were examined to address the 
potential mechanism of radio-resistance in lung cancer.

As shown in Figure 6, the concentration changes in the 
indicated metabolites were similar in CL1-0 and CL1-
5 cells over time after radiation exposure. Our PCA plot 
analysis also showed that there is a similar trajectory in 

PCA plots from the upper left to the bottom right region 
between 0–4 and 24 hr. Therefore, it is reasonable to 
assume that common metabolites might undergo alterations 
in these cells up to 24 hr after 10-Gy exposure; however, 
these metabolites require further investigation. In addition, 
glutathione concentration changed significantly with time 
in CL1-0 cells, while it remained unchanged in CL1-5 cells. 
In CL1-0 cells, the concentration of glutathione slightly 
increased soon after exposure to radiation and gradually 
decreased up to 24 hr after irradiation (Figure 6). This 
observation is consistent with previous studies, which have 
indicated increased endogenous glutathione levels following 
treatment with ionizing radiation (34,35). The change in 
glutathione concentration indicates a protective effect in 
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cells. Oxidative stress results in the formation of glutathione 
disulfide (the oxidized form) at the expense of glutathione 
(reduced form). Glutamine and glutamate are precursors 
of glutathione, and their depletion in the cells is due to the 
synthesis of glutathione, which counteracts the effects of 
irradiation (36). Glutamate levels slightly decreased in the 
first 4 hr (Figure 6), possibly as a result of the consumption 
of glutamate to synthesize glutathione.

In this study, the concentration of taurine (the end 
product of cysteine catabolism) gradually declined after 
radiation treatment in CL1-0 cells (Figure 6). The decrease 
in taurine was also observed in other lung cancer cells after  
irradiation (27). The change in taurine concentration 
was different in CL1-5 cells; its concentration increased 
in the first 4 hr. This change could be explained by the 
osmoregulatory function of taurine (37). Because irradiation 
would destroy the cell membrane and the osmolytes, an 
increase in the taurine concentration may be necessary to 
balance the osmotic pressure. A previous study identified 
that taurine may have radioprotective effects (38). However, 
the slightly increased level of taurine in CL1-5 over time 
post radiation might not be sufficient for protection 
against radiation-induced damage. TMAO is involved in 
the detoxification process in the human body (39,40). The 
concentration profiles of TMAO were similar to those of 
taurine in both cell lines. This minor increase of TMAO 
concentration over time after radiation in CL1-5 also might 
be not enough to combat damage induced by ionizing 
radiation.

Lactate is the end product of glycolysis (41). Since 1953, 
investigators have observed that proliferating tumor cells can 
elevate the concentration of lactate at the expense of glucose 
(42,43). A high glycolytic rate is required to support tumor 
cell proliferation and duplication of the cell biomass and 
genome at each cell division. Lactate was recently identified 
as a major energy source in tumors (44). Moreover, lactate 
levels are significantly higher in lung cancer tissue than in 
normal lung tissue (45). In this study, the concentration of 
lactate in CL1-0 cells at 24 hr was significantly higher than 
in CL1-5 cells (Figure 6). In the meantime, the changes in 
the concentration profile of glucose also revealed that CL1-
0 cells had a higher rate of glucose consumption, which may 
result in a higher survival rate of CL1-0 cells after irradiation.

The activity of creatine kinases has been shown to 
decrease progressively in sarcoma, and S180 cells in 
comparison with normal muscle (46), which suggests that 
cancer cell metabolism favors polyamine synthesis to meet 
the high energy demand of proliferating cancer cells (46). 

Compared with CL1-5 cells, the changes in concentrations 
of creatine and creatine phosphate in CL1-0 cells were more 
significant following radiation exposure. This phenomenon 
might contribute to the resistant nature of CL1-0 cells, 
which require more polyamine for better survival of cancer 
cells after irradiation.

Conclusions

Using NMR-based metabolomics analysis, we successfully 
identified specific metabolites contributing to the radio-
sensitivity of human lung cancer cells. The primary 
metabolite that determines the radio-sensitivity of 
cells is glutathione, which could protect cells against 
oxidative stress as it has antioxidant properties. The 
higher endogenous levels in CL1-0 cells of metabolites 
such as glutathione, creatine phosphate, glutamate, 
o-phosphocholine, pyroglutamate, taurine, and TMAO 
were identified as potential key molecules responses to 
protecting radiation induced damage. Moreover, the 
changed concentration profiles of metabolites over time 
after radiation can be used to explain a possible mechanism 
of radio-resistance. The present study provides a starting 
point to investigate biomarkers for the radio-sensitivity of 
lung cancer. With the use of clinical samples with distinct 
responses to radiotherapy, specific biomarkers for radio-
resistance could be verified, which could contribute to 
personalized medicine.
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Figure S1 Representative 1H-NMR spectra of CL1-0 or CL1-5 cell extracts with radiation treatment at 1 or 4 hr. (A,B) CL1-0 cells treated 
with radiation at 1 hr (A) or 4 hr (B); (C,D) CL1-5 exposed to radiation at 1 hr (C) or 24 hr (D). TMAO, trimethylamine n-oxide.


