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Introduction

Pancreatic neuroendocrine tumors (PanNETs) are relatively 
rare, only accounting for 1–2% of all pancreatic neoplasms 
each year (1,2). The annual incidence per 1 million people 
is 1.8 in women and 2.6 in men (3). Nevertheless, the 
incidence of PanNETs has significantly increased over the 
past decades (1). Nonfunctional tumors, accounting for 

85% of PanNETs (3), are usually diagnosed at late stages 
and have a significantly worse prognosis compared with 
functional PanNETs with evident hormonal syndrome (4). 
The increasing incidence of PanNETs and relatively, poor 
prognosis of nonfunctional tumors emphasize the need for 
useful treatment methods for advanced tumors.

At present, surgery remains the first line of treatment. 
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The postoperative 5-year survival rate is 80% for patients 
with nonfunctional PanNETs (5). Due to distant metastasis 
or local extension of the tumor, surgery is often non-
curative. In advanced cases, surgical extraction of PanNETs 
can only reduce symptoms related to tumor suppression 
and hormone production (6). For patients who are not 
candidates for surgery, systemic treatment plays an 
important role in controlling the disease (7), including 
targeted therapies, chemotherapy, somatostatin analogues 
and liver-directed therapies (8). The mammalian target 
of rapamycin (mTOR) inhibitor everolimus and the 
antiangiogenic agent sunitinib are new targeted agents for 
advanced, unresectable or metastatic PanNETs and both 
have demonstrated efficacy and safety in clinical studies 
(9,10). Nevertheless, primary and acquired resistance to 
these targeted therapies exists (11) and new anticancer 
strategies are urgently needed.

Cancer stem cells (CSCs) were first identified in a mouse 
tumor and later were found in solid tumors and leukemia 
(12-15). In 2011, CSCs were detected in gastrointestinal 
neuroendocrine tumors (16) and further confirmed to be 
present in PanNETs in 2016 (17). Properties of CSCs 
include self-renewal, dedifferentiation, tumorigenicity 
and inherent chemotherapy resistance (18,19), which may 
explain the drug resistance, metastasis and relapse risk of 
PanNETs. Recently, valid therapeutic strategies against 
CSCs have had confirmed efficacy against leukemia (20); 
thus, novel therapeutic strategies for targeting PanNETs 
CSCs might exist. The potential new therapies may 
improve drug sensitivity and inhibit invasion and metastasis 
of PanNETs. The purpose of the present review is to 
summarize current advances in the fields of PanNETs CSCs 
and their therapeutic implications.

Evidence for CSCs especially PanNET CSCs

CSCs were first confirmed in leukemia patients when a 
study showed that leukemic cells that were CD34+ and 
CD38− had the capacity to initiate human acute myeloid 
leukemia in mice (21). The first solid tumor identified with 
CSCs was breast cancer (22), and a number of CSC markers 
exist in solid tumors, including CD44, CD133, receptor 
tyrosine kinases (RTKs), aldehyde dehydrogenases (ALDH), 
epithelial cell adhesion molecule/epithelial specific antigen 
(EpCAM/ESA), and ATP-binding cassette subfamily G 
member 2 (ABCG2) (23-25). These markers aided in 
identifying the CSCs, but there were no unique markers for 
specific cancers.

For gastroenteropancreatic neuroendocrine tumors, 
stem cell markers CD133 (26), DCLK1 (27), HES77 (28) 
and CD24 (29) were identified, implying the existence 
of CSCs in PanNETs. In 2011, CSCs were identified in 
gastrointestinal neuroendocrine tumors (16). ALDH was a 
marker of CSCs, and the number of ALDH+ cells ranged 
from 0.2–5.9% in PanNETs specimens (16). The existence 
of CSCs in neuroendocrine tumor was validated by sphere 
formation assays in vitro and tumorigenicity assays in vivo. 
However, in that study, the ALDH+ cells could only be 
tested in human PanNET specimens but not in cell lines 
due to a lack of PanNET cell lines at that time. In 2016, 
one study (17) developed a PanNET cell line, APL1, 
which was capable of growing in vitro and in vivo. In the 
study, PanNET CSCs were identified in the APL1 cell line 
through increased cell-surface protein CD90 expression 
and ALDHA1 activity, both of which were novel markers of 
highly tumorigenic CSCs in the PanNETs (17).

Potential signaling pathways related to PanNET 
CSCs

Research of CSCs in PanNETs is a relatively new area 
compared to the study of CSCs in leukemia (20), in which 
therapy against progenitor populations has been applied 
to clinical settings. The identification of PanNET CSCs 
occurred only recently (16,17,30) and the molecular 
pathways regulating PanNET CSCs are not fully 
elucidated. In 2011, activation of the Src signaling pathway 
was identified in NET ALDH+ cells. Furthermore, in 
vivo Src inhibition resulted in decreased NET tumor size, 
providing the first link between the molecular pathway and 
GE-NET CSCs (16).

In addition to being markers of PanNETs CSCs, ALDH 
(16,17,30) and CD90 (17) were also reported in CSCs 
of other cancers and have been linked to many signaling 
pathways. Activated Notch signaling is important in 
maintaining ALDH+ CSCs in ovarian cancer, colon cancer, 
lung adenocarcinoma, breast cancer and pancreatic cancer 
(31-36). The Hedgehog pathway plays a critical role in 
the self-renewal and tumorigenicity of ALDH+ CSCs 
(37-41). In ALDH+ CSCs, inhibition of Wnt/β-catenin 
signaling often leads to a reduction of CSCs in colorectal 
cancer, breast cancer, prostate cancer and liver cancer  
(42-45). Other pathways are also reported in ALDH+ CSCs, 
including mTOR signaling (46,47), epidermal growth factor 
receptor (EGFR) signaling (48,49) and STAT signaling  
(50-53).  At the same time, CD90+ CSCs are also 
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associated with Notch signaling, the downregulation 
of which inhibited the proliferation of hepatocellular  
carcinoma (54,55).

Although important role of Notch signaling, Hedgehog 
signaling, Wnt/β-catenin signaling, mTOR signaling, 
EGFR signaling and STAT3 signaling have been reported 
in ALDH+ CSCs, the role of these pathways is unclear 
for ALDH+ CSCs of PanNETs. Thus, we will discuss 
these mentioned molecular pathways and their potential 
relationship to PanNET CSCs.

Src pathway

Structurally, Src belongs to a family of nonreceptor tyrosine 
kinase proteins that is composed of c-Src, Yes, Fyn, Lyn, 
Lck, Hck, Fgr, Blk and Yrk (56). The structure of the 
c-Src protein includes seven regions: an SH4 domain, a 
unique domain, an SH3 domain, an SH2-SH3 linker, an 
SH2 domain, an SH1 (catalytic) domain, and a C terminal 
negative regulatory region. Once activated, Src participates 
in the regulation of normal and oncogenic processes. 
It functions during tumor progression, with effects on 
apoptosis, cell adhesion, cell growth, cell migration and 
invasion (57).

Inhibition of Src along with STAT3 and FAK decreases 
tumorigenicity in breast cancer, supporting their function as 
inhibitors of CSCs (58). The Src/FAK/Snail axis also plays 
an important role in the epithelial-mesenchymal transition 
of hepatocellular carcinoma (59).

In  PanNETs,  Src  k inase  mediates  the  EGFR-
transactivation induced by various gastrointestinal 
hormones/neurotransmitters, which indicates that Src 
plays a part in PNET cells growth (60). Src activity is also 
elevated in human PNET (61) and has a link to the mTOR 
pathway (62). Notably, Src is upregulated in ALDH+ 
cancer cells, and the Src inhibitor PP2 can decrease the 
development of ALDH+ cancer cells in NET (16). It is 
likely that the Src signaling pathway plays a role in PNET 
CSCs, and more study are needed to further explore this 
possibility.

Notch signaling pathway 

The Notch pathway is essential in embryonic pancreatic 
development. Notch signaling is composed of four receptors 
(NOTCH 1-4) and five ligands (Delta-like-1, 3, and 4 and 
Jagged-1 and 2) (63). Notch1 is expressed in the endodermal 
epithelium at early embryonic stages, and Notch2 is 

restricted to embryonic ducts, which might be the source of 
stem cells in a mouse model (64). Mice deficient for delta-
like gene 1 (Dll1) showed accelerated differentiation of 
pancreatic endocrine cells and impaired normal pancreatic 
proliferation (65). In human beings, Notch signaling has 
been demonstrated to regulate the differentiation of stem 
and progenitor cells in the development of pancreas (66,67).

The role of Notch signaling in CSC is uncertain, 
partially because activated Notch signaling has been 
identified as both a tumor promoter and suppressor in 
different tissues (68). Activation of the Notch pathway 
is necessary to maintain the stemness of ACTH+ CSCs 
in ovarian cancer, colon cancer, lung adenocarcinoma, 
breast cancer and pancreatic cancer (31-36). The Notch 
pathway inhibitor can reduce the proliferation of breast 
CSCs (69) and tumor recurrence in colorectal cancer 
patients (34). Additionally, inhibition of the Notch/CDK2/
CCNE pathway is necessary for ALDH to maintain the 
stemness of lung adenoma stem cells (70). At the same time, 
Notch signaling plays a role in regulating intestinal crypt 
fate (71). γ-secretase inhibitors blocking Notch signaling 
induce complete conversion of proliferative crypt cells into 
differentiated goblet cells. In intestinal adenomas with 
the mutational loss of Apc, the Notch and Wnt signaling 
pathways are essential to maintain the undifferentiated CSC 
states. Furthermore, inactivation of Notch1 in adult mice 
induces the skin tumor formation since Notch functions as 
a tumor suppressor (72).

In gastroentropancreatic neuroendocrine neoplasm, 
Notch signaling might play the role of tumor suppressor. 
Notch1 inactivation leads to larger islet cell mass in mouse 
pancreatic endocrine tumors (73). The overexpression 
of  act ivated Notch1 in carcinoid cel l s  decreases 
neuroendocrine differentiation reflected by decreased 
expression of synaptophysin and chromogranin A, and 
inhibits BON cell growth (74). Furthermore, Notch1 
expression is lacking in all malignant insulinomas (75) and 
metastasis specimens. The Notch signaling pathway could 
function as a tumor promoter in some other neuroendocrine 
tumors. miR-375 promotes neuroendocrine differentiation 
and inhibits aggressive cancer cell behavior by the inhibition 
of Notch signaling pathway in Merkel cell carcinoma (76). 
In lung cancer, Notch1 signaling activation contributes to 
not only the growth promotion of NSCLC (77) but also to 
the inhibition of SCLC (78).

The expression of Notch signaling pathway component 
is reflected in 34% of human PNETs (79), and 43.7% of 
patients with well-differentiated PanNETs demonstrated 
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positive Notch1 expression (75). The dual role of Notch 
signaling requires more studies to determine its function 
in PanNETs. In addition, the identification of CSCs in 
PNETs (17) provides a good platform to further study the 
relationship between Notch signaling and CSC and to 
identity the function of Notch signaling activation.

Hedgehog signaling pathway

The Hedgehog signaling pathway is composed of 
Hedgehog ligands (including SHh, DHh and IHh in 
mammals), the Patched receptor, Smo, and the Gli 
transcription factors. Binding of one of the three Hh 
ligands to the transmembrane receptor Patched initiates the 
activation of the Hedgehog signaling pathway. Smo, a 7-pass 
transmembrane-spanning protein, is activated by binding 
of Hh ligand to Ptc, which modulates the expression of the 
three Gli transcription factors. There are three Gli proteins 
in vertebrates. Gli1 acts as a transcriptional activator, Gli3 
functions as a repressor, and Gli2 can be either a strong 
activator or suppressor of gene expression (80).

During embryonic development, Hedgehog signaling 
controls tissue polarity and stem cell maintenance. The 
role of Hedgehog signaling in regulating CSCs has been 
established in many human tumors including leukemia (81),  
pancreatic cancer (82), breast cancer (83) and multiple 
myeloma (84). Loss of Smo causes depletion of CSCs 
in chronic myelogenous leukemia, and activation of 
Hedgehog signaling in transgenic mice accelerates the CSC  
growth (81). Moreover, the SHh inhibitor vismodegib 
induced apoptosis and inhibited cell viability in pancreatic 
CSCs (82).

Hedgehog signaling also plays an important role in 
gastroenteropancreatic neuroendocrine tumors. Blockade 
of the Hedgehog pathway downregulates the Gli1, Ptch1, 
Snail and hASH1, and upregulates E-cadherin at the mRNA 
levels, in gastrointestinal neuroendocrine carcinomas (85). 
In neuroendocrine tumors of the ileum, Snail Hedgehog is 
found in 22 out 37 (59%) of NET samples (86). PanNETs 
may occur sporadically or develop in association with 
inherited tumor syndromes, particularly multiple endocrine 
neoplasia type 1 (MEN-1). In MEN-1 tumors of mice, 
Hedgehog signaling has high expression (87). In sporadic 
PanNETs, positive PTCH1 staining is confirmed in 
85% of sporadic PanNETs, with no significant difference 
from MEN-1 patients (88). Furthermore, pharmacologic 
inhibit ion of  Hedgehog pathway largely reduces 
proliferation of insulinoma cells (87). The function of the 

Hedgehog pathway in PanNETs provides a basis for further 
studying the role of the Hedgehog pathway in CSCs, which 
might open an effective therapeutic strategy for PanNETs 
by altering tumor cell nature.

Wnt/β-catenin signaling pathway

The Wnt/β-catenin signaling pathways have crucial roles in 
the regulation of diverse processes, including cell growth, 
differentiation, survival, migration and polarity (89). The 
Wnt signaling inactive state leads to phosphorylation of 
β-catenin by the destruction complex, which contains the 
scaffold protein Axin, APC and the kinases GSK3β and 
casein kinase (CK1α). Activation of Wnt signaling results 
in inhibition of GSK3β activity and β-catenin releases 
from the CK1-GSK3β-Axin-APC-β-catenin complex 
for stabilization. The accumulation of β-catenin in the 
cytoplasm results in its nuclear translocation. β-catenin 
forms an active complex with T-cell factor/lymphoid 
enhancer factor (TCF/LEF) family transcriptional factors 
and with legless family docking proteins (BCL9 and 
BCL9L) (90,91). The active complex is the effector to 
activate the transcription of several target genes and leads to 
alteration of multiple cellular processes (92).

Activation of the Wnt/β-catenin signaling pathways plays 
a vital role in the function of CSCs (93). Due to activation of 
Wnt/β-catenin signaling, LGR5-expressing breast cancers 
exhibit CSC-like properties, including the formation 
of self-renewing spheres and high tumorigenicity (94).  
In colorectal cancer, the expression of the CSC marker, 
CD44v6, is promoted by Wnt/β-catenin signaling and 
results in increased metastatic capacity (95). Wnt/β-catenin 
signaling is activated by H. pylori in a CgA-dependent 
manner and can promote stem-like properties of human 
gastric cancer cells (96).

The role of Wnt/β-catenin signaling pathway in 
PanNETs CSC has not been settled, but the expression 
of Wnt/β-catenin signaling pathway is confirmed in the 
PanNETs. PanNETs in patients with familial adenomatous 
polyposis (FAP) have abnormal nuclear β-catenin 
accumulation (97). In a PanNET transgenic mouse model, 
the activation of Wnt signaling is achieved through 
downregulation of the Wnt signaling inhibitor Dickkopf-1 
(DKK1) and thus increases tumor angiogenesis (98). The 
Wnt/β-catenin signaling pathway is characterized by 
accumulation of β-catenin in nuclei, where it regulates gene 
expression. The rate of detected nuclear or cytoplasmic 
β-catenin in neuroendocrine tumors is not high [about 
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15–29.7% (97,99)], but membranous β-catenin expression 
is strong in 55% of PanNETs. In summary, Wnt/β-catenin 
signaling is able to drive tumor development in PanNETs, 
but more studies are required to explore its influence on 
PanNETs CSCs.

Other relative pathways

mTOR is a serine threonine kinase located downstream 
of the PI3K/AKT signaling pathway (100), and PI3K/
AKT/mTOR signaling has been shown to be frequently 
hyperactivated in the majority of cancers, including 
PanNETs (101). In colorectal cancer, the capacity for 
sphere formation as well as ALDH activity is largely 
decreased by mTOR inhibitors (47). Combined inhibition 
of the mTOR and Hh pathways results in decreased 
proliferation of ALDH+ cells in biliary tract cancer (102). 
Furthermore, mTOR and AKT are activated in ALDH+ 
stem cells of midgut carcinoid cell lines in spite of low 
expression (16). Although the relationship between mTOR 
signaling and PanNETs CSC is unclear, it is worthwhile to 
explore the effect of mTOR inhibitors on PanNETs CSCs. 
The potential mechanism of PI3K/AKT/mTOR signaling 
related to CSCs might explain the phenomena that some 
PanNETs are insensitive or resistant to mTOR inhibitor.

EGFR signaling pathways may also be potential targets 
for treatment of PanNETs CSCs. Inhibition of EGFR as 
well as heat shock protein 27 suppresses the vasculogenic 
mimicry activity in ALDH+ cells and decreases the 
formation of vessel-like structures (103). EGFR inhibition 
abrogates the age-related proliferation of ALDH1+ 
colon cancer stem-like cells. The expression of EGFR is 
immunohistochemically detected in 49% (104) to 50% (105) 
of patients with PanNETs and it is significantly higher in 
poorly differentiated endocrine carcinomas (105). Both 
EGFR and COX-2 are detected in the human pancreatic 
carcinoid cell line BON, and combined treatment with the 
COX-2 inhibitor celecoxib and EGFR antagonist AG1478 
greatly induced cell apoptosis, which was more useful 
than separate monotherapy. EGFR signaling may present 
additional chemotherapeutic targets in PanNETs and its 
role in PanNETs CSCs needs further research.

Signal transducers and activators of transcription 
3 (STAT3) is a cytoplasmic transcription factor that 
regulates gene expression by conveying signals from the 
cell membrane to the nucleus. The STAT3 signaling 
pathway is involved not only in embryonic stem cell 
differentiation (106) but also the proliferation and survival 

of CSCs (107,108). The STAT3 pathway is associated with 
maintenance of ALDH1A3+ CSC tumorigenicity in non-
small cell lung cancer (50), and STAT3 inhibitors reduce 
the ALDH(+) subpopulations of breast cancer cells (52). 
ALDH+/CD133+ stem cell-like colon cancer cells greatly 
decrease after FLLL32 inhibition of the expression of 
the STAT3 pathway (53). Currently, there are no studies 
directly relating the STAT3 pathway and PanNETs or 
PanNET CSCs. Considering the important role of STAT3 
pathway in the ALDH(+) CSCs, it might be important to 
explore the relationship between the STAT3 pathway and 
PanNETs.

Potential therapies targeting CSCs in PanNETs

PanNETs are tumors with great heterogenicity and not 
all patients are compatible with the existing therapies; 
thus, it is necessary to find new therapeutic targets. 
CSCs give much hope for future therapies and have been 
identified in PanNETs though there are limited studies to 
support potentially therapeutic molecular targets. Many 
conventional chemotherapeutic agents kill both cancerous 
and normal cells because of their nonspecific distribution 
and they are not effective in eliminating CSCs, thus 
recurrence and metastasis are common after treatment (109). 
Emerging evidence suggests that CSCs are more resistant 
to cancer therapy than normal cancer cells. Thus, the 
elimination of CSCs is very important in curing malignant 
diseases (110,111).

In PanNETs, some novel therapeutic methods are 
believed to kill CSCs through cellular surface marker 
targets, but they are still under experimental evaluation. 
Additionally, one oncogenic signaling target has also been 
discussed in gastrointestinal neuroendocrine tumors and has 
a great possibility of becoming a potential molecular target. 
Thus, both the cellular surface markers and the oncogenic 
signaling target are summarized below.

Targeting cellular surface markers

Antibodies, which bind specific antigens, are often used 
for fighting against tumor surface markers to enhance the 
specificity of therapeutic strategies. Monoclonal antibodies 
have shown efficacy against CSC surface markers in human 
cancer xenograft mice (112). The effect of anti-CD47 
monoclonal antibodies and CD73 inhibitors has been 
shown in PanNETs through not only PanNETs cell lines 
but also in xenograft mouse models (17,30).
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CD47 is a widely expressed cell surface molecule in all 
human solid tumor cells and binds signal regulatory protein 
alpha (SIRPα) on phagocytic cells. The CD47-SIRPα 
interaction then initiates signal transduction resulting in 
inhibition of phagocytosis and functions as a “don’t eat me” 
signal (113). Thus, CD47 expression is needed to suppress 
tumor cell phagocytosis and elimination, and anti-CD47 
antibodies inhibit tumor growth in mouse models (114). 
In PanNETs, high expression of CD47 is observed in the 
CD90high cells (similar to CSCs) and is related to decreased 
survival of PanNET cells. In vitro, anti-CD47 monoclonal 
antibody treatment inhibits tumor growth, prevents 
metastasis to liver and prolongs mouse survival compared 
with a control group. Furthermore, the anti-tumor activity 
of anti-CD47 therapy is increased when combined with 
anti-EGFR monoclonal antibodies (17). CD47 therapy 
might become a valid method to treat PanNETs but 
preclinical studies relating CD47 with PanNETs are rare. 
Therefore, more attention should be paid to research of the 
function of CD47 in PanNETs.

As a cell surface glycoprotein regulating cellular 
external and internal environments (115), extracellular-5′-
nucleotidase (CD73) also participates in the development 
of PanNET CSCs. In both human PanNET cell lines 
QGP1 and MIN6, CD73 is expressed in the ALDH+ 
cells, which are CSCs. When the CD73 inhibitor APCP 
is used in QGP1 cell lines, the CSC properties of ALDH+ 
cells are inhibited (sphere-forming and scar migration are 
decreased). At the same time, tumor growth is significantly 
decreased in murine xenograft models treated with 
APCP compared with control group (30). Actually, broad 
distribution of CD73 is seen in normal tissues, and CD73 
is often upregulated in some solid tumor tissues including 
breast cancer and colon cancer (116,117). High expression 
of CD73 has been associated with poor prognosis (117), and 
CD73 antibody can increase anti-tumor immunoreaction 
and decrease tumor metastasis of breast cancer (118). Thus, 
the further study of the role of CD73 signaling in the 
PanNETs is promising.

Targeting crucial signaling pathways

The Src family kinase inhibitor PP2 targets ALDH+ cells 
gastrointestinal NET, and ALDH+ cells shows a significant 
reduction in cell number after 72-hour treatment with PP2. 
Furthermore, siSrc-DOPC treatment decreases the CSCs 
and reduces NET tumor size. Src inhibitors treat some 
other tumors in preclinical models of cancer, and some of 

them have entered clinical trials (119). Dasatinib has been 
licensed for the front-line treatment in chronic myeloid 
leukemia (120). Despite the lack of clinical trials of Src 
inhibitors in the PanNETs and limited studies reporting the 
link between Src and PanNET CSCs, future studies should 
be aimed at filling this gap.

Conclusions

In the past few years, significant advances have been made in 
the field of PanNETs CSCs. PanNETs are certain to contain 
tumor-initiating cell populations that are ALDH+ or CD90+. 
The molecular pathways altered in ALDH+ or CD90+ CSCs 
mainly include Src, Notch, Hh and Wnt/β-catenin. The Src 
signaling pathway is reported to be related to carcinoid tumor 
CSCs, and it may apply to PanNETs CSCs. The Notch, Hh 
and Wnt/β-catenin signaling pathways are largely shown 
to participate in the activity of PanNETs and further study 
is required to clarify the relationship between the pathways 
and PanNET CSCs. Other signaling pathways, such as 
mTOR, EGFR and STATs, also participate in the regulation 
of ALDH+ or CD90+ CSCs and require further study to 
clarify their roles in PanNET CSCs. Targeting of the cellular 
surface markers CD47 and CD73 or of crucial signaling 
pathways to inhibit CSCs might become a novel potential 
therapeutic treatment for PanNETs. More studies are needed 
to clarify the molecular pathways related to PanNET CSCs 
in the hope that novel approaches to treating PanNETs will 
be found and will ultimately improve the survival of PanNET 
patients.
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