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Introduction

Over the past decade alone, advances in medical and 
scientific technology have exponentially increased the 
volume of data available to clinicians. At the forefront of 
this movement is next-generation sequencing (NGS), which 
has allowed for molecular analysis of the entire human 
genome in a matter of hours (1). The application of NGS 
to prostate cancer (PCa) has undoubtedly revolutionized 
our understanding of the disease and holds great promise 
for improving diagnostic and prognostic accuracy (2). 
Indeed, previous authors have described genetic changes 
associated with unique molecular subtypes of PCa and have 
demonstrated that underlying genetic signatures better 
predicted clinical outcomes compared to traditional factors 
such as tumor stage, PSA level, and Gleason score (3,4). 

It seems only logical that more in-depth characterization 
of a given cancer would lead to more accurate prediction 
of its clinical behavior. Nonetheless, the initial surge of 
data afforded by these technologies likely preceded our 
understanding of how to use them and interpret their 
findings, questions that we have more recently begun to 
explore in greater depth. For example, the multifocal nature 
of PCa is widely acknowledged (5,6), but questions remain 
surrounding how to best account for multifocality when 
standard practice techniques (i.e., biopsy) are associated 
with gross undersampling of the tumor (7,8). How to best 
incorporate data from multiple foci presents a limited 

problem when considering the heterogeneity of Gleason 
scoring—an extensively validated system unidirectionally 
a s soc i a ted  w i th  prognos i s—but  i s  compounded 
exponentially as we consider various genomic alterations 
including single amino acid changes, copy number 
alterations, and gene fusions (9,10)—any of which may 
differentially impact prognosis and are in most cases poorly 
established and not yet validated. 

Intra- and inter-tumoral genomic heterogeneity 
in PCa

In their recent article (11), Wei and colleagues have 
made substantial progress toward better understanding 
these questions. Using radical prostatectomy specimens 
from four men who presented with NCCN high-risk 
(n=3) or intermediate-risk (n=1) localized PCa, the 
authors performed genomic and transcriptomic analysis 
specifically aimed at determining the extent of intratumoral 
(i.e., different regions within a single tumor focus) and 
intertumoral (i.e., different tumor foci within a single 
prostate) heterogeneity. In each radical prostatectomy 
specimen, three independent tissue cores were obtained 
from the index lesion (determined by size) and an additional 
core biopsy was obtained from each noncontiguous 
tumor focus. DNA and RNA were then extracted and 
analyzed using whole-exome sequencing, single-nucleotide 
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polymorphism (SNP) array analysis, and RNA sequencing. 
Their findings, in summary, demonstrated considerable 

intratumoral and intertumoral heterogeneity. In one 
representative case (CAP-003), the mutation profile of one 
sampled region within the index lesion (Td1b) differed 
substantially from the other two sampled regions (Td1a and 
Td1c)—a most straightforward example of intratumoral 
heterogeneity. Moreover, the four non-index lesions varied 
considerably in profile—one highly similar to Td1b, 
another highly similar to Td1a and Td1c, and the final two 
lesions distinct from the others. Notably, the majority of 
DNA-level genomic heterogeneity was conserved at the 
RNA level, along with additional variability detected on 
RNA sequencing analysis.

The authors next explored the practical implications 
of their findings in the context of a recently proposed 
molecular taxonomy for PCa (3), whereby individual tumor 
foci are classified into one of seven molecular subgroups 
based on gene fusion status (ERG, ETV1, ETV4 or FLI1 
fusions) or somatic mutations (in SPOP, FOXA1 or IDH1). 
They found that the majority (>60%) of foci could not be 
classified under any of the proposed subgroups. Analysis 
of 60 additional patients from four independent studies 
(12-15) found a similarly low rate of mutually-exclusive 
concordant classification across tumor foci (28%). As these 
findings would suggest that the specific tumor focus and 
region sampled differentially impact risk classification, the 
authors next quantitated the gene expression signatures 
of popular tissue-based prognostic tests. While at least 
two cores from each patient had similar scores for each 
signature, on the whole there was substantial variability in 
score range and direction based on the specific tissue sample 
analyzed. These findings appear to confirm that prognostic 
information obtained from tissue-based genomic testing 
varies substantially according to the region and lesion 
sampled. From this observation, the authors concluded 
that information from a single biopsy is not sufficient for 
guiding treatment decisions. 

Clinical utility of genomic classifiers in PCa

Although not the first study to demonstrate genetic 
variability within and between PCa foci (16-18), this 
study took perhaps the most exhaustive approach to the 
question—analyzing between five and seven tissue cores 
from each prostate gland and considering both DNA 
variability and subsequent RNA expression. Adding these 
findings to the evolving context of tumor multiclonality 

and variable biological aggressiveness, it is reasonable 
to acknowledge that tissue sampling remains a crucial 
limitation to our ability to accurately predict the clinical 
behavior of an individual’s PCa. 

Do these findings suggest that genomic classifiers should 
not be used clinically? In a word—no. Even considering 
their limitations, several studies have demonstrated the 
ability of these tools to provide incremental prognostic 
data beyond that of existing clinical modalities (19-21). 
Furthermore, the future of precision oncology is almost 
certainly based in understanding the genetic and molecular 
foundations of individual cancers. Nonetheless, these 
studies are a sobering reminder that integrated genomic 
approaches remain in their infancy. 

Regardless of sampling limitations, the greatest 
hindrance to widely using genomic data remains our very 
limited understanding of their specific clinical implications. 
The reality is that the clinical outcomes associated with 
even the most well-established genomic alterations are not 
clearly defined or sufficiently validated (21). As others have 
proposed (22), research efforts should shift from simply 
grouping molecular signatures into “high” or “low”-risk to 
more specifically outlining the functional consequences of 
specific genetic and molecular features on disease course 
and responsiveness to therapy (23). Innovative studies 
linking progressive or treatment-resistant metastases back 
to a multifocal primary lesion will be crucial in establishing 
these genotype-to-phenotype relationships (23,24). This 
is a daunting undertaking, no doubt, but will only grow 
more feasible as emerging tools such as NGS kits for 
formalin-fixed paraffin-embedded (FFPE) tissue become 
commonplace and their costs decline. 

Until existing limitations are overcome, the information 
provided by genomic classifiers should be applied with 
requisite consideration. The probability that a given 
tissue sample does not capture the most lethal clone, 
practically-speaking, simply increases the false-negative 
rate of genomic testing (in this case, due to sampling error 
rather than the test itself). As such, findings may be best 
interpreted like any test of limited sensitivity—a negative 
result (low-risk classification) does not reliably rule out the 
presence of high-risk disease (25) and therefore should not 
be used as the sole basis for deferring aggressive treatment. 
On the contrary, a positive result (high-risk classification) 
appears to reliably indicate the presence of high-risk disease 
(4,19,20) and may be reasonably considered to encourage 
treatment in those otherwise appropriate for it. Certainly, 
acknowledging the limitations of these tools will remain an 
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essential part of physician-patient counseling. 

Conclusions

Due to high prevalence and variable clinical behavior of 
PCa, the ability to accurately predict the clinical course of 
an individual patient’s disease is critical. The sophistication 
of prognostic assessment has increased remarkably in 
recent years, yielding a body of data so complex that cancer 
bioinformaticians are specially trained to synthesize and 
interpret it. Unfortunately, these technologies remain 
limited by tissue sampling in the same manner as age-
old traditional approaches such as pathologic grading and 
staging. There is hope that any number of innovations 
will forestall the limitations of sampling. Nonetheless, the 
impact of specific genomic findings on clinical outcomes is 
poorly defined and requires great attention in the coming 
years.

Ultimately, genomic classifiers represent a clinical 
tool more powerful (and more complicated) than their 
predecessors. Like anything of great power—if used 
properly, this technology has the potential to improve 
substantially on the status quo. If used carelessly, it could 
have a detrimental effect. The common saying “proceed 
with caution” may be extreme for these purposes, but the 
prevailing message stands. It is critical that we utilize these 
tools with care—mindful of their strengths, shortcomings, 
and potential influence on the increasingly complex 
decision-making process.
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