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Interleukin-6 (IL-6) is a pleiotropic cytokine with a wide 
range of biological actions including immune function, 
metabolism, hematopoiesis, and oncogenesis (1,2). IL-6 can 
have both pro and anti-inflammatory functions depending 
on the condition. Initially, IL-6 was believed to be  
pro-inflammatory because several inflammatory-based 
disorders such as infection, diabetes and obesity commonly 
show an increase in circulating IL-6 (3-5). In contrast, 
transient expression of IL-6 after exercise can have anti-
inflammatory and insulin sensitizing effects (3,6,7). Despite 
its enigmatic biology, IL-6 has been heavily investigated 
for its role in the progression of cancer and cancer-
associated cachexia (8). The recent publication from Flint 
et al. (9) adds supporting evidence that IL-6 regulates these 
processes through direct and indirect targeting of multiple 
systems leading to alterations in metabolism and endocrine 
function. 

IL-6 signaling

The IL-6 family signals through the membrane bound 
receptor gp130 (glycoprotein 130) (6). Upon binding, 
the gp130 receptor activates JAK (Janus Kinase) tyrosine 
kinase (6). Activation of JAK-1 leads to phosphorylation 
of tyrosines in the cytoplasmic domain of gp130, which 
enables binding for proteins with Src homology domain-2 
(SH2) and phosphotyrosine-binding proteins (10). 

Among these proteins are the STATs, which are critical 
for IL-6 signaling (10,11). STAT proteins are activated 
by phosphorylation on a single tyrosine residue leading 
to the formation of STAT dimmers (10,11). The STAT 
dimmers can then translocate to the nucleus where they 
function with other factors to increase the transcription 
of genes containing STAT-responsive elements in their 
promoters (10,11). IL-6 can activate both STAT-1 and 
STAT-3, however, STAT-3 has been shown to have a 
more pronounced role in the IL-6 signaling pathway (10).  
STAT-3 transcriptional targets are involved in multiple 
cellular functions including immune function, cell 
proliferation and growth, differentiation and possibly 
apoptosis (12,13). The gp130 receptor is found in most 
tissues throughout the body enabling potent and diverse 
effects of IL-6 especially during heightened expression 
conditions including cancer and cancer-associated 
cachexia.

IL-6 and muscle protein turnover 

Although strong evidence supports the deleterious role of 
IL-6 during cachexia, IL-6 treatment in non-tumor bearing 
rodents creates difficulty in determining a mechanism 
for IL-6 in muscle wasting. Some reports claim a direct 
role for IL-6 to regulate wasting. Transgenic mice over-
expressing circulating IL-6 show muscle atrophy associated 

Editorial

IL-6, cancer and cachexia: metabolic dysfunction creates the 
perfect storm

James P. White1,2,3

1Department of Medicine, 2Duke Molecular Physiology Institute, 3Duke Center for the Study of Aging and Human Development, Duke University 

School of Medicine, Durham, NC, USA

Correspondence to: James P. White. Department of Medicine, Duke University School of Medicine, Durham, NC, USA. Email: james.white@dm.duke.edu.

Comment on: Flint TR, Janowitz T, Connell CM, et al. Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-tumor Immunity. Cell 

Metab 2016;24:672-84.

Submitted Feb 18, 2017. Accepted for publication Mar 06, 2017.

doi: 10.21037/tcr.2017.03.52

View this article at: http://dx.doi.org/10.21037/tcr.2017.03.52

285

https://crossmark.crossref.org/dialog/?doi=10.21037/tcr.2017.03.52


S281Translational Cancer Research, Vol 6, Suppl 2 March 2017

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2017;6(Suppl 2):S280-S285 tcr.amegroups.com

with increased expression of lysosomal and ubiquitin-related 
mRNA and proteins (14,15). In humans, IL-6 administration 
caused a reduction in skeletal muscle protein synthesis and 
an increased uptake by non-muscle tissues, a condition 
similar to what is observed in cachexia (16). In cell culture, 
C2C12 myotubes treated with IL-6 have increased lysosomal 
and ubiquitin-related proteins and enzymatic activity (17). 
In contrast to these findings, IL-6 administration in rats 
failed to activate muscle protein breakdown (18). IL-6 
treatment to L6 myotubes was also unable to increase protein  
degradation (19). Together, it remains unclear whether IL-6 
can directly alter skeletal muscle protein turnover under 
disease-free conditions but its potency to induce wasting is 
far greater in tumor bearing conditions. Thus, understanding 
the interaction(s) of IL-6 action in the context of cancer is 
certainly warranted.

IL-6 and cachexia

IL-6 has a well-established association with the onset of 
cachexia in both rodent and human wasting conditions (8).  
In the ApcMin/+ mouse, a model of colorectal cancer and 
IL-6-dependent cachexia, over-expression of IL-6 can 
accelerate the loss of muscle and fat along with increased 
tumor number (20). Furthermore, IL-6 levels corresponded 
with the extent of muscle wasting, suppression of protein 
synthesis and elevated protein degradation (21). Deletion 
of the IL-6 gene prevented the development of cachexia in 
ApcMin/+ mice despite the existence of intestinal polyps (20).  
Attempts have been made to manipulate the systemic 
actions of IL-6 and other pro-inflammatory cytokines 
during cancer cachexia. The use of IL-6 receptor antibody 
has shown to be effective against muscle wasting in tumor 
bearing mice. Inhibition of IL-6 activity through an IL-6 
receptor antibody prevented muscle wasting in C-26 
tumor bearing mice (22,23) yet had no effect on tumor 
size. However, questions still remain as to what secondary 
mechanisms were active/inactive during the induction and 
suppress of IL-6 as it related to the progression of cachexia. 

IL-6 and immune function

IL-6 is associated with a pro inflammatory immune 
response during infection and injury. The recent report by 
Flint et al. (9) suggests a role of IL-6 to drive glucocorticoid 
secretion which, in turn suppresses tumor immunity. 

Although glucocorticoids are commonly used to suppress 
inflammation in diseases such as rheumatoid arthritis and 
Duchene’s muscular dystrophy, elevated glucocorticoids in 
the presents of cancer could suppress host immunity and 
slow or prevent anti-cancer defenses. In fact, the extent 
of immune cell infiltration, especially T cells, in cancer 
patients predicts survival and chemotherapy outcomes (24).  
Based on these findings, glucocorticoid levels should be 
considered and perhaps targeted in conjunction with 
immunotherapy interventions. 

IL-6, anorexia and hypermetabolism

Regardless of physiological condition, a chronic state of 
hypermetabolism coupled with a propensity for caloric 
deficiency will promote eventual wasting. In terms of 
anorexia, cancer cachexia is often but not always linked 
with a reduction in caloric intake. Intriguingly, cachexia 
cannot be corrected through nutritional supplementation. 
The numerous mouse models of cachexia tend to vary 
in extent of anorexia (25). Human data appears more 
consistent in supporting a major role for anorexia in 
the loss of body mass (26,27). Although mechanisms are 
starting to be elucidated, pro inflammatory cytokines 
are still thought to be key mediators in the induction 
of anorexia during disease states (28,29). IL-6 has been 
shown to regulate food intake and metabolism (30), 
signaling through neural gp130 receptors (31). Even in 
non-cancer related cachexia, plasma IL-6 is associated 
with the incidence of anorexia (32). 

The hypermetabolic state observed with cancer comes 
from several factors. One such mechanism is the increase in 
thermogenesis, as we know cancer increases the “browning” 
of white adipose tissue (26). Brown adipose cells use 
uncoupled respiration, burning glucose and lipid to generate 
heat instead of ATP. Activation of these cells increases 
whole body energy expenditure and are a pharmacological 
target for weight loss with obesity (33). However, in 
the context of cancer, activation of these cells could be 
detrimental. Although tumor-derived “browning” factors 
are starting to be identified (34), IL-6 is once again a driving 
mechanism to brown adipose tissue during cancer (26).  
Blocking inflammation or inhibition of β adrenergic 
signaling will attenuate cachexia progression (26) validating 
the hypermetabolic condition as a true contributor of 
wasting. 
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IL-6 drives hormonal dysfunction through 
metabolic alterations

Hepatic dysfunction is common across various cancers. 
Flint et al. (9) provides evidence for IL-6-induced liver 
dysfunction being a transitional stage into the onset 
of cachexia. In the ApcMin/+ mouse model, cachexia 
progression is associated with increased hepatic STAT 
signaling, apoptosis and ER stress (35). Administration 
of  the  ant i- inf lammatory  compound pyrrol id ine 
dithiocarbamate (PDTC) for just 2 weeks attenuated the 
loss of liver lipid and glycogen stores which was associated 
with the attenuation of cachexia progression (36). Flint  
et al. (26) linked IL-6 with the reduction in liver PPAR 
alpha mRNA expression and the suppression of ketogenesis 
during cancer-associated caloric deficiency. This leads to 
the production of glucocorticoids, which appears to be a 
key mediator in the transition into cachexia, thus linking 
metabolic dysfunction to hormonal alterations. 

Increased glucocorticoid secret ion wil l  induce 
muscle atrophy through direct mechanisms including 
suppression of amino acid import (37), suppression of 
IGF-1 signaling and increasing myostatin signaling (38). 
Beyond the direct effects of glucocorticoids, indirect 
effects on hormonal regulation can contribute to muscle 
wasting as well. Disruptions in key anabolic hormones 
such as IGF-1 and testosterone have been reported 
during cachexia in both human (39,40) and mouse models 
of cachexia (41,42). The induction of glucocorticoids 
could be an underlying mechanism for the onset of 
hypogonadism as cortisol or pharmacological derivatives 
can directly suppress the production of testosterone (43) 
by inhibiting leydig cell function (44). Hypogonadism 
leads to muscle wasting and reduction in functional 
strength with (39,40) or without (45,46) an underlying 
disease. Several human diseases associated with a loss of 
lean body mass such as diabetes (47), chronic obstructive 
pulmonary disorder (COPD) (48), HIV-AIDs (49) and 
cancer (50) have reported a reduction in circulating 
testosterone in patients. Due to the anabolic properties 
of testosterone and its pharmacological derivatives, 
a strong research focus has been given to maintain 
anabolic hormones during catabolic conditions (51-53). 
Furthermore, testosterone and other anabolic steroids 
have shown to be effective in rescuing the loss of muscle 

mass in wasting conditions (54). In relation to IL-6, 
hypogonadism in healthy older men was associated with 
increased levels of circulating IL-6 while testosterone 
replacement returned IL-6 levels back to baseline (55). 
In the mouse, IL-6 over-expression does not directly 
suppress testosterone in pre cachectic mice while IL-6 
inhibition through a IL-6 receptor antibody attenuated 
the drop in testosterone observed in cachectic mice (41).  
Together,  glucocordicoid-induced suppression of 
testosterone could be another indirect mechanism 
promoting the induction of cachexia. 

Conclusions

Chronic IL-6 over-expression with cancer appears to 
be a catalyst for multi-system dysfunction leading to 
accelerated tumor growth and cachexia progression 
(Summarized in Figure 1). The tumor and corresponding 
immune activation increase circulating IL-6 which starts 
the chain reaction. Tissues become insulin resistant caused 
in part by hyperlipidemia from excessive adipose lypolysis 
and metabolic dysfunction in skeletal muscle. This puts 
pressure on the liver to generate ketone bodies to provide 
fuel for vital tissues including the brain and heart. At the 
same time, IL-6 can induce a state of hypermetabolism 
from browning of white adipose tissue adding more 
pressure to ensure adequate ketone production. As the 
liver typically generates ketones during low energy/
insulin resistance, high IL-6 levels suppress hepatic 
ketone production by inhibiting PPAR alpha causing 
a metabolic strain. As IL-6 can also promote anorexia, 
caloric deficiency in a background of hypermetabolism will 
only exacerbate the metabolic strain and cause secretion 
of glucocorticoids from the adrenals. The continuation 
of caloric deficiency and increased glucocorticoid 
levels accelerates the progression of cachexia through 
suppression of anabolic steroids, direct atrophic signaling 
in skeletal muscle and systemic insulin resistance. 
Furthermore, elevated glucocorticoids suppress immune 
function leaving a limited capacity for the host to slow 
further tumor progression. In addition, glucocorticoids 
will suppress commonly used anti-cancer immunotherapy. 
As suggested by Flint et al., IL-6 and glucocorticoid levels 
should be considered before initiating a treatment plan for 
cancer patients to maximize efficacy. 
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