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Introduction

Pancreatic ductal adenocarcinoma (PDAC), which is derived 
from glandular tissues of exocrine parts of the pancreas, 
accounts for approximately 90% of pancreatic cancer (PC) 
and is a lethal malignancy with increasing incidence, poor 
prognosis, and lower survival rates (1-3). In fact, recent 
studies indicate that, on average, the survival rate for one-
year PC is approximately 20%, while the survival rate for 
five-year is about 5% (4,5). During diagnosis, the cancer has 

often metastasized beyond the pancreas, making treatment 
much more difficult. An estimated 53,070 new cases of PC 
are expected to occur and about 41,780 people will die of 
this disease in the US in 2016 (6). PC is expected to become 
the second leading cause of cancer mortality only to lung 
cancer by 2030 (7). Despite significant advances in cancer 
therapy, including chemotherapy, radiation, surgery, or 
targeted therapy, the current treatment strategies remain 
insufficient to cure PC patients due to the development of 
chemoresistance of pancreatic tumors to these strategies 
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(8,9). The ineffective nature of these current treatment 
strategies highlights the need for a better approach to 
improve patients’ overall survival (OS).

This need for better treatment has prompted the rise 
of immunotherapy in PC treatment (10). Specifically, 
these types of therapy have sought to attack the tumor’s 
defense mechanisms while simultaneously inducing an 
immune response that would be used to eradicate the 
tumor itself (11). In order to understand the role of 
immunotherapy in combination therapy, it is important 
to understand the role of the immune system in the 
PDAC tumor microenvironment (TME).

In this perspective, we will discuss some of the recent 
combined therapeutic strategies to enhance anti-tumor 
immune response in PC.

Immune network in PDAC

PDAC is characterized by a dense desmoplastic reaction 
in which proliferating tumor cells co-exist with pancreatic 
stellate cells, fibroblasts, immune cells, and extracellular 
matrix (ECM) proteins, including collagen I and III that 
permanently interact and influence each other (12). In this 
TME, immune cells make up about 50% of tumor cell mass 
to suppress the immune system and promote angiogenesis 
in order to metastasize (11,13). Certain immune cells are 
upregulated and downregulated in PC in order to create an 
environment conducive to tumor growth (11). Cells such 
as myeloid-derived suppressor cells (MDSCs), regulatory 
T cells (Treg), fibroblasts, mast cells, and others are 
upregulated in the TME, ultimately creating a niche for 
the PC to grow that is insulated from immune response  
(11,13-15). MDSCs are heterogeneous population of 
myeloid progenitor cells, comprising granulocytes, 
macrophages, and dendritic cells (DCs) that play a key role 
in tumor initiation, progression, metastasis, angiogenesis, 
chemoresistance and cancer immune evasion via suppressing 
T-cell cytotoxicity against tumor cells (16-18). On the other 
hand, certain cells are downregulated in order to suppress 
the immune system (11). These cells include natural killer 
(NK) cells, CD8+ T cells, and others that serve to promote 
immune response by attacking the tumor’s defense and 
ultimately the tumor itself.

Prev ious  l i t e r a ture  ha s  c l ea r l y  ind i ca ted  the 
immunosuppressive role myeloid cells play in pancreatic 
carcinogenesis (16). PC shows higher levels of MDSCs as 
compared to a healthy pancreas (15,19). A recent publication 
by Zhang et al. highlights the specific pathways by which 

myeloid cells suppress immune response, and how the 
reduction of these cells can induce regression of the tumor 
itself (20). They depleted the population of myeloid cells in 
an iKras* mice model of PC by crossing them with CD11b-
diphtheria toxin receptor (DTR) mice to observe the 
difference in cancer initiation and progression. The results 
of this experimentation are in agreement with Stromnes  
et al. (15) and indicate that MDSC depletion works in 
tandem with CD8+ T cells to initiate PC cell death as 
evident by increased expression of apoptosis marker, 
cleaved caspase-3. To check whether this increase was 
due to inability of macrophage to clear dead cells or 
cytotoxic CD8+ T-cell response, they deplete both CD8+ 
T cells and myeloid cells and almost complete rescue of 
apoptosis was observed. This observation supports the 
role of myeloid cells in protecting tumor cells from T-cell 
cytotoxic response. MDSCs and tumor cells communicate 
to encourage carcinogenesis. It is thus prudent to 
investigate the pathways by which these cells communicate 
to understand the broad, over-arching mechanisms and by 
which tumor cells utilize other cells in their environment 
in proliferation and metastasis in order to establish various 
novel combination therapy in PC treatment.

Combination therapy in PC

A key aspect regarding immunotherapy within combination 
therapy is an understanding of immune checkpoints. 
Immune checkpoints are set in place as inhibitory pathways 
used in immune responses to minimize damage caused 
to cells (21). Tumors are able to utilize certain immune 
checkpoints in allowing them to proliferate unhindered by 
the immune system. Specifically, these checkpoints utilize 
ligands and receptors in order to function, and can thus be 
blocked by specific antibodies that render the checkpoint 
useless. This presents a significant function in therapy 
because it inhibits immune suppression in a cancerous 
environment. However, the utilization of this function 
is rather novel. In previous endeavors for therapeutic 
approaches, the tumor cell was targeted directly (22). 
However, this process targets the inhibitory pathways, 
revolutionizing the approach to cancer treatment itself. 
Thus, the search for viable immune checkpoints being 
exploited by tumors is underway, and a few promising 
candidates have surfaced, including the programmed cell 
death protein 1 (PD-1) (21,22).

PD-1 is an inhibitory receptor that belongs to B7-
receptor family and is induced on T cells, B cells and 
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monocytes on activation (11,23,24). Once induced, PD-1 
interacts with its ligands PD-L1 (also known as B7-H1) 
or PD-L2 (B7-DC) to down regulate cytotoxic signals by 
T cells that, in turn, might favor tumor progression and 
poor prognosis (8,25). The distinct expression pattern 
of these two ligands has been observed and it has been 
suggested that their functions may depend on the tissue  
microenvironment (23). PD-L1 is expressed on many cell 
types, including resting T cells, B cells, DCs, macrophages, 
vascular endothelial cells, pancreatic islet cells and tumor 
cells after exposure to multiple proinflammatory mediators 
including interferon-γ (IFN-γ), tumor necrosis factor-α 
(TNF-α), GM-CSF, and vascular endothelial growth factor 
(VEGF) (22,23,26). IFN-γ and TNF-α are produced by 
activated T cells whereas GM-CSF and VEGF are produced 
by a variety of cancer stromal cells (27). Expression of PD-
L2 is restricted to antigen-presenting cells (APCs) such 
as DCs and macrophages (8,27). PD-L2 has not gained as 
much attention, and its role in reducing tumor immunity is 
less clear (28).

PD-L1 has been correlated with a poor prognosis in 
melanoma, renal cell carcinoma, gastric cancer, breast 
cancer, colon cancer, lung cancer, glioblastoma (27,29-32) 
including PC (8,33,34). Blockade of PD-1/PD-L1 axis by 
antibody therapy enhances anti-tumor immunity, leading to 
robust clinical responses for patients with melanoma, lung 
cancer, renal cancer cell carcinoma and other immunogenic 
cancers (35). Antibodies against PD-1 and PD-L1 have 
entered clinical trials with great success in patients with 
advanced melanoma and advanced non-small cell lung 
cancer (36,37). However, patients with PDAC, a non-
immunogenic cancer, are reported to respond poorly to 
immune checkpoint blockade therapies (35,38). The unique 
mechanisms and sites of action of checkpoint molecules, 
cytotoxic T lymphocyte-associate protein-4 (CTLA-4)  
and PD-1 suggest that although blockade of either has 
poor anti-tumor immune responses in PDAC, their 
combined blockade could synergize to mediate robust anti-
tumor immunity (39-41). This double blockade has been 
associated with the attenuation of suppressive functions of 
Tregs and increased effector functions of T cells (14,42). 
Colony stimulating factor 1 (CSF-1)/CSF-1 receptor (CSF-
1R) inhibitors or GVAX, a granulocyte macrophage-CSF 
transfected irradiated tumor cell vaccine improves the 
efficacy of antibodies against PD-1 and CTLA-4 (42,43).

In addition, the cancer immunotherapy field has turned 
to other novel ideas that seem to be effective, including the 
use of small molecules to suppress the expression of certain 

enzymes. 
Some of these enzymes include focal adhesion kinase 

(FAK) and mitogen-activated protein kinases (MAPK), or 
more specifically, MEK. FAK is hyper-activated in PDAC 
and its activity correlates with highly fibrotic tumors with 
poor infiltration of CD8+ cytotoxic T cells (44). FAK 
kinase inhibitor VS-4718, currently used in Phase I clinical 
trials (NCT02546531) significantly enhances the efficacy 
of gemcitabine and PD-1/CTLA4 antibodies in PDAC 
mouse models (44). Vella and colleagues tested the effect of 
small molecules that inhibit MEK expression on immune 
response using a drug called trametinib (45). In fact, this 
drug proved more effective with or without combination 
therapy than standard chemotherapeutic approaches. The 
BRAF kinase was discovered as a cancer-promoter, and 
the BRAF kinase inhibitor (BRAFi) was introduced as a 
therapeutic approach (45). When trametinib was combined 
with dabrafenib, a BRAFi drug, the survival rate without 
progression was prolonged by 3.5 months compared to 
dabrafenib treatment alone. It is clear that immunotherapy 
used in combination with conventional treatments is a 
promising field of research.

The findings from Zhang et al. show that myeloid cells 
can promote PD-L1 expression in pancreatic tumor cells 
through the involvement of EGFR/MAPK signaling (20).  
Inhibi t ion of  EGFR and MEK by Erlot in ib  and 
GSK1120212, respectively in vivo as well as in vitro reduces 
the expression of PD-L1 on tumor cells and in turn making 
them sensitized to anti-PD-1 treatment.

There are many other therapeutic strategies similar to 
the one mentioned above that utilize the combination of 
various novel and preexisting techniques to create more 
effective results. Deng et al. highlights an approach which 
utilizes irradiation in conjunction with a PD-L1 blockade 
to decrease the amount of MDSC more effectively (14). 
This experiment found that high-dose ionizing irradiation 
caused MDSC levels to go up, diminishing the effect of 
the treatment. Ultimately, this can cause tumor regression 
at a relatively high rate. After realizing that MDSC 
cells contain high levels of PD-L1 and play a key role in 
immunosuppression, Deng et al. chose to test anti-PD-L1 
treatment with ionizing irradiation (14). This was tested 
in mice and caused a dramatic decrease in the number of 
MDSC cells, significantly reducing the chance of relapse.

He et al. discusses the merits of using anti-PD-1 or anti-
PD-L1 antibodies with treatments that activate the immune 
system (27). They provided a list of anti-PD-1 (nivolumab, 
pembrolizumab, and pidilizumab) and anti-PD-L1 (BMS-
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936559, MPDL3280A, MEDI4736, and AMP-224). This 
publication describes the recently discovered effectiveness 
of these therapies on their own, but also indicates that 
combination therapy prolongs OS significantly. Some of 
these other therapies that are used in conjunction with 
the aforementioned antibodies include chemotherapy and 
radiotherapy.

Another piece of literature that delves into the potential 
of combination therapy is Ebert et al. (46). Two essential 
treatment methods for PC have been MEK inhibitors and 
anti-PD-LI treatments. The researchers indicate that MEK 
inhibition is used concurrently with PD-L1 inhibitors 
to boost the efficacy of the treatment, in addition to 
diminishing the chance of regression. The MEK inhibition 
treatment was used on its own, and initially showed a shrink 
in the tumor size. However in some cases, the tumor began 
progressing again just a few weeks later. Just as with most 
combination therapies, both the MEK inhibition and anti-
PD-L1 antibody treatments show a modest effect when used 
by themselves. However, MEK inhibitors use a preclinical 
combination mechanism with anti-PD-L1 that is not yet well 
understood, but has proven far more therapeutically beneficial.

A different group tested anti-PD-1/PD-L1 with other 
treatment methods simultaneously as well (47). This 
complementary treatment technique is similar to the one 
described by Vella and colleagues, in which small molecules 
were used to target MEK (45). However, the treatment 
described by Sagiv-Barfi et al. utilizes small molecules 
in the inhibition of various tyrosine kinases, including 
Bruton’s tyrosine kinase (BTK), a kinase presenting in an 
oncogenic, malignant signaling pathway, and interleukin-
2-inducible T-cell kinase (ITK), a kinase important for 
Th2 T cells (47). This drug, called ibrutinib, is said to have 
immunomodulatory effects and doesn’t produce a very 
effective treatment. In fact, some cancers are completely 
immune to the effects of ibrutinib due to their lack of 
dependence on BTK. However, the combination therapy 
described by them was used to treat these cancers, and 
significantly inhibited their growth. Furthermore, the 
therapy was tested on solid tumors, and had a similar effect 
on tumor growth. Through the discovery of this treatment 
technique, it is clear that combination therapy presents a 
novel way to approach cancer therapy.

Although MEK inhibitors work on many cancers 
containing the MAPK pathway, K-Ras mutated cancers are 
generally associated with MEK inhibitor resistance (48). 
This presents a problem in general immune checkpoint 
therapy. However, Zhao et al. indicates that a signal 

transducer and activator of transcription 3 (STAT3) was 
significantly upregulated after MEK inhibition, suggesting 
that this was the mechanism behind MEK inhibition 
resistance in K-Ras mutated PC cells (48). This discovery 
was critical in providing a holistic, well-targeted therapeutic 
approach. This experiment showed that inhibiting both 
MEK and STAT3 in these PC cells had a profound 
impact on tumor growth. The growth rate was suppressed 
significantly, implicating that STAT3 inhibition may play 
a key role in therapy while in combination with MEK 
inhibition.

Zhang et al. conducted an experiment that had a similar 
conclusion as Vella and coworkers, in that both papers 
concluded that PD-1/PD-L1 inhibitors used in tandem with 
MEK inhibitor drugs have an important role in tumor growth 
suppression (20). However, Zhang et al. used only MEK 
inhibitor drug, trametinib (GSK1120212) rather than using 
two inhibitors, trametinib and selumetinib (AZD6244) by 
Vella and group to target MEK. In addition, this publication 
talks about the therapeutic potential in MDSC cells in PC 
while Vella et al. talks about this therapy in regards to BRAF-
mutated malignant melanoma.

Conclusions

PC is a deadly form of cancer that is often diagnosed with 
a low survival rate due to a commonly late diagnosis, by 
which time it has already metastasized. Four basic strategies 
existed to address PC: surgery, ablation/embolization, 
radiation therapy, and chemotherapy. However, these 
approaches by themselves still aren’t nearly as effective as 
they should be. With only these approaches, prognosis for 
PC is low. It was thus prudent for researchers to investigate 
alternative therapeutic approaches that would increase the 
overall average rate of survival. After figuring out that utilizing 
the immune system to induce an immune response against 
the tumor cells was particularly effective, researchers began to 
investigate the implications of combining this immunotherapy 
with conventional techniques. It is clear that the various 
combination therapies outlined by numerous recent 
publications have strong potential in clinical use, and will play 
a role in PC treatment in the near future.
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