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Unprecedented intensity in the investigation of cancer 
genomes over the past 20 years has firmly established 
genome instability as a central hallmark of cancer. 
Publications from international consortia, particularly 
The Cancer Genome Atlas (TCGA), have painstakingly 
cataloged the genomic alterations that are frequently 
observed in all major cancer types (1-5). There are two 
primary categories of genome alterations: mutations at the 
nucleotide level and alterations at the level of chromosomal 
copy number (deletion and amplification). In some cancer 
types, such as colorectal cancer (CRC), genomic instability 
can be broadly classified as having chromosome instability 
(CIN) or microsatellite instability (MSI) (6,7). Whereas a 
majority of research investigation and drug development 
has been targeted on missense mutations (8,9), CIN has 
clearly been shown to play a key role in cancer development 
and progression and is associated with poor prognosis and 
drug resistance (10,11). Therefore, copy number alterations 
represent a wellspring for both research and therapeutics 
that have been underexplored. In this regard, nucleotide 
mutations and copy number alterations are really two sides 
of the same genomics instability coin for tumorigenesis. 
With the recent realization of the “randomness” in gene 
mutations due to replication errors in cancer (12), perhaps 
copy number alterations provide less randomness in 

therapeutic design.
In a recent publication in Nature Communications, 

De laney  and  co l l eagues  exp lored  mathemat i ca l 
methodologies to map haploinsufficiency networks to 
identify targetable patterns of allelic deficiency (13). Ovarian 
cancer (OV) is the third most common gynecological cancer 
but ranks highest in mortality rate due to a high incidence 
of metastasis and development of resistance to frontline 
chemotherapies. Thus, there is a strong motivation to better 
understand the molecular underpinnings in the genomics of 
OV to develop more effective therapeutic strategies.

Delaney and colleagues analyzed data from OV patients 
of the TCGA cohort and found that most had low mutation 
rates in the well-known tumor driver genes, whereas levels 
of somatic copy-number-alterations (SCNAs) were high. 
They hypothesized that the SCNAs might play crucial roles 
in tumorigenesis and consequently impact clinical outcomes 
and indicate possible drug targets.

In this report, Delaney and colleagues proposed a novel 
network-based approach to identify significantly altered 
pathways consisting of gene-level disruptive SCNAs and to 
estimate the contribution of responsible genes within the 
altered pathways. They termed this innovative new analysis 
program the Haploinsufficient/Triplosensitive Gene 
(HAPTRIG) tool. An “edge score” was defined based on 
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the GISTIC value and haploinsufficient annotation of each 
gene within the edge. They further proposed a “pathway 
score” to include the edge scores to prioritize pathways. 
Genes in the pathways were indexed by a “gene score”, 
which was defined as the sum of edge scores involving 
the node gene. Moreover, the HAPTRIG tool integrated 
information including gene-level SCNA, public databases 
about gene sensitivity to SCNA, and knowledge bases 
of protein interactions, to score disturbed pathways and 
contributed genes.

Using the HAPTRIG tool, the authors sought to infer 
impactful pathways and provide molecular mechanisms that 
bridged the SCNA landscape to the OV phenotypes. First, 
gene-level copy number alterations were derived from the 
segment-level SCNA landscape. Genes that were potentially 
sensitive to copy number deletion (haploinsufficient) 
or amplification (triplosensitive) were determined by 
mapping public databases of Yeast (YeastMine) and mouse 
(MouseMine) data to their human counterparts (Homology). 
Secondly, the biological impact of copy number alterations 
on SCNA-sensitive and insensitive genes were summarized 
as “pathway phenotypes” within 187 Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways. Examples of 
possible pathway phenotypes included “reduced”, “severe” 
and “minimal/none”. Suppression of KEGG pathway 
activities due to copy number reduction of haploinsufficient 
genes were specifically prioritized, assuming copy number 
deletions were more deleterious than amplifications. 
These analyses led the authors to identify autophagy and 
proteostasis as the most disruptive pathways, and the 
BECN1 and LC3B as the most impactful genes in low 
mutation OV. They hypothesized that the copy number 
reduction of BECN1 and LC3B suppressed autophagy 
and disturbed proteostasis, which was responsible for 
poor outcomes and the drug resistance. To validate this 
hypothesis, BECN1 and LC3B were knocked down in a 
series of OV cell lines and in vivo models, including (I) 
OVCAR3, a cisplatin-resistant cell line that was genetically 
similar with high-grade OV patients; (II) IGROV1 and 
SKOV3, low SCNA OV cell lines; (III) OVCAR5 and 
OVCAR8; (IV) the patient-derived xenograft model cells 
LPPDOV and A2780. The experiments demonstrated that 
suppression of BECN1 and LC3B desensitized drug resistant 
high-grade OV cell lines to chemotherapies.

The authors also applied HAPTRIG to 20 other cancer 
types in the TCGA database and found variable levels 

of alterations in autophagy and proteostasis pathways. 
Furthermore, most proteostasis pathways in their pan-
pathway analysis were enriched for deletions, including ER 
stress, ubiquitin-mediated proteolysis and the lysosome. 
The authors further suggested that the association of 
haploinsufficiency in model organism with an inability 
to form adequately proportioned protein-quality control 
complexes supported the notion that single allele SCNAs 
could disrupt these pathways. Notably, all CRC cases were 
analyzed as a whole in their analysis and results suggested 
modest suppression of proteostasis relative to high levels 
observed for OV, but it would be interesting to analyze 
the CIN and MSI subgroups of CRC separately. A recent 
publication has shown that haploinsufficiency in a 1p36 
tumor suppressor gene, MIIP, in CRC plays a critical role 
in CRC metastasis (14). One of the recognized functions of 
MIIP is to regulate protein degradation/turnover mediated 
by the ubiquitin system (15,16). Therefore, a convergence 
of understanding in CIN appears to emerge from these 
independent studies.

It should be noted that Delaney and colleagues focused 
on copy number alterations. It can be envisioned, however, 
that the same algorithms could be used to explore the role 
of epigenetic alterations, which may functionally play the 
same role as haploinsufficiency. Interesting, the authors 
pointed out that KRAS mutant cancers were susceptible to 
elevated autophagy. Pancreatic adenocarcinoma (PAAD) 
is one of the prominent cancers with KRAS mutations, 
occurring in almost in all of the cases (17-19). PAAD is 
also known as a low mutation cancer type (20,21). In the 
report by Delaney and colleagues, PAAD did not show 
such highly suppressed autophagy as in OV cases based on 
the haploinsufficiency analysis. It would be intriguing to 
integrate data from methylome analysis. Relevant to this 
notion is the recent finding that methylation modulated 
expression of X-chromosome microRNA 506 (miR-506) 
is a potent inducer of autophagy-mediated cell death  
in PAAD (22).

Clearly, the recent Nature Communications paper by 
Delaney and colleagues has rightfully shed light on the 
often “ignored” side of the cancer coin, demonstrating the 
value of study of haploinsufficiency networks in genomic 
cancer instability (Figure 1). The HAPTRIG tool developed 
by the authors should lead more investigators to explore 
this wellspring of opportunities to benefit cancer prognosis 
and treatment.
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