
© Translational Cancer Research. All rights reserved. Transl Cancer Res 2017;6(3):561-572 tcr.amegroups.com

Introduction

Despite the fact that the advent and innovation of the 
screening technology has made prostate cancer easier to 
be diagnosed, with an ever rising incidence, it has been the 
second cause of cancer-related death among American males 
(1-3). More than 95 percent of prostate cancer presents as 
adenocarcinoma. Thus, it is of great importance to explore 
the developing and prognostic stratification of prostate 
cancer, especially the molecular classification.

Based upon architectural features of prostate cancer 

cells, the Gleason score is an efficient way to evaluate the 
malignancy of prostate cancer. Traditionally, the Gleason 
score is calculated by adding together the numerical 
values of the two most prevalent differentiation patterns (a 
primary grade and a secondary grade). However, a revised 
grading system (Table S1) has been adopted in 2016 World 
Health Organization classification of genitourinary tumors 
(4,5). An increasing risk of biochemical recurrence (BCR) 
with elevating grade has been observed (6). Besides the 
clinical indexes, some protein-coding genes such as c-myc, 
Bcl-2 and p53 have also been reported to be related to the 
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prognosis of prostate cancer over the last decades (7,8).
The Cancer Genome Atlas (TCGA) is a large project 

composed of multiple components and equipped with 
various custom applications to handle large volumes of 
research data (9). It contains genomic characterization 
data, high level sequencing data and corresponding clinical 
data of all common tumors and several rare tumors. The 
integrative analyses made by the TCGA research network 
in some tumors like glioma and ovarian cancer provided a 
new insight into their diagnoses and treatment strategies 
(10,11). A global analysis of prostate adenocarcinoma has 
been published by the TCGA research network, revealing 
molecular heterogeneity and potentially actionable 
molecular defects among primary prostate cancers (12).

As a subfield of computer science, machine learning plays 
an important role in bioinformatics for its incomparable 
advantage in handling big data. Up to now, it has made 
great contribution in the discovery of many valuable results 
(13,14). In the current study, we applied the previous 
methods to the TCGA database analysis, and found out 
some interesting results, which could be validated stably in 
three other datasets regardless of platforms. 

Methods

We summarized our workflow in the Figure 1. 

Data preparing

We used four different series of prostate cancer data 
with 1258 unique patients in this study (Table S2). 
TCGA RNAseqV2 dataset consisted of 497 prostate 
adenocarcinoma samples as a training dataset. The 
validation datasets comprised three prostate cancer series 
from GEO (Gene Expression Omnibus): Erho’s series 
(GSE46691) with 545 patients (15), Lamb’s set (GSE70768) 
with 125 patients (16) and Ross’s set (GSE70769) with  
91 patients (16) respectively. 

The training dataset (TCGA RNAseqV2 and Clinical 
data)
Prostate adenocarcinoma level-3 data were obtained 
from TCGA consortium (https://tcga-data.nci.nih.gov/
tcga/). This dataset included 497 individuals with prostate 
adenocarcinoma. The RNA sequences of each sample were 

Figure 1 The workflow of our data analyses.
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profiled based on Illumina HiSeq 2000 RNA Sequencing 
Version 2 analysis (https://wiki.nci.nih.gov/display/TCGA/
RNASeq+Version+2). Tumor samples from TCGA were 
not only in different institutions and distinct times, but also 
processed in batches rather than at the same time, which 
would lead to misleading analysis resulting from systematic 
noise such as batch effects and trend effects. TCGA 
BatchEffects website (http://bioinformatics.mdanderson.
org/tcgambatch/) was used to assess and correct for batch 
effects in prostate adenocarcinoma data. We downloaded 
the batch effects corrected data processed by Empirical 
Bayes online. Besides, clinical data was downloaded through 
R package of TCGA-Assembler (17). 

The validation dataset (GEO series)
The expression profiles as well as clinical data of GSE46691, 
GSE70768 and GSE70769 were downloaded through R 
package of GEOquery. For each dataset, the expression 
profiles were annotated from probesets to genes and median 
centred across all samples. We filled target gene expression 
with zero when missing value occurred. For clinical data, we 
concentrated on Gleason score, T staging and prognostic 
information. 

Generation of the prostate cancer subtype (PCS) classifier 
and identification of subtypes

We built up a PCS classifier to identify three subtypes based 
on RNA-Seq expression profiles of TCGA with algorithm 
of Hierarchical clustering and nearest shrunken centroids. 

Consensus clustering
Consensus clustering is one way of assessing the clustering 
stability. With the R package of “ConsensusClusterPlus” (18), 
we carried out hierarchical clustering with agglomerative 
average l inkage and classif ied these patients into  
3–12 clusters via the 10426 most variable genes. The most 
variable genes were defined according to the criterion of 
median absolute deviation >0.5. We had median centred 
all expression arrays before all the computations and set  
1,000 iterations, 0.98 subsampling ratio for consensus 
clustering (19). 

Computing gap statistic
Gap statistic is a standard method to determine the optimal 
number of clusters in a dataset via comparing the change of 
the observed and expected within-cluster dispersion (20). 
To identify the ideal number of clusters, gap statistic was 

computed from k=1 to 6 for selected top variable genes by 
the R package of “cluster” (21). 

Selection of patients and genes for machine learning
For patient samples, we computed Silhouette width 
to recognize the most representative patients in each  
cluster (22). Patients with a positive silhouette width were 
selected for the following classifier. Similarly, two filtering 
steps were applied to select the most representative and 
predictive genes. Firstly, SAM (Significance Analysis of 
Microarrays) was used to identify significantly differentially 
expressed genes (FDR <0.01, False Discovery Rate ) 
between one subtype and others with R packages of 
“siggenes” (23). Secondly, AUC (area under receiver 
operating characteristic curve curve) values were calculated 
to estimate one gene's predictive ability to divide one 
subtype from others with R packages of “ROCR” (24). Only 
patients with FDR <0.01 and AUC >0.9 were kept to build 
the PCS classifier. 

Building the PAM classifier and identifying subtypes 
With the filtered patients and selected genes, a robust 
classier was established by the R packages of “PAMR” 
(prediction analysis for microarrays R package) based on the 
algorithm of nearest shrunken centroids (25). We set up a 
10-fold cross-validation for 1,000 iterations to choose the 
optimal threshold of centroid shrinkage. Finally, we selected 
the classifier providing error rate <2% with the least number 
of genes. As a result, with the built PAM classifier, we 
classified all the TCGA prostate adenocarcinoma patients 
into three subgroups for the subsequent analyses. Firstly, 
we fit the clinical data to the three subtypes of prostate 
adenocarcinoma to check if there would be a difference in 
Gleason score, T staging, or prognosis. Secondly, in order 
to explore the molecular heterogeneity, we selected some 
popular biomarkers or mutations to check their expression 
variation in the different subtypes. 

Annotation of genes in the classifier

To understand the biological significance of PCS genes, we 
performed annotation for genes by the following methods. 

Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis
Gene ontology annotation associated with biological 
pathway and KEGG pathway enrichment analysis of the 
classifiers was achieved using the Database for Annotation 
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Visualization and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/) online tool. A P value <0.001 and gene 
counts >2 were set as threshold for biological pathway 
analysis, and P value <0.05 and gene counts >2 for KEGG 
pathway analysis. 

Protein-protein interaction (PPI) network construction
We mapped the classifiers into the Search Tool for the 
Retrieval of interaction Genes database (String, http://
string.embl.de/) and constructed a PPI network, which 
provided the information to predict the protein interactions. 
The minimum required interaction score was set to 0.400. 
We analyzed the PPI network with Cytoscape software 
(http://www.cytoscape.org/). 

Validation on three GEO dataset

GSE70769, GSE70768 and GSE46691 from GEO dataset 
were selected as validation sets. Based on the PCS classifier 
generated in section 2.2.4, we classified each validation 
dataset and analyzed the relation between the given 
subgroups and clinical data. Some clinical information of 
all series was not identical. For example, the GSE70768 
gave the primary and secondary Gleason score, while the 
GSE46691 just gave total Gleason score. Concerning the 
issues above, we utilized the majority of clinical data and 
presented the details in the results part. 

Expression of the luminal and basal markers in the PCS 
subtypes.

To determine whether the PCS subtypes correspond to 
luminal or basal tumors, we analyzed the mean expression of 
genes known to be markers of luminal (EZH2, AR, MKI67, 
NKX3-1, KLK2/3 and ERG) or basal (ACTA2, GSTP1, IL6, 
KRT5 and TP63) prostate cancers among PCS subtypes (26). 
We also performed the gene set enrichment analysis (GSEA) 
to provide some biological insights of the PCS clusters (27).

Statistical analysis

Sample clustering and classifying were performed with 
the corresponding R packages mentioned above under 
R software (version of 3.3). Clinical data were treated as 
discrete variable (time to event) and categorical variable 
(Gleason score, pathology T stage (pT stage), metastasis, 
and prognostic end-point). We utilized Chi-square test 
and fisher’s exact test when detecting the relation between 

categorical variables. Kaplan-Meier curves were used to 
describe the time-event data and log-rank method was 
used to test the differences. It was regarded as significant 
statistically when P value was <0.05. We applied the 
statistical packages SPSS v20 (IBM) to manage the clinical 
data. R software and Microsoft PowerPoint (v2016) were 
used for visualizing the results. 

Results

Generation of the PCS classifier and subtypes identification

A total of 10,426 genes with most variability across samples 
were retained and median centred. Next, we performed 
hierarchical clustering with agglomerative average 
linkage to cluster these samples. We employed consensus 
clustering to assess the clustering stability. A significant 
increase in clustering stability was observed from k=2 to 
3, but not for k>3 (Figure 2A). To further confirm it, we 
computed Gap statistic for k=1 to 5. A peak was mainly at 
k=3 or 4, indicating that three or four subtypes were ideal 
to explain the inner construction of dataset. To simplify the 
explanation for the result, we chose three subtypes for our 
following analysis (Figure 2A). We computed Silhouette 
width to identify the most representative samples within 
each cluster. To build the PCS classifier, we retained 
samples with positive silhouette width (n=412) (Figure 2A). 
We also applied two filtering methods (SAM and AUC) 
to select the most representative and predictive genes. 
The retained 256 genes were trained by PAM to build 
a classifier. To select the optimal threshold for centroid 
shrinkage, we performed 10-fold cross-validation and 
selected the one yielding a good performance (error rate 
<2%) with the least number of genes. Using this strategy, 
we built a classifier of 183 unique genes (Figure 2B)  
(Table S3—The gene list of PCS classifier). These genes 
were annotated with biologic process, biologic pathway, 
protein-protein interaction databases. Then we used 
it to classify all the prostate adenocarcinoma samples.  
250 samples were classified for the first subtype (PCS1, 
prostate cancer cluster 1), 153 were PCS2, and the rest 
were PCS3 (Figure 2C). Some candidate genes were found 
to be validated in this dataset. They were KLF5, BCL2 and 
etc., and Figure 2B gave the details. 

Function annotation and PPI analysis of our classifier

As partially displayed in Figure 2D, the classifier was mainly 
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Figure 2 Unsupervised classification identified three genetic distinct subgroups with 183 genes. (A) The consensus clustering method displayed 
the optimal number of classification. The color scale represented the frequency that two samples belong to the same cluster (top left). Empirical 
CDF of consensus clustering improved sharply from two to three clusters (middle left). Samples with positive Silhouette values were selected 
as core samples to build the classifier (right). The PAM method indicated 183 was the optimal number for classification; (B) the TCGA dataset 
was classified in three subgroups according to the classifier. The top-right bar indicates the subgroups; light blue; PCS1, orange; PCS2, 
green; PCS3. In the heatmap, rows indicated genes from the classifier and columns indicated patients. The expression was color-coded and 
transformed with median centred log2 (red, high expression; blue, low expression). The heatmap below was selected with having been validated 
by previous studies; (C) all the four datasets were classified with the 183 genes. We displayed the proportion of each group in the respective 
dataset; (D) the 183 genes classifier was functionally annotated with GO and KEGG (the left two histogram). The height of bars indicated gene 
counts. Color represented P value. Protein-protein interaction graph was displayed on the right. Nodes standard for proteins and lines meant 
the possible relationships. CDF, cumulative distribution function; PAM, prediction analysis for microarrays; TCGA, the Cancer Genome Atlas; 
PCS1, prostate cancer subtype 1; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 3 Three kinds of clinical data were compared among subgroups. (A) The numbers of patients in three subgroups were significantly 
different among five Gleason levels. The area of the bubble represented the number of patients. Three subgroups shared three colors. The 
vertical axis indicated five Gleason grade groups; (B) the proportions of lymph-node invasion patients in the three subgroups were still 
different. The height of split bars represented the population of each cluster or each group. Two colors marked two different conditions; 
(C) in terms of pathology T stage, the differences were still significant. Similarly, the area of the bubble represented the number of patients. 
Different T stages were on the vertical axis. PCS1, prostate cancer subtype 1.

annotated with 48 biologic process and biologic pathway 
terms, most of which were concerning cell communication, 
development process, morphogenesis and ion transport. 
KEGG pathway analysis revealed that these classifiers 
mostly enriched in focal adhesion. 

The PPI network included 86 nodes and 112 edges. 
Some genes validated by other research were in the centre 
of the network, such as SNAI2, FGFR2, SPEG, CAV1 and 
so on, which might serve as intermediate regulation. Other 
genes validated by former research included FHL2, CD40, 
ANPEP, GSTP1, FLNA (28-33), which were not so highly 
interconnected with other genes. 

Analysis with clinical data 

After statistical test with the TCGA clinical data, we 
found PCS2 with an obviously higher Gleason score when 
comparing to PCS1 (Figure 3A). PCS3 had the least number 
of patients, and seemed to be the buffer zone for PCS1 and 
PCS2. About 1/3 PCS1 patients were in the WHO grade 
group 2 (Gleason score at 7=3+4). As for the PCS2, more 
than 1/3 patients were in the group 5 (Gleason score at 10). 

The pT stage and lymph node invasion had the same 
tendency (Figure 3B,C). PCS2 had higher levels of pT stage 
and N stage comparing to PCS1. However, the recurrent 

A

C

B
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times had no significant difference among these subtypes, 
just like what the TCGA research network reported (12). 
The insufficient follow-up time (median follow-up time was 
15.1 months) and low follow-up rate (less than 66%) might 
account for that. 

Validation in three other datasets 

The interesting results of above had been validated only in 
TCGA dataset. To push them to universal, we found three 
more datasets for further validation. Some information 
about these series was summarized in Table S2. 

GSE46691
We applied the classifier to this dataset. Only two subtypes 
(PCS1 and PCS2) were found, but none for PCS3. Most of 
them were PCS1(532/545 vs. 13/545) (Figure 2C). 

Different from TCGA dataset, this series provided too 
little information for us to use the WHO grading system. 
Thus, we separated all the patients to two levels with a 
cutoff of 8 (≤8 and >8). After comparison, Gleason scores 
and metastasis status had extremely similar patterns in these 
two different subtypes. The different results between PCS1 
and PCS2 were shown in Figure 4A. 

GSE70769
With the similar classification, there were only two patients 
in PCS3. Thus, we only analyzed PCS1 [74] and PCS2 [15]  
for the following items. The significant difference was 
observed between distinct levels of Gleason grading system 
(P=0.023) (Figure 4B). Unlike TCGA dataset, pT stages 
were not significantly different between PCS1 and PCS2 
(Figure 4B). As for metastasis status, positive results could be 
observed (P=0.001), despite the paucity of metastatic cases 
(Figure 4B). Unfortunately, we observed no positive results 
concerning the recurrences between PCS1 and PCS2 in 
the survival analysis (P=0.059) (Figure 4B). However, the 
tendency of survival curve and critical P value implied a 
possibility of difference. 

GSE70768
After classification, 90 cases were tagged as PCS1, while 
31 were in PCS2 and four were in PCS3. Following 
GSE70769, we ignored PCS3 for further analysis. 
Besides the Gleason scores, the recurrence time was also 
significantly different between PCS1 and PCS2 in the 
survival analysis (P=0.005) (Figure 4C). 

Expression of the luminal and basal markers in the PCS 
subtypes

There were an association between luminal genes and 
“PCS2 and PCS3”, and basal genes and PCS1 (P<0.05). We 
also verified this observation in other 3 data sets. It provides 
evidences that PCS1 tumors correspond to basal subtypes, 
PCS2 and PCS3 reflect luminal subtypes. Table S4 shows 
the gene sets enriched in each of PCS subtypes by GSEA. 
There are 17 gene sets significant enriched at FDR <25% 
and nominal P<5% in PCS1 subtypes, including epithelial 
to mesenchymal transition, myogenesis, inflammatory 
response and so on. PCS2 and PCS3 both enriched in 
HALLMARK_MYC_TARGETS_V2 (a subgroup of genes 
regulated by MYC).

Discussion

In order to explore the prostate adenocarcinoma, we 
first studied RNA-Seq data of prostate tumor samples 
from TCGA network (n=497). The most robust and 
optimal number of classification was three identified by 
an unsupervised consensus-based clustering algorithm. 
We built up the PCS classifier (183 genes) based on the 
expression of encoded genes from RNA-Seq level, rather 
than those specialized genes filtered or corrected with 
clinical data. Those samples with same gene-expression 
pattern would be more likely to be identified and classified 
into the same category. Then the classifier was validated in 
three independent datasets, which were completely different 
in data platform, even in data type (two were mRNA 
microarray data, one was extron microarray data). From the 
results, we can see that the variation of genes would indicate 
diverse clinical outcome. 

According to previous studies, tumorigenesis is 
closely related to internal or genetic disorders. These 
disorders sometimes can be observed by different gene 
expression, such as tumor suppressor gene mutations 
with reduced expression and oncogene activation with 
increased expression. Tumors need a continuous process. 
The patterns of disorder vary among different tumors. In 
other words, there is only one way to be normal, but many 
ways to be abnormal. These compose the basis of tumor 
subgrouping and precision medicine (34). Our three distinct 
prostate adenocarcinoma subtypes could be identified 
each associating with unique molecular features. For 
example, PCS1 was featured with highly expressed GSTP1 
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Figure 4 All three GEO datasets were validated positively. (A) GSE46991 was proved to have significances in Gleason Scores (P=0.022) and 
metastasis status (P=0.023). The columns indicated the proportions of patients who had >8 of Gleason score. The bars on top of columns 
were standard deviations; (B) for GSE70769, metastasis status had significances comparing PCS1 and PCS2 (P=0.001) (lower left), while the 
pT stages were not (P=0.214) (top). The number of patients in PCS1 and PCS2 was significant different among five Gleason levels (middle) 
(P=0.023). The area of the bubble represented the number of patients. The two levels of Gleason score in the dotted line box also indicated 
a significant difference (P=0.013). The recurrence time of two PCSs was displayed on the bottom; (C) the similar analyses were done in 
GSE70768 for Gleason grade (top) and recurrence time (bottom). GEO, gene expression omnibus; PCS1, prostate cancer subtype 1.
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(P-class glutathione S-transferase gene 1) (P=9.62×10−68), 
which has been recognized as a tumor suppressor gene. 
Furthermore, there is a low hypermethylation of GSTP1 
promoter in these PCS1 samples (P<0.01, Figure S1). 
Hypermethylation of the GSTP1 promoter is possibly the 
most common genetic event in prostate cancer and appears 
to be an early event in tumorigenesis (35). Usually, a low 
hypermethylation also means a high gene expression. Our 
observation corresponds to the fact that PCS1 patients have 
a relatively better prognosis. All the classifier genes (n=183) 
were functionally annotated with GO and KEGG databases. 
The most possible items were cell communication, 
development process and focal adhesion, most of which 
were closely related to tumor biology behavior. 

We performed statistical test with matched TCGA 
clinical data among different groups, and found some 
interesting phenomena surprisingly. There were significant 
differences among these five Gleason grade groups 
(P<0.001). The same tendency was observed on pathology 
T stage and N stage, though we could not rule out the 
confounding effect here. We didn’t find any significant 
difference in recurrent time among three subtypes. Just 
as what the prostate adenocarcinoma global analysis 
said (12), the follow-up time in the TCGA project is 
insufficient in terms of those slow progression tumors such 
as prostate cancer. Besides, the follow-up rate of prostate 
adenocarcinoma dataset (less than 66%) and median follow-
up time (15.1 months) might be additional reasons that alter 
the accuracy and credibility of the survival analysis. 

For further validation, the same workflow was applied to 
another three GEO series. It showed significant differences 
among clusters in Gleason scores (P<0.05). In addition, 
Gleason grade group 2 (7=3+4) and Gleason grade group 
3 (7=4+3) had obvious differences in GSE70769. Previous 
studies indicated the different prognosis between these two 
groups (36,37). Therefore, the new WHO grading system 
regarded them as 2 groups. Our result could show this 
difference, which further illustrated the subtle relationship 
between tumor subtypes and prognosis. 

GSE70768 and GSE70769, which include more complete 
follow-up, have follow-up time of 27.5 and 81.1 months 
respectively. For GSE70769, although the difference of 
recurrences between PCS1 and PCS2 was near a critical 
position of statistical (P=0.059), PCS2 still has a tendency of 
bad prognosis. GSE70768 consisted of 125 samples, and the 
recurrence times between PCS1 and PCS2 was significantly 
different (P=0.005). We all know that the Gleason score is 
based on microscopic appearance. The morphology change 

may be based on the inherent genetic change of tumor cells. 
Is the tumor subtypes we obtain through PCS classifier the 
basis of architectural patterns? The positive results above, must 
mean something, which we should run after for a long time. 

There are several prostate cancer classifications over 
the past years (26,38,39). Tomlins described 4 subtypes 
based on microarray gene expression patterns that are 
related to several genomic aberrations; You and colleges 
used pathway activation signatures of known relevance to 
prostate cancer to developed a novel classification system. 
Different from above, our PCS classifier mainly built on 
the mining of the whole expression profile by unsupervised 
clustering. Whether our model corresponds to the former 
reported classification, especially the basal and luminal 
subtypes? We analyzed the mean expression of basal and 
luminal markers among PCS subtypes. The results provide 
evidences that PCS1 tumors correspond to basal subtypes, 
PCS2 and PCS3 reflect luminal subtypes (Figure 5). PCS1 
(basal like) subtypes have a better prognosis, the same 
as what You et al. reported. Aberrant CpG methylation 
hypermethylation of GSTP1 promoter mentioned above 
may participated in these biological processes. GSEA may 
give us some biological insights about 3 PCS subtypes. As 
a result, epithelial-to-mesenchymal transition gene sets 
are upregulated in PCS1 and significant at FDR <25% 
(Figure S2). Epithelial to mesenchymal transition, has been 
recognized as a feature of aggressive tumors, and plays a 
crucial importance in cancer invasion and metastasis (40,41). 
PCS2 and PCS3 both enriched in a gene sets regulated 
by MYC (Figures S3,S4). The MYC oncogene encodes a 
nuclear protein that is involved in the control of normal 
cell growth, differentiation, and apoptosis. Overexpression 
correlate with advancing stage and grade of prostate  
cancer (42-44).

There were still some limitations in our study. Only 
RNA-Seq data were concerned in subgrouping the tumors. 
In addition, we have some doubts about the meaning of 
PCS3, for the limited number especially in the validation 
datasets. Genetically, it was nearer to PCS2 (Figure 2B), 
though it had ambiguous outcome. Those above may 
implied the complexity of genes. 

Conclusions

In  conc lus ion ,  we  exp lored  the  TCGA pros ta te 
adenocarcinoma database by machine learning. We built 
up the PCS classifier (183 genes) based on gene expression 
profile, and got three prostate adenocarcinoma subtypes. 
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There were distinct differences among subgroups in 
Gleason grade group, pathological T, lymph node invasive 
and so on. These results were validated in other GEO 
datasets, and prognostic information also had significance 
in survival analysis, which might be helpful to further study 
and clinical use. 
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Table S1 The new WHO grade group system of prostate cancer

Grade group Gleason score and pattern

1 Grade 6 (3+3)

2 Grade 7 (3+4)

3 Grade 7 (4+3)

4 Grade 8 (4+4, 3+5, or 5+3)

5 Grade 9 or 10 (4+5, 5+4, or 5+5)

Table S2 Basic information about TCGA and three validation series

Series No. of samples Platform

TCGA (12) 497 Illumina HiSeq 2000 RNA Sequencing Version 2 analysis

GSE46691 (15) 545 Affymetrix Human Exon 1.0 ST Array [probe set (exon) version

GSE70768 (16) 125 Illumina HumanHT-12 V4.0 expression beadchip

GSE70769 (16) 91 Illumina HumanHT-12 V4.0 expression beadchip

Supplementary



Table S3 The gene list of PCS classifier

Gene symbol Entrez ID

ADCY5 111

ALDH2 217

ALOX15 246

ANGPT1 284

ANPEP 290

AOX1 316

RND3 390

ASPA 443

ATP1A2 477

ATP2B4 493

CAV1 857

CAV2 858

CD40 958

CDH7 1005

CNN1 1264

COL4A6 1288

COL17A1 1308

CTF1 1489

CYP27A1 1593

EYA4 2070

FGFR2 2263

FHL2 2274

FLNA 2316

FLNC 2318

GAS1 2619

GATM 2628

GJA1 2697

GNAL 2774

GSTP1 2950

HFE 3077

NRG1 3084

HOXD10 3236

HOXD11 3237

HOXD13 3239

ITGB4 3691

KCNMB1 3779

LAMB3 3914

VWA5A 4013

MCC 4163

MEIS1 4211

MEIS2 4212

MPP2 4355

MYH11 4629

MYLK 4638

NBL1 4681

NHS 4810

ROR2 4920

OGN 4969

P2RY2 5029

PCDH7 5099

PGM5 5239

PGR 5241

PIK3C2G 5288

PYGM 5837

SCN2B 6327

SLC2A4 6517

SLC8A1 6546

SLC14A1 6563

SNAI2 6591

SNAP25 6616

SOX15 6665

SRD5A2 6716

TNS1 7145

TRO 7216

TRPC4 7223

ZNF154 7710

ZNF185 7739

RND2 8153

TP63 8626

B3GALT2 8707

KSR1 8844

ALDH1A2 8854

SLC16A5 9121

CPNE6 9362

NTN1 9423

CHST2 9435

NRG2 9542

ZNF516 9658

GPRASP1 9737

TOX 9760

HS3ST3A1 9955

SPEG 10290

MYL9 10398

WFDC2 10406

SORBS1 10580

PDPN 10630

KHDRBS3 10656

C5orf4 10826

PPARGC1A 10891

LDB3 11155

FAM107A 11170

CAND2 23066

Table S3 (continued)

Table S3 (continued)

Gene symbol Entrez ID

NACAD 23148

SYNM 23336

QPRT 23475

HAAO 23498

TRIM29 23650

BHMT2 23743

LMOD1 25802

HSPB8 26353

MYOF 26509

APOBEC3C 27350

SLC27A6 28965

PIPOX 51268

RASL12 51285

SCARA3 51435

ASB2 51676

LRP1B 53353

DUOX1 53905

CLIC6 54102

A2BP1 54715

TMLHE 55217

SLC47A1 55244

DBNDD2 55861

KCNQ5 56479

SLC2A9 56606

PRDM8 56978

PAK7 57144

JPH2 57158

NYNRIN 57523

ARHGAP20 57569

ARHGAP23 57636

CACHD1 57685

TMEM35 59353

NECAB1 64168

KCTD14 65987

NKAIN1 79570

ACSS3 79611

ZNF750 79755

IQCA1 79781

LONRF3 79836

ANKRD53 79998

ACSF2 80221

MAGED4B 81557

TCF7L1 83439

CCDC8 83987

C2orf88 84281

JPH4 84502

ATCAY 85300

KIAA1644 85352

NAV2 89797

DUOXA1 90527

L3MBTL4 91133

CHRDL1 91851

DMKN 93099

MYOCD 93649

TMEM106A 113277

FBXO17 115290

FAM46B 115572

MRGPRF 116535

HRASLS5 117245

TWIST2 117581

FAT3 120114

FRMD6 122786

EVC2 132884

PTCHD1 139411

TCEAL2 140597

PRIMA1 145270

GCOM1 145781

HRNBP3 146713

ANKRD35 148741

GLIS1 148979

ITPRIPL1 150771

RHBDL3 162494

OXER1 165140

PRICKLE2 166336

SYNPO2 171024

FAM124A 220108

NKAPL 222698

MSRB3 253827

C20orf200 253868

LOC284276 284276

C3orf70 285382

RNF175 285533

KY 339855

ANKRD34B 340120

C18orf34 374864

B3GNT8 374907

C1orf175 374977

C1orf190 541468

LOC572558 572558

PGM5P2 595135

LOC644538 644538



Table S4 Gene set enrichment analysis (GSEA) results for the ‘HALLMARKS’ gene sets

Gene sets enriched in PCS subtype SIZE ES NES NOM p FDR q

Gene sets enriched in PCS1 subtype

Gene sets

MYOGENESIS 187 0.59833 1.536722 0 0.016098

APICAL_SURFACE 41 0.6375206 1.5354674 0.00102145 0.008049

ALLOGRAFT_REJECTION 185 0.5654809 1.4592131 0 0.0161038

INFLAMMATORY_RESPONSE 191 0.556809 1.4327916 0 0.019519

IL6_JAK_STAT3_SIGNALING 78 0.5575616 1.4086231 0.00200803 0.0240011

EPITHELIAL_MESENCHYMAL_TRANSITION 198 0.5434884 1.4019129 0 0.0221452

TNFA_SIGNALING_VIA_NFKB 197 0.5392981 1.3915504 0 0.0219671

APICAL_JUNCTION 183 0.5268314 1.3486778 0 0.0387194

KRAS_SIGNALING_DN 181 0.5145873 1.3231847 0 0.0508606

INTERFERON_GAMMA_RESPONSE 182 0.5051111 1.3053231 0 0.0624133

COMPLEMENT 180 0.503827 1.2966136 0.004 0.0652992

KRAS_SIGNALING_UP 193 0.4935308 1.2788059 0.002 0.0759542

UV_RESPONSE_DN 136 0.4963331 1.2678461 0.009 0.0830991

HYPOXIA 190 0.4763444 1.22983 0.01 0.1335384

APOPTOSIS 142 0.4746551 1.2161257 0.023 0.1514477

ESTROGEN_RESPONSE_EARLY 193 0.4668625 1.207341 0.028 0.1594714

IL2_STAT5_SIGNALING 192 0.4640342 1.1963452 0.02 0.1754912

Gene sets enriched in PCS2 subtype

Gene sets

MITOTIC_SPINDLE 170 −0.380714 1

G2M_CHECKPOINT 152 −0.602883 1

MYC_TARGETS_V1 116 −0.628538 −3.292911 0 0

E2F_TARGETS 160 −0.649992 −3.196251 0 0

MYC_TARGETS_V2 45 −0.56 −2.113879 0 0

MTORC1_SIGNALING 161 −0.203905 −0.937359 1 0.8321512

UNFOLDED_PROTEIN_RESPONSE 85 −0.168492 −0.869125 1 0.931307

OXIDATIVE_PHOSPHORYLATION 138 −0.160268 −0.812112 1 0.8691489

DNA_REPAIR 104 −0.179691 −0.728583 1 0.8586289

PROTEIN_SECRETION 69 −0.110638 −0.529586 1 0.7965958

Gene sets enriched in PCS3 subtype

Gene sets

MITOTIC_SPINDLE 170 −0.347363 1

DNA_REPAIR 104 −0.290227 1

G2M_CHECKPOINT 152 −0.609389 1

ANDROGEN_RESPONSE 92 −0.347315 1

UNFOLDED_PROTEIN_RESPONSE 85 −0.237386 1

MTORC1_SIGNALING 161 −0.209816 1

E2F_TARGETS 160 −0.699309 1

MYC_TARGETS_V1 116 −0.613631 1

OXIDATIVE_PHOSPHORYLATION 138 −0.331058 1

MYC_TARGETS_V2 45 −0.596695 −2.444128 0 0



Figure S1 PCS1 patients have a lower hypermethylation of the 
GSTP1 promoter (P<0.01). PCS1, prostate cancer subtype 1.

Figure S2 GSEA plots showing upregulation of Epithelial-
Mesenchymal Transitions in PCS1. PCS1, prostate cancer subtype 
1. GSEA, gene set enrichment analysis. 

Figure S3 GSEA plots showing downregulation of MYC targets 
in PCS2. GSEA, gene set enrichment analysis.

Figure S4 GSEA plots showing downregulation of MYC targets 
in PCS3. GSEA, gene set enrichment analysis.

NES =−2.44

FDR q<0.01

NES =−2.11

FDR q<0.01


