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Glioblastoma multiforme (GBM) is one of the most 
malignant brain tumors, because of its proliferative and 
invasive characteristics. The median survival is 12−16 
months, despite multidisciplinary therapies, including 
surgery, radiation, and chemotherapy (1,2). GBM tumor 
cells migrate into the brain parenchyma far from the tumor 
mass and recurrence is common along the periphery of the 
tumor removal cavity, even in cases where the enhanced 
lesion has completely disappeared postoperatively (2). 
However, it is difficult to evaluate tumor spread of GBM 
on magnetic resonance imaging (MRI). We have previously 
reported a positron emission tomography (PET) study in 
which we compared the methionine (MET) uptake area 
to the area of gadolinium (Gd) enhancement on MRI 
in patients with GBM (3). We showed that the MET 
uptake area completely enveloped the Gd-enhanced area. 
In most cases, the MET uptake area enclosed the outer 
region of the Gd-enhanced area, with an additional 30 mm 
expansion. In contrast, the Gd-enhanced area coincided 
with only 58.6% of the MET-uptake area on average. Based 
on these results, we identified three cases of possible GBM 
recurrences after complete resection; they presented as new 
Gd-enhanced lesions in the MET uptake area at the edge of 
the surgical removal cavity (3). Hence, MET-PET may be 
useful for predicting local recurrence, given the metabolic 
abnormalities in residual tumor cells even before local 
tumor recurrence could be discerned on MRI (4).

The resection rate is one of the prognostic factors in 
GBM. It has been reported that resection of >78% of 
GBM lesions could improve survival; moreover, aggressive 
resection of 95–100% of the tumor increases survival in 
a stepwise fashion (5). Accordingly, it seems necessary to 
remove the infiltrating tumor along with the surrounding 
normal brain tissue, in order to achieve gross total resection. 

It is considered that 5-aminolevulinic acid (5-ALA) may 
be useful for discriminating high-grade glioma from normal 
brain tissues during surgery. A randomized controlled 
trial showed that 5-ALA fluorescence-guided resection of 
glioblastoma improved patients’ 6-month progression-free 
survival as compared to those undergoing microsurgical 
resection under conventional white light (6). Subsequently, 
analysis of data from a randomized controlled trial provided 
level 2b evidence supporting the benefit of resection under 
5-ALA fluorescence guidance on overall survival (7). 

We have previously reported the sensitivity, specificity, 
positive-predictive value, and negative-predictive value of 
5-ALA for identifying more than 50% of olig2-positive 
cells remaining in the wall of the removal cavity, as 
examined on immunohistochemistry of the postoperative 
surgical specimens, as 90.9%, 44.4%, 66.7%, and 80%, 
respectively (8). In other words, it is not possible to identify 
all the tumor cells with conventional usage of 5-ALA.

Glioblastoma stem cells (GSCs) have been reported to 
play a crucial role in the initiation, progression, resistance 
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to therapy, and recurrence of GBM (9,10). In our recurrent 
cases, it appears that GSCs must have remained around the 
removal cavity, acting as the major source of the recurrence, 
after escaping the effect of multimodal therapies (2). GBM 
is considered to be composed of heterogeneous populations 
of tumor cells and to include specific subpopulations, i.e., 
GSCs and non-GSCs. Wang et al. showed that GSCs are 
less able to accumulate protoporphyrin IX (PpIX) than 
non-GSCs, and a subset of side population (SP)-defined 
C6 glioma cells, which are GSCs, most likely escapes from 
detection and resection under 5-ALA-based photodynamic 
diagnosis (PDD) (11). Additionally, they demonstrated that 
a subpopulation of C6 SP-defined GSCs possessing low 
PpIX fluorescence exhibit markedly higher tumorigenic 
activity and much more rapid progression of tumors than 
that of SP-derived cells possessing high PpIX fluorescence. 
In contrast, main population (MP)-derived cells, i.e., non-
GSCs showing low PpIX fluorescence, did not present 
rapid progressions. This phenomenon indicates that more 
aggressive tumor cells can elude 5-ALA-based resection, 
and lead to tumor recurrence. This leads to the question 
of how SP-derived cells with low PpIX fluorescence can 
be removed. To achieve this, Wang et al. propounded 
deferoxamine (DFO) treatment. The agent has a specific 
affinity for free iron in the blood stream, resulting in the 
suppression of the metabolism of PpIX to heme by an 
iron-chelation effect. Valdés et al. have shown that DFO-
mediated iron chelation increases 5-ALA-mediated PpIX 
accumulation in U251 malignant glioma cells in vivo (12). 
Wang et al. hypothesized that DFO may suppress this PpIX 
metabolism process, resulting in the restoration of PpIX 
accumulation in GSCs (11). They then demonstrated that 
DFO treatment significantly increased the percentage of 
PpIX fluorescence-positive cells among C6 SP-derived 
cells, as compared to that in MP-derived cells (11). They 
certainly showed a distinctive decrease in the frequency 
of cells with poor PpIX accumulation using this DFO 
treatment. However, the DFO-induced enhancement effect 
was not observed in MP-derived cells. They first reported 
that DFO-mediated iron chelation could enhance PpIX 
accumulation in C6 SP-defined GSCs. Further clinical 
studies are required to test the applicability of DFO in the 
enhancement of PpIX accumulation in GSCs in GBM (11).  
Because DFO has been clinically used as treatment for 
hemochromatosis, to reduce liver iron concentration 
without significant side effects (13,14), this agent could be 
applied in glioma surgery in future. 

At the molecular level, what causes the low accumulation 

of PpIX in C6 SP-defined GSCs? In a search for iron 
metabolism-associated genes, HO-1, which encodes a rate-
limiting enzyme for heme degradation and which functions 
as an inducible protective gene against cellular stress and 
oxidative injury, was identified (15). Semi-quantitative RT-
PCR analysis of HO-1 revealed significantly enhanced 
expression in C6 SP-derived cells treated with 5-ALA, 
as comparing to that without 5-ALA treatment. This 
difference was not observed in C6 MP-derived cells. 
Accordingly, C6 SP-derived cells, namely GSCs, in the 
GBM may strongly express HO-1 under 5-ALA treatment, 
which could accelerate PpIX/heme metabolism, leading 
to poor accumulation of 5-ALA. Elevated expression of 
HO-1 was seen in human GBMs as compared to non-
tumorous tissue or low grade gliomas, based on publicly 
available datasets, including the TCGA_GBM HG-U133A 
platform, Rembrandt, and Gravendeel datasets. In addition, 
HO-1 was verified as a prognostic factor in GBMs based on 
Kaplan-Meier survival analysis. In fact, the lower expression 
group showed significantly longer survival than did the 
high expression group in all datasets. Taken together, 
administration of 5-ALA could activate HO-1, leading 
to reduced accumulation of PpIX through accelerated 
metabolism of PpIX to heme in GSCs. 

In conclusion, Wang et al. showed that an iron chelator 
could be used to improve 5-ALA-based PDD of SP-defined 
GSCs in glioma. Clinical usage of a combination of 5-ALA 
and DFO may be valuable in glioma surgery.
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