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In this issue of Translational Cancer Research, Parihar and 
colleagues describe a method for stereotaxic radiation 
exposure in rat brain that provides precise localization 
to specific brain regions (1). In this case, they focused 
their attention on radiation effects in the hippocampus, 
a structure that contains a population of radiosensitive 
adult neural precursor cells and is implicated in learning 
and memory deficits following clinical radiotherapy. In 
particular, Parihar et al. compared findings six weeks post 
exposure between rats that had received 10 Gy of whole 
brain irradiation and those receiving 10 Gy of localized 
bilateral or unilateral hippocampal irradiation. Specific 
endpoints examined included two measures of hippocampal-
associated learning, neurogenesis, and expression of CD68, 
a marker of microglial activation.

Cranial radiotherapy is a key approach for the treatment 
of primary central nervous system (CNS) malignancies 
and brain metastases, as well as prophylaxis of metastatic 
and occult disease. Although there have been significant 
advances in limiting overt neurotoxicity, cognitive 
dysfunction is still a major concern, particularly in children 
receiving cranial radiotherapy and in adults subjected to 
whole brain radiation treatment for control of metastatic 

disease (2,3). Specific approaches have been developed that 
reduce radiation doses to normal brain tissue, including 
intensity modulated radiation therapy and stereotaxic 
radiosurgery, and these methods may reduce the incidence 
of cognitive dysfunction (4). Indications that adult neural 
stem cells in the subventricular zone and hippocampus play 
important roles in learning and memory as well as tissue 
recovery have led to the idea that cognitive dysfunction 
might be diminished or avoided if radiation doses to these 
areas are selectively reduced (5). Despite the demonstrated 
feasibility of developing approaches that spare the 
hippocampus and other critical brain regions, there are to 
date no reported results from randomized clinical trials 
testing this idea, though a phase II trial appears to be 
underway (5). The development of approaches in rodents 
that target radiation to specific brain regions is an important 
undertaking that provides opportunities for probing specific 
mechanisms underpinning radiation induced cognitive 
dysfunction and other CNS radiation effects.

Methodologically, the approach described by Parihar 
et al. will be of use to other investigators interested in 
irradiating select brain regions in rodent models. Such 
studies are of obvious importance in modeling focal human 
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radiotherapy procedures and in testing hypotheses about 
targeted and non-targeted effects in the CNS. Others have 
used focused irradiation protocols to expose limited areas 
of rodent brain, with the gamma knife most frequently 
cited. As pointed out by Parihar et al., a number of earlier 
studies utilized relatively high doses of radiation (e.g., 
100 Gy) and described histological changes consistent with 
late radiation necrosis [e.g., (6)]. More recently, the gamma 
knife was used to unilaterally deliver a 10 Gy maximum 
dose to one hippocampus in Brown Norway rats. Similar to 
results presented in the current work, targeted irradiation 
of the hippocampus led to microglial activation and reduced 
neurogenesis measured 70 days post-irradiation (7). 
However, this earlier study did not include bilateral or total 
brain irradiation and no measures of cognitive function 
were performed. Parihar et al. found reduced contextual 
fear conditioned freezing behavior in rats receiving bilateral 
hippocampal irradiation or whole brain irradiation, but not 
in those receiving unilateral hippocampal irradiation. This 
is not surprising given the known dependence of this task 
on hippocampal function and the requirement that both 
hippocampi need to be inactivated to cause a deficit (8). In 
contrast, rats receiving unilateral or bilateral hippocampal 
irradiation showed essentially normal preference for 
exploring an object moved to a new location, whereas whole 
brain irradiated rats did not show a preference. Interestingly, 
the whole brain irradiated rats actually appeared to prefer 
spending time with the object that was not moved to a new 
location, rather than the anticipated “impaired” result of 
spending essentially equal time with both objects. One of 
the challenges in interpreting such results is the relatively 
small number of rats used in the hippocampal irradiated 
cohorts and the apparent testing of these animals in both 
tasks as opposed to independent cohorts of unirradiated and 
whole brain irradiated rats which were tested in each task. 
Nevertheless, the results are novel and worthy of follow up 
with larger numbers of experimental animals.

As expected, focal irradiation of the hippocampus 
with 10 Gy led to a decline in neurogenesis, revealed by 
substantial reduction in doublecortin (DCX) labeled cells 
in the dentate gyrus and more modest decreases in the 
percentage of BrdU positive mature dentate gyrus granule 
cells marked by NeuN immunostaining. Interestingly, in 
the contralateral hippocampus of rats receiving unilateral 
hippocampal irradiation, the percentage of BrdU positive 
mature neurons was increased and there was a trend for 
greater numbers of DCX positive cells. The authors suggest 
that these findings might represent a compensatory increase 

of neural stem cell proliferation in response to injury of the 
targeted hippocampus. Compensatory increases in adult 
neurogenesis have been described in several injury models, 
most notably proliferation and cell migration from the 
subventricular zone following ischemic injury, a response 
that depends on production of growth factors such as 
CNTF in response to injury (9). Greater demand on the 
intact hippocampus could also lead to activity-dependent 
changes in synaptic plasticity and neurogenesis (10). 
Another possibility alluded to by the authors is that the low 
dose received by the non-targeted hippocampus, calculated 
to be 1.5 Gy mean dose, stimulated proliferation. Formally, 
the observed changes could be due to radiation effects on 
cell survival rather than increased proliferation since BrdU 
labeling was carried out four weeks before tissue collection. 
Information about the total numbers of BrdU labeled 
cells and measures of proliferation at the time of sacrifice 
obtained using Ki67 labeling (11) would help to address this 
later issue.

In the work presented by Parihar et al. neuroinflammation 
was assessed by quantifying the number of ED-1 positive 
microglia in hippocampal subfields. They found clearly 
increased numbers of these activated microglial cells 
in hippocampi receiving 10 Gy and a modest increase 
over basal levels in the combined CA3/CA1 subfields 
of the contralateral, non-targeted hippocampus. These 
findings are consistent with the work of many others and 
demonstrate evidence of a sustained neuroinflammatory 
reaction following brain radiation injury that is localized 
within the field of radiation (12). The ED-1 antibody labels 
CD68, a component of inflammatory lysosomes that does 
not distinguish between resident microglia and infiltrating 
macrophages. Other investigators have found evidence of 
late cell infiltration in models of brain radiation injury. For 
example, Moravan et al. described increased numbers of 
MHC-II and CD11c positive cells as well at CD3 positive 
T cells in mice 30 days and later after whole brain radiation 
exposure, albeit at a slightly higher dose (15 Gy) (12). One 
caveat of the model used by Parihar et al. is that they carried 
out their experiments using athymic nude rats. Although 
these rats are clearly useful for transplantation studies (13), 
the neuroinflammatory response to radiation damage may be 
modified by the lack of T lymphocytes.

The connection between inflammation, neurogenesis 
and behavior has recently been reviewed (14) and is quite 
complex. There is ample evidence that neuroinflammation 
can reduce hippocampal neurogenesis and impact 
hippocampal cognitive function. For example, in our own 
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work, sustained hippocampal overexpression of interleukin-1 
resulting in dramatic glial activation and expression of 
multiple inflammatory mediators was associated with deficits 
in hippocampal-dependent contextual fear conditioning (15)  
and greatly reduced neurogenesis (16). Although the 
degree of neuroinflammation following radiation exposure, 
particularly with doses of 10 Gy, is much lower than seen 
with cytokine overexpression, there have been multiple 
studies demonstrating an inverse relationship between 
levels of microglial activation and neurogenesis in the 
context of radiation exposure [e.g., (11,17)]. Importantly, 
some experiments using anti-inflammatory drugs suggest 
that suppressing neuroinflammation can partially restore 
radiation-induced deficiencies in neurogenesis (18) and 
cognitive performance (19). However, there are other 
studies demonstrating amelioration of radiation-induced 
cognitive dysfunction without effects on microglial 
activation (20,21) as well as instances where drugs that 
inhibit radiation-induced microglial activation don’t 
restore neurogenesis or cognitive deficits (22). Such studies 
showing a lack of correlation between neuroinflammation, 
neurogenesis and cognitive capacity raise questions about 
their connection in radiation injury and suggest that other 
CNS radiation-related changes may contribute to cognitive 
deficits. Indeed, recent experiments from Dr. Limoli’s 
group revealed dramatic alteration of neuronal hippocampal 
dendritic architecture following 1 and 10 Gy irradiation (23), 
an effect seen by others (24) that very likely contributes to 
radiation-associated changes in cognitive function. Although 
neuroinflammation might contribute to these changes, their 
appearance following 1 Gy of radiation suggests that other 
processes might be involved.

So how do the findings of Parihar et al. contribute 
to the use of stereotaxic radiotherapy in people? First, 
they demonstrate that direct hippocampal irradiation 
elicits deficits in a hippocampal-dependent learning task, 
contextual fear conditioning. This finding supports the 
idea that sparing the hippocampus could be beneficial, but 
does not exclude the possibility that radiation effects in 
other brain regions might also impact cognitive function. 
Future application of this stereotaxic method might 
include protocols that spare the hippocampus to test the 
contribution of other brain regions to cognitive function 
following radiation injury. The finding that deficits in 
behavioral task performance after radiation were correlated 
with increased microglial activation and decreased 
neurogenesis is similar to what has been demonstrated 
in whole brain irradiation paradigms. In this case, these 

changes were limited to the irradiated hippocampus, which 
confirmed that the targeting worked, and supports the 
utility of this approach as a way to model regional brain 
radiotherapy. Most interestingly, the study by Parihar et 
al. provides evidence of a compensatory response when 
one brain area is irradiated. These findings need to be 
reproduced and extended to include other measures of 
compensation such as dendritic spine density. This evidence 
of brain plasticity in non-targeted areas provides additional 
impetus for developing treatment strategies in people that 
spare normal tissue.
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