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Diffuse intrinsic pontine gliomas (DIPGs) 
introduction

DIPGs, even though rare in adults, account for 10 percent 
of all childhood central nervous system tumors and 
comprise 75–80% of brainstem tumors in children. While 
DIPGs are usually diagnosed when children are between 
the ages of 5 and 9, they can occur at any age in childhood. 
These tumors are currently the number one cause of brain 
tumor related death in children, being the median survival 
only 9 months post-diagnosis and with a survival rate of less 
than 1% in 5 years (1). DIPGs are highly aggressive and 
difficult to treat. They diffusely involve the pons and due to 
the location, the surgical intervention is not a therapeutic 
option thus currently, palliative radiation therapy is the 
standard treatment. In the past decades, over 250 clinical 
trials have been performed using different adjuvant 
chemotherapy, but there has not been any improvement in 
patient survival when compared to radiotherapy alone and 
therefore the treatment has not changed for decades (1). It is 
urgent to improve current therapies to reduce the mortality 
rate of this tumor, and the first approach may be to sensitize 
the tumor to the radiotherapy, making it more effective. 
Biological information has been missing for a long period 
of time, since biopsies were considered too risky for the 
patient’s survival and the histopathological analysis did not 
improve the prognosis or the therapeutic approach. After 
demonstrating the safety of the stereotactic surgery and 
together with the samples from the autopsies, a sufficient 
number of samples have been collected and analyzed to 
obtain extensive genomic profiling. This has provided 

important molecular information on this tumor. Among the 
different alterations, mutations in Histone 3 (H3K27M), 
mutations in TP53 and different genomic alterations such 
as gain of AKT and loss of PTEN have been described (2-4). 
In fact, the PI3K/AKT/mTOR signaling pathway has been 
shown to be aberrantly active in 70% of DIPGs (4).

Function of mTOR signaling pathway in brain 
tumors

mTOR is a serine/threonine kinase protein that forms two 
multiprotein complexes, mTORC1 and mTORC2. They 
differ in the components and in their phosphorylation 
targets, which cause them to have different cellular 
functions. mTORC1 stimulates cell proliferation and 
growth via eIF4E binding proteins and S6 kinases, inhibits 
autophagy, regulates lipid synthesis and mitochondrial 
metabolism, as well as the translation process of proteins 
related to cell growth. mTORC2 controls metabolism, cell 
survival and cytoskeletal organization via phosphorylation 
of Akt, SGK1 and PKC (5). These two complexes are also 
differentially regulated and present different sensitivity 
to drugs. Furthermore, the mTORC1 activation inhibits 
mTORC2, a positive regulator of AKT. Since the PI3K/
AKT/mTOR signaling pathway regulates cell growth 
and metabolism it has been extensively analyzed in cancer 
studies. This pathway is active in different types of cancer, 
including brain tumors, and it affects the viability and 
proliferation of several cancer cell lines. Therefore, this 
pathway has been postulated as a target for alternative 
treatments (6). In recent years the inhibition of mTOR has 
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been a priority of the research community and numerous 
inhibitors have been developed, being the best-known 
rapamycin. Several clinical trials have been performed 
using rapamycin or an analog (rapalogs) in which they have 
shown antitumor activity and mild toxicity in patients (6). 
In addition to an antiproliferative effect, these inhibitors are 
capable of sensitizing the tumor against standard treatment 
in brain tumors (7,8). A major limitation of rapamycin and 
the rapalogs is that they inhibit preferentially mTORC1. 
Rapamycin is an allosteric inhibitor of mTORC1 while 
mTORC2 is not susceptible to rapamycin. Since mTORC1 
is a negative regulator of mTORC2, this may lead to the 
upregulation of mTORC2 and AKT, due to a regulatory 
feedback, mitigating the effect of the drug. This regulatory 
feedback might be the reason why promising results are 
lacking when transferring rapamycin and the rapalogs into 
the clinical practice, particularly in DIPGs (9).

mTORC1 and mTORC2 hyperactivation in DIPG 
and novel therapeutic strategy using mTOR 
TAK228 Inhibitor

Considering the above it is clear that an efficient approach 
to inhibit the mTOR pathway in DIPG is lacking and a 
recent study conducted by Miyahara and collaborators 
tried to address this issue (10). One highlight of the study, 
published in Cancer Letters, was the use of a dual mTORC 
kinase inhibitor with the same ability to inhibit both 
mTORC1 and mTORC2 (TAK228) in DIPG cells. With 
the purpose of evaluating the effectiveness of TAK228 in 
this type of tumor, they used three primary DIPG cells. 
They first analyzed the activity of the mTOR pathway 
and observed a downregulation in the phosphorylation of 
both S6 at Ser240/244 (substrate of mTORC1) and AKT 

at Ser473 (substrate of mTORC2) (10). The inhibition, by 
TAK228, of the mTOR pathway results in a reduction of 
cell growth due to a halt in proliferation and an increase in 
apoptosis. According to that, several studies have shown how 
a combination therapy can be the most effective therapeutic 
option in cancer (8). Indeed, in this study, Miyahara et al. 
have shown a cooperative antiproliferative sensitization by 
TAK228 to radiation therapy. They find a synergistic effect 
of TAK228 and radiation both in diminishing proliferation 
and increasing apoptosis (Figure 1) (10).

All these results prompted Miyahara and collaborators 
to investigate the mechanism by which TAK228 was 
sensitizing the tumor cells to the radiation therapy. They 
analyzed the expression pattern of two pro-survival factors, 
BCL-2 and BCL-XL, finding a synergistic decrease of their 
expression when combining both radiation therapy and 
TAK228 treatment, in 2 out 3 cell lines. To further analyze 
the effect of blocking both mTORC1 and mTORC2 in 
DIPG cells, the authors investigated the invasion rate of 
the cells with the TAK228 treatment. They observed a 
reduction of around 80% as early as 24 hours after the 
treatment (10). Finally, they assessed the effect of using 
TAK228 in a murine DIPG cell line. After demonstrating 
the inhibition of the pathway, they observed a decrease in 
migration and an increase in apoptosis, similar to the results 
obtained in human DIPG cells. This encouraged them to 
analyze the effect of treating mice in vivo with TAK228. With 
this purpose, they injected the murine DIPG cells into the 
pons of NOD-SCID immunodeficient mice and treated half 
of the group with TAK228. The results showed a statistically 
significant increase in the survival of TAK228-treated mice 
when compared to the survival of control mice (10).

In summary, the present study highlights the need for 
effective combination therapies to improve the survival rate 

Figure 1 The work of Miyahara et al. (10) shows that mTORC inhibitor TAK228 decreases the activity of mTORC1 and mTORC2 
pathways, promoting a reduction of cell growth, suppression of invasion and inhibition of tumor formation in DIPG cells. Moreover, 
TAK228 enhanced radiotoxicity inducing apoptosis. DIPG, diffuse intrinsic pontine glioma.
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of patients with DIPG. Miyahara and collaborators propose 
TAK228, a dual mTOR kinase inhibitor as a promising 
therapeutic contender. The inhibition of the PI3K/AKT/
mTOR signaling pathway after treatment with TAK228 
repressed cell growth, proliferation and invasion while 
increasing apoptosis in DIPG cells, and extended the life of 
tumor-bearing mice. The authors have provided evidence 
that could be sufficient to design a phase I clinical trial in 
children with DIPG based on their preclinical data.
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