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Introduction

According to the current concept, a typical tumor contains 
“driver gene” mutations that establish a growth advantage 
to the tumor cell (1). It was proposed that one of the first 
mutations must have either a mutation that introduces 
a selective growth advantage to a normal cell (1) or one 
of the first mutations results in genomic instability, thus, 
increasing the chance for the accumulation of further 
mutations (2). Recent data indicate that metabolic 
reprogramming by (somatic) mutations of key metabolic 
genes promotes cancer growth (3). In this context metabolic 
adaptations upon aging need to be considered as hallmark 
of cancer (4). Since the landmark discovery of cancer-
specific enhancement of glycolysis with concurrent small 
respiration (5), abnormalities in mitochondrial functions 
as a key phenomenon of the metabolic peculiarities of 
cancer cells has been postulated. Otto Warburg assumed 
that the accumulation of lactate in cancer tissue is the 
result of enhanced anaerobic glycolysis and dysfunctional 
mitochondrial respiration. This assumption was lately 
challenged by still controversial findings of a reduced 
conversion of phosphoenolpyruvate to pyruvate by the less 
active, cancer-specific isoform pyruvate kinase 2 (PKM2) (6), 
which might limit the production of ATP from glycolysis, 
but boosts the accumulation of intermediate products like 
nucleic acids and phospholipids for cancer cell growth (7).  
Nevertheless, Otto Warburg was prophetic in his view on 
the role of metabolism for cancer. Recent work highlights 
alterations of mitochondria-associated genes to play 
an essentially role in the metabolic reprogramming in 
cancer cells that play a supportive, if not causative role 

in tumorigenesis (8). The latter hypothesis was stressed 
by a recent work where mitochondria/cytosolic transfer 
from a cancer cell into a somatic cell turned the latter one 
to a cancer cell as well (9). While the interpretation of 
this work is complex, mitochondrial metabolic and signal 
functions that undergo a cancer-specific transformation (4)  
involving mitochondria-endoplasmic reticulum (ER) 
settings (10,11) are known to be essential to meet the 
enhanced energy demand of a cancer cell. The study 
“MICU1 drives glycolysis and chemoresistance in ovarian 
cancer” by Chakraborty et al. recently published in Nature 
Communications (12) describes important new findings 
supporting the current hypothesis on mechanistic/
functional mitochondrial adaptations to be crucial for 
cancer cell development. Importantly this work points to a 
crucial role of mitochondrial calcium uptake 1 (MICU1), 
the gatekeeper of mitochondrial Ca2+ uniport (MCU) (13),  
for glycolysis and chemoresistance in ovarian cancer. 
Notably, this work considerably fuels current hypothesis on 
the importance of mitochondrial Ca2+ uptake for cancer cell 
survival and growth (10,11,14) and points to adaptations 
in mitochondrial Ca2+ as a hallmark in the adjustment of 
mitochondrial activity in cancer cells.

All about mitochondrial calcium?

Chakraborty and coworkers also described an obvious role 
of MICU1 in the regulation of pyruvate dehydrogenase 
(PDH) by affecting the phosphoPDH: PHD ratio. They 
further describe a strong impact of MICU1 depletion on 
the anti-tumor effects of cisplatin. Notably, these particular 
findings were acquired under conditions of MICU1 
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silencing, conditions where mitochondrial Ca2+ uptake is 
strongly enhanced (12), due to the protein’s gatekeeper 
function in most cells (15). Hence, because the activity of 
the mitochondrial oxidative phosphorylation (OXPHOS) 
crucially depends on Ca2+-dependent dehydrogenases in the 
citrate cycle in the mitochondrial matrix, Ca2+ acts a main 
regulator for mitochondrial ATP synthesis (16), thus, a 
regulatory role of mitochondrial Ca2+ appears likely even in 
case of PDH activity (17). Such central role of mitochondrial 
Ca2+ in the regulation of mitochondrial processes and 
function appears a consequence of the tight physical and 
functional coupling of ER-released Ca2+ and mitochondrial 
Ca2+ sequestration. Recently, an optimized physical coupling 
between the ER and mitochondria was described in cancer 
cells (10,11). Notably, while the constitutive Ca2+ flux from 
the ER to mitochondria was demonstrated to be essential 
to maintain viability of cancer cells with high proliferation 

activity (10), mitochondrial Ca2+ overload (Figure 1) due 
to e.g., uncontrolled mitochondrial Ca2+ uptake, like 
under conditions of MICU1 depletion, yields activation 
of apoptotic pathways and, ultimately, cell death (11).  
The importance of the ER-mitochondrial Ca2+ transfer 
in cancer cells was further highlighted by the finding that 
certain oncogenes manipulate contact sites between these 
two organelles thereby affecting mitochondria-associated-
ER membranes (MAMs) (18). In contrast the cancer testis 
antigen, FATE1 antagonizes cancer apoptosis by physically 
uncoupling the ER from mitochondria (19).

Accordingly, there is a large body of evidence that 
mitochondrial Ca2+ is of utmost importance for (cancer) 
cells homeostasis, functions, growth, migration, and, 
ultimately, survival. The contribution of Chakraborty et al. 
convincingly demonstrates that besides cancer cell survival, 
their glycolytic activity and chemoresistance are also 
critically associated with mitochondrial Ca2+ uptake (12).

Mitochondrial Ca2+ uptake in cancer: the balance 
between energy and death

Chakraborty et al. described a poor prognosis of cancer 
patient suffering from ovarian cancer with elevated 
expression of MICU1 (12). These data point to a protective 
effect of elevated MICU1 on cancer cell survival by 
preventing mitochondrial Ca2+ overload and, subsequently 
the initiation of the machinery for apoptotic cell death 
(Figure 1). These data further indicate that cancer cells 
benefit from reduced mitochondrial Ca2+ uptake, thus, 
illustrating the obvious risk of tumor cells for mitochondrial 
Ca2+ overload. Recently, cancer cells were found to exhibit 
a stronger tethering between mitochondria and ER in 
comparison to non-cancerous cells (11). While this enforced 
intra-organelle communication fosters e.g., mitochondrial 
ATP supply for the ER’s protein folding machinery and, 
thus, meets the high energy demand of cancer cells, such 
settings makes them more vulnerable for mitochondrial 
Ca2+ overload.

Notably, cancer cells developed multiple unique 
strategies to protect themselves against lethal mitochondrial 
Ca2+ overload: 

(I)	 Via the protein arginine methyl transferase 1 
(PRMT1) MICU1 gets methylated yielding a strong 
sensitivity loss of the mitochondrial Ca2+ uptake 
machinery. In cancer cells methylated MICU1 
protects from mitochondrial Ca2+ overload (14).

(II)	 Tumor cell physiology and plasticity is regulated 

Figure 1 ATP and ROS production is under the control of 
mitochondrial Ca2+ uptake. MICU1 prevents mitochondrial Ca2+ 
loading under resting conditions (left blue panels). Physiological 
Ca2+ s ignals activate MCU via Ca2+ binding to MICU1, 
which allows controlled mitochondrial Ca2+ sequestration and 
consequently stimulates mitochondrial ATP production (middle 
green panels). Diminished MICU1 expression levels can lead to an 
uncontrolled mitochondrial Ca2+ overload, which has the potency 
to trigger enhanced ROS production and cell death pathways (right 
red panels). MICU1, mitochondrial calcium uptake 1; MCU; 
mitochondrial Ca2+ uniport.
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by cancer-specific mitochondrial dynamics (20). 
(III)	 Most cancer cells develop a unique redox handling 

by enhancing NADPH-dependent scavenging 
enzymes (21). 

(IV)	 Cancer cells can actively untether their mitochondria 
from the ER (22). 

(V)	 Cancer cel ls  modulate ER Ca2+ release by 
regulating inositol-1,4,5 trisphosphate receptors 
(IP3R), the constitutive receptors for ER Ca2+ 
release (23).

(VI)	 The permeability of the outer mitochondrial 
membrane (VDAC) is regulated (24). 

(VII)	Cancer cell suppress mitochondrial K+-channels 
and its normalization promotes apoptosis and 
hampers cancer growth (25).

This incomplete list illustrates the flexibility of cancer 
cells to address the issue of keeping the balance between 
enough mitochondrial Ca2+ uptake to meet the cell’s ATP 
demand while to avoid mitochondrial Ca2+ overload in order 
to stay clear from the initiation of apoptotic processes that 
ultimately would cause cancer cell death.

Mitochondrial Ca2+ uptake as therapeutic target

Many authors including Chakraborty et al. (12,26) have 
indicated the potential of targeting mitochondrial Ca2+ 
uptake to fight against cancer growth. In this regard, 
three approaches appear most promising to be effective to 
introduce mitochondrial Ca2+ overload leading to apoptotic 
cancer cell death:

(I)	 Directly affecting constituents of the MCU 
complex yielding uncontrolled Ca2+ uptake;

(II)	 Manipulating the vicinity between the mitochondria 
and the ER resulting in an harmful enhancement of 
mitochondrial Ca2+ sequestration;

(III)	 Disturbing the main Ca2+ regulators of the ER (i.e., 
SERCA and IP3R) to trigger exhaustive ER Ca2+ 
depletion and subsequently mitochondrial Ca2+ 
overload.

Conclusions

While controlled mitochondrial Ca2+ uptake promotes 
cancer cell growth, the adequate transfer of Ca2+ into 
mitochondria is also of utmost importance for the proper 
functioning of somatic cells and tissues. Therefore, future 
work essentially needs to be aimed on the identification of 
cancer specificities in mitochondrial Ca2+ handling that can 

be therapeutically targeted to selectively fight cancer cells 
without affecting non-cancerous cells.
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