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As reviewed in the Editorial “Targeting glioblastoma stem-
cells: a recurrent challenge in neuro-oncology” (1), we recently 
developed a 3D mathematical model of glioblastoma 
multiforme (GBM) progression and response to therapy (2).  
The development of the model necessarily required 
assumptions to be made about which key biological 
processes to incorporate and which to exclude. We aimed 
to develop a model that extensively defined the main 
features of GBM, which, as described in the Editorial, 
include invasiveness, intense proliferation, necrosis and 
neovascularization, as well as the crosstalk among GBM 
cells and cells in the microenvironment, and to use this 
model to test the effectiveness of different anti-GBM 
treatment strategies available in the clinical practice.

In our mathematical model, we assumed that GBM had 
a hierarchical structure containing glioblastoma stem cells 
(GSCs), more rapidly dividing glioblastoma committed 
progenitor cells (GCPs) and post-mitotic glioblastoma 
terminally differentiated cells (GTDs). This mimics the 
underlying structure of the normal brain and a recent clonal 
analysis of human GBM supports this assumption (3). We 
also accounted for nonlinear interactions between the 
GBM cellular populations and a tumor-induced neovascular 
network, which provides GBM cells with nutrients and 
oxygen as well as a perivascular niche for GSCs (4,5). 

We were intrigued by the possibility that GSCs 
could transdifferentiate into vascular endothelial cells 
(GECs), as suggested by mouse xenograft models (6,7), 
thereby potentially providing an additional mechanism 

of neovascular development and of resistance to anti-
angiogenic therapy because it is thought that GECs 
are not VEGF-dependent (7). Further, GECs may also 
contribute to GBM resistance to anti-mitotic therapies 
such as radiation and chemotherapy (8) and GECs aid 
in maintaining GSCs, which are highly resistant to the 
currently used treatments. We thus incorporated a branch 
in the GBM lineage in our mathematical model to account 
for transdifferentiation of GSCs to GECs and tracked the 
spatiotemporal dynamics of all the cell types. We then 
tested the response of our simulated tumors to available 
monotherapies and combinatorial therapies. We found that 
monotherapies are ultimately limited in their effectiveness 
and that combinations of anti-mitotic, pro-differentiation 
(anti-GSC), and anti-angiogenesis and anti-GEC drugs 
already approved by the FDA could be used to target the 
major GBM and microenvironmental cell types, and could 
potentially lead to tumor eradication.

As the Editorial states, and as is discussed in our 
article, the presence of GECs in human tumors remains 
controversial as some studies have claimed that GEC are a 
rare population of cells in glioma in humans (9,10) making 
it questionable as to whether these GECs play a role in 
human GBMs. However, others claim that GECs may be 
found in clinical specimens (11) and it is our understanding 
that this is still an area of active research. For example, since 
the publication of our article, a new study revealed that 30 
out of 64 clinical GBM patient samples showed evidence 
of GECs and in 21 of those 30 samples GECs were found 
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to form vessels that constituted approximately 14–18% of 
the total number of vessels (12). The role of GEC vessels in 
resistance to anti-angiogenic treatment remains unknown.

Because the GSCs are relatively resistant to anti-
mitotic therapies, but drive invasiveness of GBM, and 
may contribute to neovascular development, anti-GSC 
treatments should be tried. In our paper, we used pro-
differentiation agents such as retinoic acid (RA) derivatives 
as an anti-GSC treatment. Such treatments have actually 
been tested in humans and clinical trials suggest that the 
best efficacy comes when RA derivatives are used in patients 
with recurrent GBM either as monotherapy using 13-cis-
retinoic acid naphthalene triazole (13) or using 13-cis-
retinoic acid in combination with temozolomide (14). More 
research in this direction is clearly merited.

The Editorial also discusses evidence for reprogramming 
of differentiated GBM cells to a tumor-propagating GSC-
like state in in vitro models (15), and that this rate may be 
increased when GBM cells are subject to therapy (16). This 
could obviously confound our results. As mentioned in our 
article, we did explore therapy-induced reprogramming 
of GCP and GTDs although we did not explicitly present 
the results. The efficacy of the combination treatment we 
proposed depends on the dedifferentiation rates for which 
there is little experimental data, especially in vivo where 
the extent of reprogramming still needs to be investigated. 
When the reprogramming rates are sufficiently small, 
the combinatorial treatments we proposed are effective 
but when the rates are large, the therapies may fail due 
to a large influx of GSCs, and in this case additional anti-
reprogramming treatments (17) may be needed. 

As stated in the Editorial, GBM (and microenvironmental) 
cells may acquire drug resistance and this may also confound 
our results. We acknowledge that we did not model specific 
cell-level genetic mutations that could give rise to resistant 
cell types. Instead, we modeled the cells as having different 
response rates to therapies. For example, the GSCs are the 
most resistant to anti-mitotic therapies. Thus, over time, 
anti-mitotic therapies will increase the fraction of GSCs in 
the GBM and will naturally lead to a decreased response 
of the tumor over time to anti-mitotic treatment. We did 
not model a variable response of cells to the other types of 
therapy we considered—anti-GSC, anti-angiogenic and 
anti-GEC—but our simulations show that the latter two 
treatments could enhance tumor invasiveness that ultimately 
makes the GBM refractory to these treatments. It would be 
interesting to decrease the response rates of the cells over 
time to the various therapies to mimic the development of 

drug resistance.
In summary, while the mathematical model we presented 

in (2) does not reproduce all the complexity of GBMs, 
we agree with the Editorial that the model does provide 
an elegant tool to test the nonlinear interactions between 
GBM cells, microenvironmental cells and their response to 
treatment in ways that are difficult to access experimentally. 
As new data becomes available the assumptions of the 
model can be updated to incorporate the new knowledge. 
Ultimately, the utility of the model is to develop hypotheses 
that can be experimentally tested, leading to new biological 
insight and more effective therapeutic strategies to be 
validated in future clinical trials.
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