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At reproductive age, about 13% of the general population 
suffer from fertility disturbances, with at least a third of them 
attributable to male factors (1). Recent meta-analysis of male 
fertility indicated a decline accumulative of over 1% per year 
in semen quality (2), most likely due to environmental factors, 
such as, exposure to endocrine disrupting compounds (3).  
In addition to this alarming trend in human fertility caused 
by environmental conditions, multiple cases of male 
infertility with phenotypes of spermatozoa alterations 
in otherwise azoospermic men, are from genetic origin, 
including deletions and mutations, mainly with loci in 
the Y chromosome (4). Spermatogenesis is of a polygenic 
nature and the morphogenetic processes to generate 
functional spermatozoa require complex regulations. During 
spermatogenic differentiation, the proper development of the 
gonads during early embryogenesis is necessary to produce 
healthy spermatozoa during adulthood. Abnormal regulation 
of embryogenesis by genetic factors such as single nucleotide 
polymorphisms or mutation can induce male infertility by 
causing spermatozoa deformities and germ cell tumors (5).

Disruption of spermatogenesis is detected in some familial 
clustering causing infertility or subfertility that strongly 
suggested genetic contribution and mutation transmission 
as the cause of such male fertility dysfunction (6,7).  
However, few single gene mutations have been identified 
in humans causing male infertility, mostly associated 
with asthenozoospermia (8). Although, some knock-out 
mammalian animal models of male infertility have been 
generated in attempt to mimic some familial multiple 
anomalies that produced developmentally impaired  
sperm (9), most of these cases are limited to single 

mutations detected in men. However, mutant mice do not 
fully display comparable phenotypes. Given this limitation 
in male mice, it makes it difficult to study the thousands of 
genes that are estimated to be involved in spermatogenesis 
and functional spermatozoa differentiation. 

Both reverse and forward genetic approaches have been 
established in the mouse patterns of sperm differentiation (10). 
However, to establish gene mutations in humans associated 
with male infertility, population analysis in affected families 
should continue to be performed. Recent molecular and 
bioinformatics tools used for genetic analysis will allow for a 
wider and efficient search of mutations associated with specific 
phenotypes causing fertility disturbances due to spermatozoa 
anomalies. Generation of knockout (KO) mice by point 
mutation utilizing CRISPR/Cas9 system as a genome editing 
tool to target mutations that are related to male infertility, has 
allowed for further understanding the effects of such mutations 
and understanding the involved molecular pathways (11). 

Technological advances in DNA sequencing are 
accelerating exponentially our knowledge of human 
genetics and genomics. Next-generation sequencing (NGS) 
technology, also known as high-throughput sequencing, 
allows for sequencing DNA much more quickly, is more 
cost effect and with higher-accuracy. An example of NGS is 
RNA-seq, a substitute for DNA microarray, which can now 
present a more accurate quantification of gene expression 
and mRNA isoform levels (12). Another advantage of NGS 
technology is the versatility offered by the platforms and 
sequencing protocols. Using these tools has enhanced the 
capacity to sequencing all gene coding regions present in 
the human genome, obtaining the whole exon regions of all 
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protein coding genes, and extending the targets to functional 
non-coding elements such as 3’UTR or miRNA (13).  
Identify genetic variants that alter protein sequences is 
the goal of whole-exome sequencing (WES). WES is 
extensively used in the identification of novel mutations 
for known disease phenotypes. WES has some advantages 
compared to whole genome sequencing (WGS). One 
advantage is that the coding region in the human genome 
does not exceed 2% of all its base length, therefore bases 
to be sequenced in a WES is much lower than sequencing 
necessary for WGS. This allows a reduction in sequencing 
costs per sample and decreases the processing time. 
In addition, the amount of data generated by WES is 
smaller than by WGS, so handling analysis and storage 
requires less computational resources and bioinformatics 
infrastructure.

Recently Li et al. identified a homozygous mutation in an 
infertile male by WES in a consanguineous family (14). The 
mutation was found in the bromodomain testis associated 
gene (BRDT), which has genetic origin as demonstrated 
by the familial study. The phenotypic consequence of the 
missense mutation was associated to a very rare cause of 
male infertility, acephalic or “decapitated” spermatozoa. 
Using a RNA-seq in an experimental approach on male 
teratocarcinoma cell line comparing wild type expression 
and transfected cells with the specific mutation, the authors 
showed that about 900 genes were detected as differentially 
expressed. Gene Ontology (GO) analysis of the deregulated 
genes detected multiple biological processes that could be 
involved in the pathology of acephalic spermatozoa detected 
in the homozygous patient. However, due to the wide 
number and the generic biological functions of deregulated 
genes it is not possible to pinpoint the precise weight 
of each deregulated gene that is a direct consequence of 
a mutation in BRDT with the consequence of this rare 
sperm pathology. BRDT is a gene widely studied, the 
protein contains two bromodomain motifs and a cluster 
of proline, glutamic acid, serine, and threonine residues, 
characteristic of proteins that undergo rapid intracellular 
degradation (Ensembl: ENSG00000137948). KO mice 
bearing a loss of the BRDT gene showed severe alteration 
of spermatogenesis, even at the level of meiotic arrest (15). 
In the detected mutation in the patient, Li et al. suggested 
a gain-of-function, which is putatively in conflict with the 
expected high turnover of this protein. Other SNPs that 
theoretically did not affect the activity of the protein are 
reported in azoospermic men (16). Taken together these 
data indicate that a precise equilibrium in the level of BRDT 

is necessary for correct spermatogenesis, including during 
the last stages of spermiogenesis. In the detected mutation 
the acephalic spermatozoa were detected as a single 
sperm tail, which suggested that the last spermiogenesis 
stages, including the initial formation of the axonema 
and formation of sperm tail took place. This indicated 
that trimming of the head could generate the acephalic 
spermatozoa. In addition to the acephalic spermatozoa, 
there was also a loss of mitochondria that was observed. 
However, the origin of the loss of the mitochondria is 
unknown. The authors indicated the potential role of the 
glycine 928 of the P-TEFb binding domain of the BRDT 
protein. However, in the absence of histological testis data 
a more accurate dissection of the role of this specific amino 
acid was not possible. New experimental approaches should 
be designed to assess the role of BRDT. In this respect, 
for example specific mutations in mouse models can be 
generated by genome editing using the CRISPR/Cas9 
system. Such models would lead to further understanding 
whether the mutation detected in the Li et al. study is 
associated with alterations in the interaction between Golgi 
complex and centrioles during spermatogenesis, as the 
authors propose. However, another potential explanation 
raises in and abnormal centrosome function that is 
clearly related to different types of teratozoospermia (17). 
Curiously, the expression of BRDT was also detected as a 
potential marker in a relative high proportion of non-small 
cell lung cancer cases (18). Consequently, the generation of 
such mouse models of specific BRDT mutations may also 
deepen additional pathologies including lung cancer. 
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