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Introduction

Prostate cancer (PCa) is one of the most common cancers 
in men and is the second most common cause of cancer 
related death in men in the Western World (1). Although 
the technology of diagnosing PCa has been improved in 
the past decades and prostate-specific antigen (PSA) level is 
closely related to the high incidence of prostate tumors, the 
management and treatment of this disease is not completely 
successful. In the practice, some patients with higher PSA 

have indolent PCa whereas death and metastasis occur in 
some patients with lower PSA. Recently, a newly-published 
study suggested alkaline phosphatase (ALP) and Ra-
223, rather than PSA, may be good markers for assessing 
treatment response and are taken into consideration as part 
of a multimodal approach for carefully selected patients 
with advanced PCa (2).

To our knowledge, PCa shows a substantial clinical 
heterogeneity. However, the existing risk classification for 
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PCa prognosis based on clinical factors is not sufficient (3). 
Currently, the increasing evidences suggest that classifying 
PCa patients into distinct molecular subtypes is critical 
in exploring the potential molecular variation underlying 
the biological heterogeneity. For example, Johnson et al. 
found that SPINK1 over expression is associated with 
PCa specific mortality in at risk men with biochemical 
and clinical recurrence after prostatectomy (4). You et al.  
developed a novel classification system consisting of 
three distinct subtypes (named PCS1-3) using pathway 
activation signatures of known relevance to PCa (5). Erho 
et al. reported that the early metastasis prediction model 
based on genomic expression in the primary tumor may be 
useful for the identification of aggressive PCa (6). Joniau 
et al. presented an intuitive stratification of high-risk PCa 
into three prognostic subgroups, and this stratification can 
help make decisions in the treatment for PCa patients (7).  
Li et al. provided the review to describe the typical 
clinicopathological features of the rare variants of PCa from 
pathology (8). These evidences support the risk stratification 
of PCa, which can help improve the understanding of 
disease and guide the treatment and prognosis of PCa 
patients more accurately.

In recent years, the rapid development of next-generation 
sequencing technology generated the multiple types of high-
throughput data, which include gene expression data, copy 
number variation (CNV) data, somatic mutation data, DNA 
methylation data, microRNA expression data and so on. 
Integration and analysis of these data can help to discover 
biological heterogeneities affecting clinical outcomes in 
PCa (9). For example, Ross-Adams et al. provided risk 
stratification in PCa patients by integrating copy number 
and transcriptomics data, and they demonstrated the 
importance in identifying molecular alterations leading to 
the generation of robust gene sets that are predictive of 
clinical outcome in PCa patients (10). Yang et al. performed 
molecular classification of PCa by integrating somatic 
mutation profiles and molecular network (9).

More recently, as a systematic cancer genomic project, 
The Cancer Genome Atlas (TCGA) (11) generated a 
large number of sample-matched multi-omics data, and 
integration of different levels of data with the biology 
network context can help identify disease-related markers 
more effectively. Here, we performed the risk stratification 
of PCa and compared different subtypes from multiple 
molecular levels such as gene expression, DNA methylation 
and CNV via integration of omics data and biology 
network. Firstly, the omics data of PCa were downloaded 

from TCGA database. After applying Cox regression model, 
620 risk genes were extracted and the corresponding RNA-
seq expression profile of these genes were selected as the 
input matrix of consensus non-negative matrix factorization 
(CNMF) method (12) for classifying patients into two 
distinct molecular subtypes. Secondly, by combining with 
survival analysis and differential expression analysis based 
on two distinct molecular subtypes into protein-protein 
interaction (PPI) network, a PCa subtype-related network 
module was identified. This network module can serve as 
biomarkers such as SRC to predict PCa risk. Finally, the 
DNA methylation profiles and CNV data of genes involved 
in the module were analyzed. The results showed that 
PCa patients can be performed risk stratification, and this 
risk stratification can be used to promote more accurate 
diagnosis and more effective prognostic for PCa patients.

To our knowledge, this analysis integrates most types 
of molecular data which include RNA-seq expression data, 
survival data, DNA methylation data and CNV data in the 
PCa-related study. In addition, combining with survival 
analysis, differential expression analysis and network analysis 
is also the novel frame to provide an effective strategy 
for the integration of TCGA and can help highlight the 
prevention and treatment stratification for PCa patients. 
Some identified PCa subtype-related risk genes, such as 
SRC, ARR3 and RCOR2, can be used for subsequent 
validation based on molecular biological experiments.

Methods

Dataset

The PCa RNA-seq data was downloaded from TCGA 
data portal (https://tcga-data.nci.nih.gov/tcga/). For gene 
expression data, reads were aligned to hg19 with Tophat2, 
and FPKM (fragments per kilobase of transcript per million 
fragments mapped) values were generated and normalized (13).  
A total of 568 samples and 20,530 genes were included 
in the dataset. The CNV data and the clinical variables 
including over survival (OS) time, OS status, age, PSA and 
Gleason score were also obtained from the TCGA data 
portal and manually curated. After removed those samples 
with missing OS time or OS status, 519 samples were 
selected for further analysis.

Risk genes extraction based on Cox regression

To extract risk genes associated with PCa survival, the Cox 
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proportional hazards regression was used to assess genes 
association with overall survival using R software (http://
www.r-project.org). P values obtained from univariate Cox 
regression models were used to identify risk genes. Here, 
those genes with P<0.05 were considered as statistically 
significant.

Cluster analysis to obtain PCa subtypes

To acquire the potential risk stratification for PCa, we 
performed cluster analysis to RNA-seq expression profile 
of those identified risk genes obtained from Cox regression 
models. All of PCa patients were clustered into two 
subtypes based on CNMF method. Non-negative matrix 
factorization (NMF) is an unsupervised, parts-based 
learning algorithm that has been applied on the analysis 
of data matrices whose elements are non-negative. In the 
practice, NMF is an efficient method for identification 
of distinct molecular patterns and provides a powerful 
method for classification discovery (14). Here, we used 
CancerSubtypes (15) package of R software (http://www.
bioconductor.org) to implement this analysis.

Identification of PCa subtype-related network module

The aggregated P values
For two identified PCa subtypes, we applied limma package 
of R software to conduct the differential expression 
analysis, and the corresponding P values of those risk 
genes were retained. Consider the input data type is 
RNA-seq expression profile, thus the option is RNAseq 
when implement the differential expression analysis. 
Then, for each risk gene, two P values for evaluating 
differently expressed and survival relevance respectively 
were aggregated into one P value using order statistics. 
Next, the aggregated P values were used to fit the beta-
uniform mixture (BUM) model (16) to the distribution. 
In this process, an optimal mixture parameter and a shape 
parameter of the BUM model were obtained.

Identification of PCa subtype-related network module
For the network data, we used a data set of literaturE-
curated human PPI obtained from Human Protein 
Reference Database (HPRD) (17). Altogether the entire 
network used here comprises 9,386 nodes and 36,504 edges. 
We mapped the risk genes into the entire network, and the 
corresponding sub-network was extracted. In the extracted 
sub-network, self-loops were removed from the network. 

Then, the risk genes involved in the sub-network are scored 
using the fitted BUM model and a false discovery rate (FDR) 
cutoff of 0.01 is selected. Finally, the Heinz algorithm (18)  
was used to calculate the maximum-scoring network 
module. This process was implemented using BioNet 
package of R software (19).

Compare two PCa subtypes from genes involved in the 
identified network module based on multiple levels of 
molecular expressions

Sample matching of two PCa subtypes
In order to alleviate confounding effects during the process 
of comparing two PCa subtypes from multiple molecular 
levels of genes involved in the identified network module, 
we need to select the matched samples that are most similar 
in clinical variables to ensure the comparisons effectively. 
We thus performed the matching based on the propensity 
score (PS) method (20) according to the ratio of 1:1 sub-
samples from two PCa subtypes. The matched clinical 
variables include age, Gleason score and PSA. Finally, the 
matched samples of two PCa subtypes were selected for 
further analysis.

The cutoffs contributing to the survival of genes 
involved in the identified network module
For those genes involved in the identified network module, 
we used Maximally Selected Log-Rank Statistic (21) to find 
their cutoffs contributing to the survival. We applied the 
maxstat package of R software to implement this analysis.

Compare two PCa subtypes from genes involved in the 
identified network module based on DNA methylation and 
CNV data

For those genes involved in the identified network module, 
we used the MethHC database (http://MethHC.mbc.nctu.
edu.tw) (22) to obtain their DNA methylation levels of PCa 
patients in promoter regions. MethHC currently consists of 
6,548 DNA methylation data generated using the Illumina 
HumanMethylation450K BeadChip, which includes more 
than 480,000 CpG sites and 12,567 mRNA/microRNA 
expression data calculated by RNAseq/microRNA-seq. 
For those genes involved in the network module, we also 
extracted the CNV matrix downloaded from TCGA. We 
analyzed DNA methylation status (high methylation vs. low 
methylation) and copy number alterations (CNAs) (gain 
vs. loss) of these genes in two different subtypes. Specially, 
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we used caOmicsV package of R software (23) to visualize 
the identified network module based on multiple molecular 
expression levels.

The flowchart of our work was shown in Figure 1.

Results

Risk genes extraction based on Cox regression model

In order to extract risk genes associated with PCa survival, 
we performed the Univariate Cox proportional hazards 
regression to assess genes association with overall survival. 

The result showed that 620 genes were statistically 
significantly correlated with overall survival at the P values 
of less than 0.05 (online: http://tcr.amegroups.com/public/
system/tcr/supp-tcr.2018.06.01-1.pdf). Among the top five 
genes displaying most significant association with survival, 
SNORA55 is reported as a novel biomarker and therapeutic 
target which is significantly associated with growth factor 
signaling and pro-inflammatory cytokine expression in PCa 
cell proliferation and metastatic potential (24). In addition, 
we found that H2AFZ is reported up-regulated at transcript 
level in primary PCa and high-grade prostatic intraepithelial 
neoplasia compared to normal prostatic tissues (25). These 

Figure 1 The flowchart of our work. Firstly, Cox regression model was used to extract risk genes based on the survival data and RNA-seq 
gene expression data. Secondly, CNMF cluster algorithm was applied to RNA-seq expression data of risk genes, and then PCa patients were 
divided into two subtypes. Thirdly, a differential expression analysis was performed for two subtypes, and the corresponding P values for 
risk genes were reserved. Fourthly, two P values for evaluating differently expressed and survival relevance respectively were aggregated into 
one P value, and a Bum model was used to fit for the P values distribution. Those genes involved in the sub-network of PPI were scored 
using the fitted Bum model and a FDR cutoff of 0.01 was selected. Then, a PCa subtype-related network module which is maximum-scoring 
network module was extracted based on the Heinz algorithm. Finally, the DNA methylation and CNV data of genes involved in the module 
were compared and visualized between two PCa subtypes. CNMF, consensus non-negative matrix factorization; PPI, protein-protein 
interaction; PCa, prostate cancer.
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survival related risk genes were retained for further analysis.

Cluster analysis to identify potential PCa subtypes

To acquire the potential risk stratification for PCa patients, 
we performed cluster analysis to RNA-seq expression 
profile of 620 risk genes based on CNMF method which 

can distinct molecular patterns effectively. As a powerful 
classification, PCa patients were divided into two subtypes 
(clusters). Because 7 death patients were all included in the 
second subtype, therefore the second subtype is defined as 
high risk subtype which includes 302 samples. Naturally, the 
first subtype is defined as low risk subtype which includes 
217 samples (Figure 2A). A higher silhouette score indicates 

Figure 2 The risk stratification for PCa patients. (A) The heatmap of low risk subtype and high risk subtype based on RNA-seq expression 
profile of 620 risk genes; (B) silhouette plot of low risk subtype and high risk subtype; (C) the comparison of significances between low risk 
subtype and high risk subtype; (D) the comparison of survival curves between low risk subtype and high risk subtype; (E) the comparison of 
Gleason scores between low risk subtype and high risk subtype. PCa, prostate cancer.
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the greater similarity within the samples involved in the 
same cluster (26), therefore the silhouette scores of 0.99 for 
low risk subtype and 0.98 for high risk subtype indicate the 
consistency within clusters of data (See Figure 2B). Figure 2C  
exhibited the paired comparison between two subtypes, 
and the results showed that there was significant difference 
detected between two subtypes (P<0.001). These results 
support the effectiveness of our risk stratification for PCa 
patients.

We also compared the survival curves between two 
subtypes using the two-sided Log-rank test. The result 
showed that there was significant difference in the overall 
survival rate between two subtypes of patients, and the low 
risk subtype was associated with higher survival (P=0.045, 
See Figure 2D). In addition, we compared the Gleason score 
between two subtypes based on Manny-Whitney test. The 
Gleason score is directly related to clinical stage, survival, 
progression to metastatic disease, tumor size, margin status, 
and pathologic stage. A high Gleason score indicates that 
the tumor is more likely to show aggressive behavior and 
therefore more likely to have spread outside of the gland to 
lymph nodes metastases (27). The comparison of Gleason 
score between two subtypes showed that the patients 
involved in high risk subtype have higher Gleason score than 
those patients involved in low risk subtype (See Figure 2E).

Identification of PCa subtype-related network module

The aggregated P values and the fitted BUM model
For two PCa subtypes, we applied limma package to 
conduct the differential expression analysis and obtained 
the corresponding P values of risk genes. Then, for each 
risk gene, P value for differently expressed and P value for 
survival relevance were aggregated into one P value using 
order statistics. The aggregated P values were used to fit 
the BUM model to the distribution. The histogram of 
aggregated P values was shown in Figure 3A. The quantile-
quantile plot indicates that the BUM model fitted well to the 
aggregated P values distribution (see Figure 3B). An optimal 
mixture parameter of 0.1 and a shape parameter of 0.2114 in 
the fitted BUM model were obtained (see Figure 3C).

Identification of PCa-subtype related network module

We mapped the risk genes into HPRD network, and the 
corresponding sub-network was extracted. After self-
loops were removed, 125 genes and 621 edges were kept 
in the network. Risk genes of the sub-network are scored 

using the fitted BUM model according to a FDR cutoff of 
0.01. The Heinz algorithm (18) was used to calculate the 
maximum-scoring network module. Finally, a PCa subtype-
related network module with 11 genes was identified (see 
Figure 4). In Figure 4, the green ellipses indicate that genes 
are up-regulated in high risk subtype whereas the orange 
ellipses indicate that genes are down-regulated in high risk 
subtype. From Figure 4, we can see that SRC and PRKCA 
are important nodes in the network module. A newly study 
reported that SRC can promote castration-recurrent PCa 
through androgen receptor-dependent canonical and non-
canonical transcriptional signatures (28). In addition, 
previous study suggested that annatto tocotrienol effectively 
induces cytotoxicity in androgen-independent PCa cells 
via the suppression of SRC and STAT3 (29). PRKCA is a 
member of PKC family which serves as major receptors 
for some of tumor promoters and plays important roles in 
many different cellular processes. Meanwhile, PRKC-ζ-
PrC has been found a novel biomarker of human PCa (30). 
Interestingly, we found that some genes linked to PRKCA 
are also associated with PCa risk. For example, Chiang et al.  
indicated that cisplatin attenuates PCa cell proliferation 
partly mediated by up-regulation of BTG2 through the p53-
dependent pathway or p53-independent NFκB pathway (31).

Compare multiple molecular expressions of genes involved 
in the network module between two PCa subtypes

The cutoffs contributing to the survival of genes 
involved in the network module
It is known that the differentiation between lethal and non-
lethal PCa subtypes has become a very important issue 
in avoiding excessive treatment, thus the exploration of 
potential biomarkers distinguishing the high risk death 
patients from low risk patients can help improve the 
outcomes of surveillance PCa patients. Because 7 death 
patients were all included in the high risk subtype, we thus 
selected these samples to represent the especial high risk 
group. Then we performed the sample matching based on 
the PS method according to the ratio of 1:1 sub-samples 
from low risk subtype with the matching variables: age, 
Gleason score and PSA. Finally, 7 matched samples from 
low risk subtype were selected and compared with high 
risk group. For 11 genes involved in the network module, 
we used Maximally Selected Log-Rank Statistic (32)  
to find their cutoffs contributing to the survival. As a 
result, the survival curve comparisons showed a significant 
difference between the two groups according to the cutoffs 
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Figure 3 The aggregated P values and the fitted BUM model. (A) The histogram of aggregated P values, overlaid by the fitted BUM model 
colored in red. The π-upper bound is displayed as a blue line; (B) a quantile-quantile plot for aggregated P values. This plot indicates a 
nice fit of the BUM model to the P values distribution; (C) Log-likelihood surface plot. The range of the colors shows an increased log-
likelihood from red to white. Additionally, the optimal parameters λ and α for the BUM model are highlighted. BUM, beta-uniform mixture.
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of SRC and RCOR2 respectively. The cutoffs of SRC and 
RCOR2 are 11.671 and 2.674 respectively (Figure 5A,B),  
and the log rank tests comparing two groups based on 
> cutoff or < cutoff showed the significant difference 
in survival rate for SRC (P=0.043, Figure 5C) and for 
RCOR2 (P=0.01, Figure 5D). To our knowledge, patients 
with Gleason score ≤6 tumors typically have a favorable 
prognosis whereas patients with Gleason score 8–10 tumors 
often have a poor prognosis. However, patients with 
intermediate Gleason score 7 tumors have a more variable 

prognosis (33). Interestingly, 12 of 14 matched patients in 
this analysis all have Gleason score 7 tumors, and SRC and 
RCOR2 effectively stratify the clinically heterogeneous 
subset of these patients with intermediate Gleason score 7 
tumors.

Specially, for all of PCa patients, we calculated the area 
under the curve (AUC) to assess the risk stratification ability 
of the clinical phenotypes (age, Gleason score and PSA) 
and the identified candidate biomarkers (SRC and RCOR2) 
respectively. As the predictors of logistic regression model, 
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the clinical phenotypes alone and the candidate biomarkers 
alone had AUCs of 0.616 and 0.713 for performing risk 
stratification of PCa patients. When adding the candidate 
biomarkers to the clinical phenotypes in a logistic regression 
model, the goodness of fit of the model for performing 
risk stratification was improved significantly (AUC =0.733, 
Figure 5E).

Compare two PCa subtypes from genes involved in the 
identified network module based on DNA methylation and 
CNV data

For 11 genes involved in the network module, we used the 
MethHC database (22) to obtain DNA methylation levels 
of PCa patients in promoter regions. We compared the 
DNA methylation levels between two PCa subtypes, and it 
was observed that ARR3 displayed lower DNA methylation 
level in high risk subtype (Figure 6A) whereas SRC showed 
higher DNA methylation level in high risk subtype  

(Figure 6B). In previous study, Mello et al. found that 
alteration in the SRC DNA methylation pattern was 
associated with the gastric cancer onset, advanced gastric 
cancer, deeper tumor invasion and the presence of 
metastasis. Their study suggested SRC expression or DNA 
methylation could be useful marker for predicting tumor 
progression and targeting in anti-cancer strategies (34).  
Majid et al. elucidated that miR-23b represses proto-
oncogene SRC kinase and functions as methylation-silenced 
tumor suppressor in PCa (35). Although it has not been 
proven that the increased SRC methylation is associated 
with high risk of PCa, our study can help highlight the 
importance of SRC in the risk stratification of PCa.

We applied caOmicsV package of R software to visualize 
the identified network module by integrating the omics 
data which include sample type, RNA-seq expression, DNA 
methylation status and CNAs of 11 genes (Figure 6C). 
Specially, we inspected the CNV data of 11 genes involved 
in the identified network module. Although we can not find 

Figure 4 The identified PCa subtype-related network module. Meanwhile, the green ellipses indicate that genes are up-regulated in high 
risk subtype (logFC <0) whereas the orange ellipses indicate that genes are down-regulated in high risk subtype (logFC >0). PCa, prostate 
cancer.
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Figure 5 The analyses for SRC and RCOR2 involved in the network module. (A) The cutoff of SRC contributing to the survival, which 
is calculated from the selected 14 samples (7 death high risk subtype vs. 7 low risk subtype); (B) the cutoff of RCOR2 contributing to the 
survival, which is calculated from the selected 14 samples (7 death high risk subtype vs. 7 low risk subtype); (C) the survival curve comparison 
between two groups based on SRC > cutoff or SRC < cutoff; (D) the survival curve comparison between two groups based on RCOR2 > 
cutoff or RCOR2 < cutoff; (E) based on 519 PCa patients (217 low risk subtype vs. 302 high risk subtype), the area under the curves (AUCs) 
were used to assess the risk stratification in three logistic regression models when the predictors were: (I) the clinical phenotypes (age, 
Gleason score and PSA) (blue line); (II) the candidate biomarkers (SRC and RCOR2) (green line); (III) the clinical phenotypes and the 
candidate biomarkers (red line). PCa, prostate cancer; PSA, prostate-specific antigen.
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Figure 6 Visualization of multi-omics data of 11 genes involved in the identified network module based on 14 selected samples (7 death 
high risk subtype vs. 7 low risk subtype). (A) The comparison of DNA methylation level of ARR3 between low risk subtype and high risk 
subtype; (B) the comparison of DNA methylation level of SRC between low risk subtype and high risk subtype; (C) visualization genes from 
their multiple molecular levels. For each of 11 genes, each rectangle indicates the RNA-seq expression of each sample, and the filled colors 
indicate the expression values are from low to high. DNA methylation status were plotted as colored box outlines, and the yellow color 
indicates the low methylation whereas the purple color indicates the high methylation in PCa samples. DNA copy number gain and loss 
were plotted as green and pink colored points respectively. PCa, prostate cancer.
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direct evidences for these CNAs of genes are associated 
with PCa, some previous studies observed the potential 
links between these CNAs and cancers. For example, 
the findings of Demichelis et al. established non-coding 
and coding germ line CNVs as significant risk factors 
for PCa susceptibility and implicate their role in disease 
development and progression (36). From Figure 6C, we can 
see that MAPK15 displayed more associations with copy 
number gain. Recent studies observed that patients with 
copy number gain of MAPK15 in normal or premalignant 
tissues of stomach may have a chance to progress to 
invasive cancer (37). In addition, previous study results have 
suggested that constitutional CNVs may modulate subtle 
pathway changes through specific pathway enzymes, such as 
MAPK signaling pathway (38).

Another dataset to validate PCa-related risk genes

In order to validate the potential PCa-related risk genes 
involved in the identified network module, we selected 
another miRNA-mRNA dual expression profiling dataset 
which includes 60 PCa tissue samples and 15 normal 
prostate tissue samples to perform a silico analysis. The data 
were downloaded from GSE8126 and GSE6956 (https://
www.ncbi.nlm.nih.gov/geo/). We applied general canonical 
correlation analysis to extract PCa-related risk genes. After 
complete data preprocessing (centralization, logarithmic 
transformation and normalization), 326 miRNAs and 
13,787 mRNAs were reserved. According to P<0.05 and 
FDR <0.01, 117 differentially expressed miRNAs and 5,722 
differentially expressed mRNAs were used to implement 
general canonical correlation analysis. According to the 
first extracted component, the PCa associated characteristic 
mRNAs are extracted based on the weight coefficient of 
mRNA in the first component. Here we extracted the 
top 20 mRNAs (genes) as the characteristic biomarkers 
of PCa. Generalized canonical correlation analysis is 
performed using mixOmics package of R software. We 
found that ARR3 (P=2.41E−5), SRC (P=9.63E−7), KCNE1 
(P=6.89E−5) and BTG2 (P=0.0016) were validated as 
PCa-related genes which are overlapped with those genes 
involved in the identified network module. The results were 
shown in Figure S1.

Discussion

PCa is frequently occurring among men, and its mortality 
is continuing to rise. The latest statistics from the American 

Cancer Society have predicted that PCa accounts for 21 
per cent of all new cancer cases in men, and for 8 per cent 
of all male cancer deaths in the United States (39). PCa is a 
clinically heterogeneous disease but its risk stratification is 
insufficient. The inaccurate classification causes physicians 
can not select a suitable treatment for patients. In the 
practice, it is difficult to determine the patients who may or 
may not benefit from immediate treatment interventions 
at the time of the initial diagnosis (40). In an effort to 
understand PCa risk stratification, we present a novel frame 
for integrating of PCa omics data of TCGA. In this study, 
PCa patients were stratified into two distinct molecular 
subtypes that were clinically informative. Specially, by 
combining with survival analysis and differential expression 
analysis for two distinct molecular subtypes, a PCa subtype-
related network module was identified. Notably, this 
module can serve as biomarkers such as SRC to predict PCa 
risk. In this study, we applied bioinformatics tools to reduce 
the dimensionality and extract the essential information 
from genome-wide data, the work presented here thus 
may provide some biologically and clinically meaningful 
knowledge for exploring PCa subtypes.

Interestingly, we found that the Gleason scores of 
patients in high-risk subtype are higher than that of patients 
in low risk subtype, which indicates that patients in high 
risk subtype are more likely to show aggressive behavior. 
We also compared PSA between two subtypes, and no 
significance was found (P>0.05). Indeed, there remain 
disagreements on issues as whether PSA rises can determine 
PCa risk and whether a low PSA level can rule out PCa. 
Vickers et al. showed that the relationship between PSA and 
the risk of biopsy-detectable PCa systematically depending 
on the type of cohort studied by analyzing data from multiple 
cohorts (41). Their study poses challenges to the use of 
PSA to determine the risk of biopsy-detectable PCa. In the 
present study, we compared the DNA methylation profiles 
and CNV data of risk genes involved in the identified 
network module between the death high risk patients and 
the matched low risk patients. We found that some PCa 
subtype-related genes, such as SRC and ARR3, showing 
the different DNA methylation levels in high-risk group 
and low-risk group. Therefore, the candidate biomarkers 
identified in our study may contribute to the personalization 
of PCa treatment.

In recent years, RNA-sequencing technology is rapidly 
developed as a major quantitative transcriptome profiling 
platform. It is investigated that microarray experiments 
data have biases and limitations, and the continually 



717Translational Cancer Research, Vol 7, No 3 June 2018

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2018;7(3):706-719 tcr.amegroups.com

improving RNA-seq platforms provide the comprehensive 
expression that will help predict therapeutic response in 
the substantial proportion of tumors that lack a classical 
targetable alteration (13,42). In the practice, researchers 
have proposed many methods based on the sparse theory 
to identify the differentially expressed genes from RNA-
seq data (43). Here, the CNMF algorithm was applied to 
stratify the RNA-seq expression data of PCa patients into 
different molecular subtypes without applying any biological 
or clinical information. We found that 7 death patients were 
all included in the high risk subtype. This result indicated 
that the appropriate risk stratification can be used for PCa, 
and this stratification can help improve the treatment and 
prognosis of PCa patients.

Moreover, for all of genes associated with PCa survival, 
we applied Generally Applicable Gene-set Enrichment for 
Pathway Analysis (GAGE) provided by Bioconductor (44) to 
identify differentially expressed pathways between low risk 
subtype and high risk subtype. We identified Spliceosome 
pathway as a significant up-regulated pathway (corrected 
P=0.012). Indeed, a recent study found the important role 
of SUMOylation of spliceosome factors in PCa cells (45).  
Specially, the pathway enrichment analysis for genes 
involved in the identified network module showed that 
VEGF signaling pathway (P=0.02), Wnt signaling pathway 
(P=0.03) and apoptosis (P=0.04) are all significant enriched 
pathways. Some previous studies found the evidences that 
these pathways are important in prostate tumor progression 
(46,47).

Although our research on risk stratification of PCA 
may have some potential advantages, the limitations of 
our study should be pointed out. On one hand, there has 
been no gold standard for evaluating the performance of 
the molecular subtypes of PCa, therefore it is difficult to 
assess the accurate of this stratification (9). On the other 
hand, the obtained network module and the identified risk 
genes, such as SRC and ARR3, were only extracted by 
the integration analysis of omics data but not approved by 
molecular biology experiment. Our method depends on 
various tuning parameters and cutoffs of the models which 
can affect the risk stratification of PCa into truly molecular 
subtypes. Therefore, the identified candidate genes need 
to be validated for further lab confirmation with the help 
of other molecular biology laboratories. In addition, RNA-
seq data have some sensitivity to bioinformatics parameters, 
which may affect the performance of the identification of 
biomarkers. Therefore, the findings of this paper must be 
validated prospectively, and the limitations will be addressed 

in our future studies.

Conclusions

In summary, we provided a novel frame to perform risk 
stratification for PCa patients via the integration of omics 
data of TCGA. A PCa subtype-related network module was 
identified, and this module can serve as biomarkers such as 
SRC to predict PCa risk. The proposed frame provides an 
effective strategy for the integrative analysis of TCGA and 
can help highlight the prevention and treatment for PCA 
patients.
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Supplementary

Figure S1 Validation for PCa-related risk genes based on a miRNA-mRNA dual expression profiling dataset. The top 20 genes with highest 
relevance for PCa based on the first principal component weight coefficient obtained from generalized canonical correlation were extracted. 
The genes with filled pink colors are genes overlapped with the risk genes involved in the identified network module. PCa, prostate cancer.
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