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Introduction

Over the past 4 decades, the incidence of thyroid cancer has 
been increasing steadily in United States, with 14.42 cases  
per 100,000 persons per year in 2010–2013 (1). The most  
common histologic types were papillary thyroid cancer 
(PTC) (84%) and follicular thyroid cancer (11%). 
Thyroid cancer mortality rate rose by 1.1% annually from  

0.40 per 100,000 person-years in 1994–1997 and to 0.46 per  
100,000 person-years in 2010–2013 (1). Therefore, 
characterization of the molecular pathogenesis of thyroid 
cancer is critical to identifying key biomarkers and effective 
therapeutic targets for the disease.

Numerous studies have been conducted to characterize 
the genomic and transcriptomic landscapes of thyroid 
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cancer. The Cancer Genome Atlas (TCGA) applied MutSig 
to 496 paired tumor/normal samples and found many 
frequently mutated driver genes in thyroid cancer, such as 
BRAF, NRAS, HRAS, EIF1AX and KRAS (2). The study 
confirmed that PTCs are driven primarily by mutations in 
one of two cancer-associated genes: BRAF(V600E) or RAS. 
Yoo et al. classified thyroid tumors into three molecular 
subtypes, including BRAF-like, RAS-like, and Non-BRAF-
Non-RAS based on gene expression profiles. BRAF-like 
patients showed higher frequency of lymph node metastasis 
or extrathyroidal extension, while patients in the RAS-like 
group or Non-BRAF-Non-RAS group showed less or no 
lymph node metastasis or extrathyroidal extension (3). Costa 
et al. identified a new gene fusion WNK1-B4GALNT3 that 
was correlated with B4GALNT3 overexpression in a cohort 
of 18 PTC patients using RNA-Sequencing (4). 

The weighted correlation network analysis (WGCNA) 
package comprises a series of R functions to perform a 
variety of weighted correlation network analyses. WGCNA 
detects co-expression modules of highly correlated genes 
and associates interested modules with clinical traits, 
providing insights into signaling networks that may be 
responsible for phenotypic traits (5). In this study, we 
performed a genome-wide investigation of differentially 
expressed genes (DEGs) in 57 pairs of thyroid cancer and 
normal thyroid tissues. WGCNA was applied to build  
co-expression modules using the expression data of DEGs 
in thyroid cancer. Module-trait associations were analyzed 
using the correlation between the module eigengene and 
clinical traits. Gene ontology (GO) enrichment analysis was 
performed on the genes and the hub genes were identified 
in the modules of interest (6). These findings may be of 
importance in evaluating the malignant potential and 
clinical outcomes of thyroid cancer patients.

Methods

DEG and principal component analyses

Among 568 thyroid cancer samples in TCGA, only  
57 samples had RNA-sequencing expression data of paired 
normal thyroid tissues. Therefore, raw count data of  
57 thyroid cancer and paired normal thyroid samples were 
retrieved from the TCGA database at the Broad Institute for 
DEGs analysis (7) (http://firebrowse.org/?cohort=THCA). 
In order to further validate DEGs, we obtained RNA-seq 
expression data of 8 pairs of thyroid cancer and normal 
thyroid tissues from Gene Expression Omnibus (GEO) 
(GSE63511) (8). The R package of DEseq2 was used to 

characterize the expression profiles in 57 thyroid cancer and 
paired normal tissues (9). If genes showed false discovery 
rates (FDR) smaller than 0.05 and absolute log2fold-
changes greater than 2, they were considered as DEGs. 
Next, principal component analysis (PCA) was conducted 
to evaluate whether DEGs could distinguish thyroid cancer 
from normal tissues. 

GO enrichment analysis 

To analyze the functional enrichment of DEGs and 
genes in co-expression modules, GO (6)-enrichment 
analysis was performed for all the DEGs and genes in  
co-expression modules with the online tool of GO 
(http://geneontology.org/). If the cutoff of FDR adjusted 
P value was smaller than 0.05, the enrichment of GO 
terms was considered to be significant. 

Construction of co-expression network in thyroid cancer

Soft-thresholding power values were screened out in the 
construction of co-expression modules by the WGCNA 
algorithm (5). The gradient method was applied to evaluate 
the scale-free fit index and the mean connectivity degree of 
different co-expression modules with power values ranging 
from 1 to 20. The optimal power value was determined 
when the scale-free fit index was above 0.8, and then the 
construction of co-expression modules was performed by 
the WGCNA algorithm in R3.2.0. The minimum number 
of genes was set as 10 to ensure the high reliability of 
the results. The corresponding genetic information of  
co-expression modules was also extracted. 

Characterization of module-trait relationships in thyroid 
cancer

Module-trait associations were analyzed using the correlation 
between the module eigengenes and clinical phenotypes, 
which enabled the identification of co-expression modules 
with significant correlation with the phenotype. For each 
expression profile, gene significance (GS) was calculated 
as the absolute value of the correlation between expression 
profile and each trait; module membership (MM) was 
defined as the correlation of expression profile and each 
module eigengene (10). Using the GS and MM measures, 
genes that have a high significance for each trait as well as 
high MM in interesting modules could be identified. The 
intramodular connectivity was computed for each gene by 

http://geneontology.org/


1237Translational Cancer Research, Vol 7, No 5 October 2018

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2018;7(5):1235-1243 tcr.amegroups.com

summing the connection strengths with other module genes 
and dividing this number by the maximum intramodular 
connectivity. The genes with maximum intramodular 
connectivity were regarded as intramodular hub genes (11). 
The interested modules and hub genes were visualized by 
Integrative Visual Analysis Tool for Biological Networks 
and Pathways (VisANT) (12) software.

Results

DEGs analysis

The 57 thyroid cancer samples comprise 48 papillary,  
6 follicular and 3 tall cell thyroid cancer samples. Twenty 
nine cancer samples had BRAFV600E mutations, while 
28 samples were wild-type. Six and 51 cancer samples 
were RAS-mutant or wild-type respectively. Raw count 
data of thyroid cancer and normal samples were obtained 
from TCGA. DEGs were determined between 57 pairs 
of thyroid cancer and normal tissues with DEseq2 
package in R. Overall, DEseq2 found 750 up-regulated 
and 296 down-regulated genes (Figure 1A). ARHGAP36, 
TMPRSS6, DMBX1, LOC400794, GABRB2, ZCCHC12, 
KLK6, KLK10, CST2 and GRM4 were the top-ranking  
up-regulated genes, while CHGA ,  SLC6A15 ,  IHH , 
TSPAN19, PMP2, KCNA1, PCDH11X, TFF3, GPR142 
and C6orf176 were the top-ranking down-regulated 
genes in thyroid cancer (Table 1). In order to confirm the 

DEGs in thyroid cancer, we obtained RNA-seq data of 8 
pairs of thyroid cancer and normal thyroid tissues from 
GEO. 77 genes were determined as DEGs by DESeq2,  
64.81% (35/54) up-regulated and 52.17% (12/23) down-
regulated genes were overlapped with the DEGs obtained 
from 57 pairs of thyroid cancer and normal counterparts 
(Figure S1). Next, PCA was conducted to assess whether 
DEGs could distinguish thyroid cancer from normal tissues. 
Cancer and normal tissues were aggregated to the lower and 
upper sides respectively, demonstrating that DEGs were able 
to classify the samples into two distinct subsets (Figure 1B).

GO term enrichment analysis

The enrichment of GO terms was analyzed for 750 up-
regulated and 296 down-regulated genes on the home page of 
GO. GO term enrichment analysis showed down-regulated 
genes were significantly enriched in 136 biological processes, 
up-regulated genes in 281 biological processes (FDR adjusted 
P value <0.05). The main GO biological process terms for 
down-regulated genes showed a wide variety of functional 
processes ranging from cellular developmental process, cell 
differentiation, single-multicellular organismal process, 
cell development and regulation of system process. While 
the primary GO terms for up-regulated genes were related 
to various cellular processes, such as negative regulation 
of endopeptidase activity, cell-cell adhesion, epidermis 
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development, extracellular matrix organization, regulation of 
protein phosphorylation, regulation of signal transduction, 
regulation of cell proliferation and a variety of metabolic 
processes. 

Construction of co-expression modules in thyroid cancer

Among the 568 thyroid cancer samples in TCGA, 501 
had both RNA-sequencing expression and clinical traits 
data. Therefore, expression values of 1,046 genes in the 
501 samples of thyroid cancer were used to construct 
the co-expression modules by the WGCNA package. 
One of the most important parameters was the soft-
thresholding power value, which mainly affected the 
scale-free fit index and the average connectivity degree of  
co-expression modules. Firstly, the power value was 
screened out (Figure S2). When the power value was 
equal to seven, the scale-free fit index was larger than 0.8 
and the mean connectivity degree was higher. Therefore, 
the soft-thresholding power value used to construct  
co-expression modules and the WGCNA identified five 
distinct gene co-expression modules which are shown in 
different colors (Figure 2). These numbers of genes in the 
five modules differed largely, with 608, 293, 70, 57 and 
19 genes for the turquoise, grey, blue, brown and yellow 
modules respectively (Figure 2). 
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Figure 2 Clustering dendrograms of genes found 5 co-expression 
modules shown in different colors.

Table 1 The top 10 down-regulated and up-regulated genes in thyroid cancer

Gene Fold change P value FDR-adjusted P value

Down-regulated

CHGA 4.80 1.55×10−15 1.48×10−14

SLC6A15 4.61 5.82×10−41 4.16×10−39

IHH 4.54 1.08×10−34 5.03×10−33

TSPAN19 4.42 4.05×10−51 5.56×10−49

PMP2 4.18 2.46×10−38 1.46×10−36

KCNA1 4.05 1.17×10−27 3.24×10−26

PCDH11X 3.91 2.43×10−31 8.81×10−30

TFF3 3.88 1.24×10−34 5.71×10−33

GPR142 3.86 4.25×10−45 4.04×10−43

C6orf176 3.79 4.10×10−24 8.52×10−23

Up-regulated

ARHGAP36 −7.53 8.54×10−75 5.22×10−72

TMPRSS6 −7.22 1.15×10−88 2.42×10−85

DMBX1 −7.17 2.47×10−58 4.72×10−56

LOC400794 −7.05 2.04×10−90 4.83×10−87

GABRB2 −6.86 6.29×10−121 1.19×10−116

ZCCHC12 −6.72 1.34×10−87 2.31×10−84

KLK6 −6.58 4.42×10−43 3.58×10−41

KLK10 −6.57 6.60×10−94 2.50×10−90

CST2 −6.51 2.79×10−43 2.31×10−41

GRM4 −6.43 1.23×10−87 2.31×10−84
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Module-trait association analysis in thyroid cancer

The clinical traits data were obtained from the TCGA 
database. Module-trait associations were analyzed with the 
correlation between module eigengene and clinical traits. As 
showed in the Figure 3, the turquoise module was negatively 
correlated with patients’ age, cancer stage and multifocality 
(P value <0.05 for all cases, Figures 2 and 3). In contrast, 
the blue module was significantly positively associated 
with patients’ age, cancer stage and multifocality (P value 
<0.05 for all cases, Figures 2 and 3). The brown module 
was negatively correlated with tumor size (P value =0.04, 
Figures 2 and 3). Then, we plotted scatterplots of GS for 
patients’ age, cancer stage, multifocality and tumor size vs. 
MM in the blue, turquoise and brown modules. The GS for 
patients’ age, cancer stage and multifocality was positively 
correlated with MM in the blue and turquoise modules  
(P value <0.05 for all cases, Figure 4). However, the GS for 

tumor size showed non-significant correlation with MM in 
the brown module (P=0.81, Figure S3).

Functional enrichment analysis of genes in the interested 
modules

GO enrichment analysis was performed on the genes 
in the turquoise, blue and brown modules. There was 
large difference in the biological processes in which 
the three modules were enriched. Genes in turquoise 
module were significantly over-represented in 171 
GO terms (FDR adjusted P value <0.05), such as cell 
migration (GO:0016477), regulation of cell proliferation 
(GO:0042127) ,  regulat ion of  cel l  di f ferentiat ion 
(GO:0045595), regulation of cellular protein metabolic 
process (GO:0032268), signal transduction (GO:0007165). 
While genes in the turquoise module were significantly 
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under-represented in 42 GO terms, such as gene expression 
(GO:0010467),  DNA repair (GO:0006281),  DNA 
metabolic process (GO:0006259) and cellular response 

to DNA damage stimulus (GO:0006974). However, no 
significant enrichment of GO terms was found for the genes 
in the blue and brown modules.
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Visualization of the interested modules and hub genes

The modules were constructed using the VisANT software. 
The genes with largest intramodular connectivity were 
considered as intramodular hub genes. The hub genes 
in the turquoise and blue modules were bold with red in 
Figure 5. SERPINA1 and MRO were the hub genes in the 
turquoise and blue modules respectively (Figure 5). 

Discussion

RNA-seq analyses have previously been used to predict 
therapeutic biomarkers and to identify gene expression 
patterns associated with cl inical  traits  in thyroid  
cancer (13,14). This study presented a large number of 
DEGs between 57 pairs of thyroid cancer and normal 
tissues. By comparing the DEGs to the tumor associated 
gene and tumor suppressor databases (15), five known 
oncogenes were up-regulated, including ELF3, HMGA2, 
LCN2, MET and RUNX2; by contrast, 10 TSGs were 
found down-regulated, including EGR2, FOXA2, GPC3, 
IGFBPL1, LRP1B, MT1G, NR4A3, PROX1, TMEFF2 and 
WNT11. Additionally, some new DEGs were discovered, 
such as ARHGAP36, TMPRSS6, DMBX1, CHGA and 
SLC6A15, which have not been reported previously and 
their functions remain unknown in thyroid cancer.

WGCNA is a method frequently used to explore the 
co-expression modules of highly correlated genes. Genes 
in the same module were considered to be related with 
each other in function. Therefore, the analysis allowing 
for identification of biologically-relevant modules and 

hub genes that may eventually serve as biomarkers for 
detection or treatment (5). In this study, a total of five  
co-expression modules were constructed by the 1,046 genes 
from the 57 pairs of thyroid cancer and normal samples 
by the WGCNA method. We identified the blue and 
turquoise co-expression modules that relate to clinical traits 
(patient’s age, cancer stage and multifocality, Figures 2-4). 
The result of functional enrichment analysis showed that 
the turquoise module was found to be mainly enriched in 
cellular processes associated with cell migration, regulation 
of cell proliferation, regulation of cell differentiation, and 
regulation of cellular protein metabolic process. While 
genes in the blue module were not significantly enriched 
in any GO terms. Therefore, we speculate that turquoise 
module is the most important module in the cancer stage 
and multifocality of thyroid cancer.

The turquoise and blue co-expression modules were 
constructed by the VisANT software and the hub genes 
SERPINA1 and MRO were identified (Figure 5). The 
SERPINA1, also known as α1-AntiTrypsin, is a protease 
inhibitor that can act on a variety of targets such as serine 
proteases. It has been demonstrated that SERPINA1 
expression can be stimulated by E2 in MCF-7 cells, and a 
high expression of this protein inhibits colony formation (16).  
SERPINA1 is up-regulated in colorectal cancer (17),  
glioma (18), cutaneous squamous cell carcinoma (19) and 
thyroid cancer (20). SERPINA1 has been proposed as a 
biomarker for various cancers, such as papillary thyroid 
carcinoma (20), lung cancer (21) and breast carcinoma (22-24).  
The high expression of SERPINA1 indicates a poor prognosis 

A B

Figure 5 Visualization of the turquoise (A) and blue (B) modules and hub genes. Notably, the top 30 DEGs which have maximum 
connections with other genes were shown in the turquoise module. The genes with weighted cutoff value of ≥0.05 are shown. Each node 
represents a gene. The hub genes were shown in red in the modules. DEGs, differentially expressed genes.
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of high-grade glioma (18) but a favorable clinical outcome 
in breast cancer patients (25). The hub gene of the blue 
module is MRO, which is down-regulated in lung cancer cell  
lines (26). The hub genes in the turquoise and blue modules 
are either oncogenes or anti-oncogenes. Therefore, we 
speculate that the hub genes are critical in the cancer stage 
and multifocality of thyroid cancer.

Conclusions

Taken together, the turquoise module was regarded as the 
most critical module in the cancer stage and multifocality of 
thyroid cancer. More importantly, the hub gene SERPINA1 
may function as a potential biomarker for thyroid cancer, 
which also needs much further research.
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Figure S1 The overlap of DEGs between 57 (TCGA) and 8 
(GEO) pairs of thyroid cancer and normal thyroid tissues. (A) The 
overlap of down-regulated genes between the two datasets; (B) the 
overlap of up-regulated genes between the two datasets. DEGs, 
differentially expressed genes.
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Figure S2 Analysis of network topology for various soft-
thresholding powers. The left panel shows the scale-free fit index 
(y-axis) as a function of the soft-thresholding power (x-axis). The 
right panel displays the mean connectivity (degree, y-axis) as a 
function of the soft-thresholding power (x-axis).

Module membership vs. gene significance
cor=0.033, P=0.81
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Figure S3 A scatterplot of GS for tumor size vs. MM in the brown 
module. GS, gene significance; MM, module membership.


