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Introduction

Phosphorylation, the addition of the phosphate group, 
PO4

3– to a protein substrate by protein kinases, is one of the 
most common post-translational modifications (PTM) of 
proteins. Phosphorylation plays a central role in cell signaling 
and regulatory mechanisms, and can lead to activation or 
inhibition of downstream signaling events, depending on 
the substrates and involved pathways. Based on the nature of 
the phosphorylated –OH group, these kinases are classified 
as protein-serine, threonine or tyrosine kinases. The 
dysregulation of these kinases, or the resulting change in 
phosphorylation events, is a potential signaling mechanism 
involved in cancer development and progression. One such 
example is P53, a well-known tumor suppressor, which has 
been observed to have a wide range of PTM, including 

multi-site phosphorylation, acetylation, methylation and 
ubiquitylation (1) suggesting extensive control of the activity 
of this protein. Another tightly regulated example is SRC 
(and SRC family kinase proteins). These proto-oncogenic 
proteins are known to be essential for cell differentiation, 
motility, proliferation, and survival (2). In addition to the 
complexity of multi-site phosphorylation by protein kinases, 
autophosphorylation creates internal regulation of activity 
and increases the overall complexity of the regulation process. 

In addition to the essential role that phosphorylation plays 
in signaling, regulation, and physiology, another reason that 
research on phosphorylation has become significant in cancer 
research is because kinases have become one of the largest 
classes of drug targets (3). Major progress has been made 
against some types of cancers using inhibitors of tyrosine 

Review Article

Computational methods and opportunities for phosphorylation 
network medicine

Yian Ann Chen, Steven A. Eschrich

Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive Tampa, FL 33612, USA

Correspondence to: Yian Ann Chen. Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive Tampa, FL 33612, 

USA. Email: Ann.Chen@moffitt.org.

Abstract: Protein phosphorylation, one of the most ubiquitous post-translational modifications (PTM) of 
proteins, is known to play an essential role in cell signaling and regulation. With the increasing understanding 
of the complexity and redundancy of cell signaling, there is a growing recognition that targeting the entire 
network or system could be a necessary and advantageous strategy for treating cancer. Protein kinases, the 
proteins that add a phosphate group to the substrate proteins during phosphorylation events, have become 
one of the largest groups of ‘druggable’ targets in cancer therapeutics in recent years. Kinase inhibitors are 
being regularly used in clinics for cancer treatment. This therapeutic paradigm shift in cancer research is 
partly due to the generation and availability of high-dimensional proteomics data. Generation of this data, 
in turn, is enabled by increased use of mass-spectrometry (MS)-based or other high-throughput proteomics 
platforms as well as companion public databases and computational tools. This review briefly summarizes 
the current state and progress on phosphoproteomics identification, quantification, and platform related 
characteristics. We review existing database resources, computational tools, methods for phosphorylation 
network inference, and ultimately demonstrate the connection to therapeutics. Finally, many research 
opportunities exist for bioinformaticians or biostatisticians based on developments and limitations of the 
current and emerging technologies.

Keywords: Phosphorylation; network inference; kinase; computational biology; drug repurposing

Submitted Apr 21, 2014. Accepted for publication May 12, 2014.
doi: 10.3978/j.issn.2218-676X.2014.05.07

View this article at: http://dx.doi.org/10.3978/j.issn.2218-676X.2014.05.07



267Translational Cancer Research, Vol 3, No 3, June 2014

© Pioneer Bioscience Publishing Company. All rights reserved. Transl Cancer Res 2014;3(3):266-278www.thetcr.org

kinases as therapeutic agents. Often these kinases are altered or 
activated in cancer, making inhibition of their activity specific 
to cancer cells and thus targetable. The use of imatinib in 
chronic myeloid leukemia (CML) patients with the presence 
of the BCR-Abl tyrosine kinase is one of the earlier examples 
of targeted therapeutics and often cited as a paradigm for 
research in cancer therapeutics (4,5). Many additional kinase 
inhibitors have been developed. Several well-known examples 
are: gefitinib/erlotinib for epidermal growth factor receptor 
(EGFR) mutant driven lung cancers, and crizotinib for EML4-
ALK driven lung cancers, and vemurafenib for melanoma 
patients with BRAF V600E mutation. Furthermore, rather 
than targeting a single protein or gene, there is an increasing 
recognition of the importance of potential therapeutic 
strategies on targeting interacting molecules, modular 
domains, or a biological network as a whole (6). 

The advancement of proteomics technologies within 
cancer research enables the quantitation of phosphorylation. 
In this review, section I briefly outlines how (phosphorylated) 
peptides are identified and quantified, and what computational 
issues and challenges remain. In section II, we describe 
several phosphoproteomics databases and online resources 
for annotation of detected phosphorylation events. In section 
III, we describe and compare several popular computational 
tools and resources for phosphorylation network inference and 
reconstruction. This field is not new but has evolved quickly, as 
the evolution of the proteomics platforms generating the data 
have resulted in increasingly accurate, quantifiable proteomics 
data. Our discussion is focused on recent developments in 
analytical approaches. In section IV, we summarize some 
computational approaches linking phosphorylation or kinases 
to medicine. In the final section, we describe open questions 
and research opportunities for moving the field forward. 

I. Quantitative phosphoproteomics 

Mass spectrometry (MS) has been used for the identification 
of proteins through digested peptides and modifications of 
these peptides, such as phosphorylation, through database 
search techniques. Qualitative data (e.g., presence of a 
specific phosphosite) is an important step towards network 
inferences however this information limits possible 
approaches. Increasingly, it is becoming possible to quantify 
the abundance of peptides, proteins and phosphosites 
within complex mixtures in a high-dimensional way. The 
development of new experimental techniques and new 
software has enabled automated approaches to quantitative 
phosphoproteomics. We present here a brief overview of 

approaches taken for identification and quantification of 
phosphoproteins from LC-MS/MS experiments.

Phosphosite identification

When phosphoproteomics experiments using LC-MS/MS 
are undertaken, a common result is a list of identified peptides 
from trypsin-digested proteins in the sample. By including 
database searches for PTM’s (such as phosphorylation), 
the sequences of peptides can be inferred from peptide 
fragmentation. In the case of unmodified peptide sequences, 
this approach can be very accurately performed. However, 
in the case of modifications the peptides may be correctly 
identified but it may be difficult to identify the specific 
site that was observed to be phosphorylated. Depending 
on the fragmentation patterns and the number of possible 
sites, there may be multiple locations for a phosphorylation 
to have occurred. For instance, in the case of tyrosine 
phosphorylation, it is possible to have two (or more) tyrosines 
in the same peptide and thus determining which tyrosine is 
phosphorylated is not clear. More detailed discussion of this 
topic can be found in (7). Moreover, digestion of peptides 
is not always complete or there may be multiple available 
locations for cleavage. In this case, there may be several 
different peptides which contain the phosphosite in question. 
Thus in the case of quantitative phosphoproteomics, 
quantifying specific peptides must be further processed to 
accumulate measurements for the particular phosphosite. 
The sum or average of peptide quantities can be used to 
summarize measurements to a specific site.

Phosphoproteomics quantification methods

Quantification of proteins from MS experiments has been 
of interest for a number of studies. There are several 
approaches to quantification, including the use of isotope 
labeling of samples or conditions in order to identify 
relative quantifications [e.g., SILAC (8,9) or iTRAQ (10)]. 
It is possible that each technique provides some additional 
information for understanding proteomics profiles of 
samples (11). More challenging is the use of label-free 
quantification (LFQ), in which labeled proteins are not used 
but the peak area, centroid or other measure of abundance 
in the m/z MS1 spectra is considered.

Several types of quantification approaches exist for 
phosphoproteomics and are similar to those discussed in (12). 
The simplest approach is spectral counting (13) of peptides 
(or phosphosites) and is a frequently employed approach to 
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generate abundance information. The number of spectra (or 
MS2 scans) in which the peptide has been identified is used as 
a surrogate of the abundance of that peptide (13). As described 
previously, the situation is complicated by the need to count 
spectra for peptides that are partially overlapping but also 
contain the phosphosite. Several numerical issues arise from 
this type of processing, including the exponential nature of 
peptide detection. Many peptides are seen once in a single 
experiment, whereas it is relatively infrequent for a peptide to 
be seen many times. This process of detection is inherently 
stochastic therefore the reliability of the measurements is 
debated. However, this approach is very simple and broadly 
used. A number of tools have been developed utilizing spectral 
counting to estimate protein abundance, including the crux 
spectral-counts command, implemented as part of the Crux 
software toolkit (14). A review of spectral counting is (15).

Over the last several years, a number of software packages 
have been developed that automate the process of extracting 
quantification of specific peptides from LC-MS/MS data. 
This type of quantification without isotope labeling is typically 
termed LFQ. For more discussion on the rationale behind 
LFQ, see for example (16). Peaks in the chromatographic 
profile are used to estimate abundance. This process can be 
very time-consuming manually but with software that can 
align profiles across samples with the MS2 identification, 
large numbers of proteins per experiment can be estimated. A 
number of tools have been developed, including LFQuant (17),  
MaxQuant (18), SuperHirn (19), and an open-MS based 
pipeline (20). MaxQuant software, developed as an 
integrated solution, incorporates many of the necessary 
steps for quantification in the same package. This software 
performs peak detection in MS1 spectra and aggregates 
information over retention times to estimate peak intensities. 
Peptide identification is then performed, currently using  
Andromeda (21). Peptides can be combined, particularly 
in the case of overlapping peptides that cover the same 
phosphosite. The MaxQuant software also supports isotope 
labeled experiments such as SILAC (stable amino acid isotope-
label) data. A comparison of quantification approaches can be 
read in (22). Although less challenging in phosphoproteomics 
data, the task of combining individual peptide quantifications 
into protein measurements has been tackled by a number of 
investigators. These approaches are reviewed in (23). We have 
summarized the discussed quantification methods in Table 1. 

Normalization 

Data generated by high-dimensional Omics technologies are 

often affected by a variety of known or unknown systematic 
biases (31). Proteomics technologies are no exception. In 
quantitative proteomics datasets, these biases or batch effects, i.e., 
non-biological signals, may occur due to variations in sample 
processing steps, different instrument performance in different 
days or batches, or differences of experimental conditions (32). 
Typically, the data is first logarithm (base two) transformed, 
and then followed by normalization to eliminate or avoid the 
systematic bias or batch effects. After log transformation, the 
distribution is approximately normally distributed, and the base 
two makes it easy for interpretation. For instance, a difference 
of 1 in log2 scale is a two-fold change in the original scale. 
Since phosphoproteomics are often quantified using MS-based 
technologies, we summarize several common normalization 
methods for LC-MS based data although these are not just 
specific to phosphoproteomics data. 

A global normalization is one of the simplest approaches, 
and it often works well. The goal is to center the distribution 
of the log transformed values to a constant value for each 
sample. For instance, ‘quality control samples’ (QC samples) 
can be planned in between biological samples of interest 
within each batch of samples. Each batch is composed of a 
consecutive run of 10 or 20 samples followed by multiple 
preparations of the same QC samples. These QC samples 
are used to monitor potential systematic batch effects. When 
a global normalization method is used, it could be centered 
to the median of the same QC samples across batches in the 
entire project (24), or just a simple mean, median, or a fixed 
constant for each sample (25). A constant value could also 
be estimated using a subset of peptides from house-keeping 
proteins when such proteins are identified. 

The need for normalization is not proteomics-specific, but 
often found in a wide variety of high-throughput platforms. 
Some of the normalization methods, such as those developed 
for RNA expression microarrays, are also used to normalize 
proteomics data. For instance, a popular scatter plot smoothing 
method known as lowess regression is a commonly applied 
normalization method developed for microarray platforms (26),  
and also applied to proteomics data (27). Scatterplot 
smoothing uses the “MA plots” for comparing the intensities 
of two samples. The techniques were originally developed for 
two-color cDNA expression microarrays, in which there is an 
internal reference sample to compare against. Lowess performs 
local linear fits on the user-defined fraction of points to be 
used for smoothing, and some optimization based methods 
for estimating the fraction have been proposed (33). With the 
assumptions that a portion of the genes are rank-invariant 
between samples, other normalization methods are possible. 
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An example is iterative rank-order normalization (IRON), 
developed by our group for microarray normalization. IRON 
uses the best-performing techniques from each of several 
popular processing methods while retaining the ability to 
incrementally renormalize data without altering previously 
normalized expression (28). ANOVA and regression models 
are another popular way to partition out explicitly each source 
of variations in which that treatment terms and batches are 
commonly factors in the models (29). Modified from original 
methods for microarray normalization (34), EigenMS, was 
developed and uses singular value decomposition to capture and 
remove biases from LC-MS peak intensity measurements (30).  
This allows for bias to be captured as eigen peptides and then 
removed. The advantage is that if the batch effects are not 
always explicitly modeled, they could still be estimated and 
removed. It has been our experience that a one-size fits all 
solution is overly simplistic in terms of which normalization 
to use, due to different systematic biases introduced in 
different experiments. However, the need for normalization 
and the potential existence of batch effects is important to 
acknowledge. Given a reasonable study design and appropriate 
normalization, most batch effects can be eliminated. 

II. Annotating phosphorylation sites 

The use of phosphoproteomics in recent years has been 

enabled through an extensive development of the appropriate 
technologies (35). Increasingly, there is demand for 
computational inference of cellular regulatory mechanisms 
using these phosphoproteomics measurements. However, 
central to the ability for inferring relationships is the capability 
to catalog data from experimental conditions in which 
instances of the relationships have been observed. These data 
are generated from different organisms, such as yeast, bacteria 
and plants (36) or vertebrates, mammals or a variety of species. 
Databases have been developed for different organisms 
for depositing these annotated data. An excellent review of 
databases developed for this purpose for various organisms 
can be found in (37). We summarize updated information 
on three large comprehensive human- or vertebrate-
centric phosphoproteomics databases in Table 2. Briefly, 
PhosphoSitePlus (PSP) is a database with a comprehensive 
collection of different PTMs including phosphorylation, 
ubiquitinylation, acetylation and methylation (41) created 
by cell signaling technology (CST). Among all included 
PTMs, 78% are phosphorylation, 15% ubiquitinylation, 6% 
acetylation. One feature PSP has is its ability to generate 
high-through phosphoproteomics data, including both low-
throughput and high-throughput experimental data, and rapid 
sharing the newly generated data through their website. As 
of 2/27/2014, there are 210,352 phosphosites are available 
via their website (http://www.phosphosite.org/homeAction.

Table 1 A summary of methods for phosphorylation quantification methods

Method Description Ref

Isotope labeling: adding stable isotopes into proteins allows accurate quantification vs. samples without isotopes

iTRAQ Isobaric tags for relative and absolute quantification (10)

SILAC Stable isotope labeling by amino acids in cell culture (8,9)

Label-free quantification (LFQ): use of chromatogram and/or MS2 to quantify peaks

Spectral/peptide counting The number of spectra (MS2 scans) in which the peptide is identified (13-15)

LFQuant Peak-finding and quantification across mass-spec runs (17)

MaxQuant Peptide identification/quantification, including for SILAC, LFQ and 

PTM experiments

(18)

SuperHirn Peak-finding, quantification and normalization (19)

Open-MS Peak-finding, quantification and normalization (20)

Normalization sample-to-sample variability requires normalization in LFQ experiments

Global normalization Center data distribution to a constant (24,25)

Lowess MA scatter plot smoothing using local linear fits (26,27)

IRON Iterative rank-order normalization using rank-invariant peptides (28)

ANOVA/regression Partition sources of variation leaving true signal (29)

EigenMS Singular value decomposition to remove biases/batch in intensity (30)
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do). In contrast, the Phospho.ELM resource (http://phospho.
elm.eu.org/) focuses primarily on the collection of manually 
curated phosphosites and information derived from small-scale 
experiments (38-40). It stores information on ~300 kinases and 
over 8,000 substrates, over 42,000 phosphosites. The Human 
Protein Reference Database (HPRD) is one of the largest 
databases for the human proteome (42) (http://www.hprd.
org/). It includes protein-protein interactions (PPI), PTMs, 
enzyme/substrate relationships, disease associations, tissue 
expression, and subcellular localization of human proteins. 
For non-commercial usage, the data is freely downloadable. It 
currently has information on 95,016 phosphosites mapped to 
13,041 proteins. It has been emphasized that the information 
are all carefully and manually curated (instead of generated 
by automated data mining algorithms). Among the 95,016 
annotated phosphosites, 88,250 of them are identified based 
on in vivo analysis alone, 2,678 from in vitro experiments and 
4,088 phosphosites by both methods. Furthermore, only 5,930 
phosphorylation events, i.e., kinase-substrate relationships 
(KSR) have been curated. Only a very small fraction of the total 
observed phosphorylation events were curated. In other words, 
for the vast majority of the identified in vivo phosphosites, the 
specific kinase(s) responsible for the phosphorylation events 
remain unknown. Computational approaches to infer KSRs 
introduced below attempt to bridge this wide gap. 

III. Phosphorylation network inference

Many different computational approaches have been taken 

for reconstructing phosphorylation networks, or connecting 
kinases and phosphosites into a biological signaling 
network. The first is a common approach to annotate 
phosphoproteins to pathways, modules, or protein-protein 
interaction networks using existing knowledge in pathway 
or network databases, such as Ingenuity Pathway Analysis 
(www.ingenuity.com), PANTHER (43,44), KEGG (45), 
GeneGo metaCore pathway analysis (www.genego.com), or 
STRING (46). There is no dynamic information in this kind 
of annotation, but a snap shot of all possible interactions. 

The second approach, although not mutually exclusive 
from the first approach, has been primarily focused on 
inferring the phosphorylation of substrates by corresponding 
kinases, commonly referred as KSR. Development of 
computational methods to predict binding substrate 
specificities of protein kinases started from experimental 
identification of consensus sequence motifs recognized by 
the active sites of kinases (47,48). However, these sequence 
motifs often lack sufficient information to uniquely identify 
substrates of specific kinases. For example, the sites 
phosphorylated by different kinases from the CDK and 
SRC families cannot be distinguished by their consensus 
sequences alone. Several of these general computational 
approaches can be applied to enhance the evidence and 
narrow down to key players in the signaling network. For 
instance, Kim et al. has dissected the signaling network of 
TBK1, an emerging drug target using phosphoproteomics 
data (49) by applying multiple analyses, including gene 
ontology (GO) pathway enrichment analysis, motif analysis 

Table 2 Large human- or vertebrate-centric phosphoproteomics databases

Database Description
No. of substrates

Evidencee Ref
Phosphositesa Proteins

Phospho.ELM version 9.0 Experimentally verified phosphorylation sites in eukaryotes 42,574b 8,718d L, E (38-40) 

PhosphoSitePlus An online systems biology resource providing 

comprehensive information and tools for the study of 

protein PTM including phosphorylation, ubiquitination, 

acetylation and methylation 

100,179c 

(65,511 pSs, 

19,606 pTs, 

15,053 pYs)

19,538 L, E (41)

Human protein reference 

database (HPRD) 

One of the largest phosphorylation for human proteome 95,016 13,041 L, E (42) 

a, cited numbers are from the published paper. When data are available for download, the updated numbers of phosphosites are listed 

below as footnote; b, the number of phosphosites listed from the actual data downloaded from the website on 2/27/2014 is 42,573 

(described as Version 9.0, September 2010). (31,754 pSs, 7,449 pTs 3,370 pYs). Abbreviations for three types of phosphorylation sites 

are: pY, phosphorylated tyrosine; pS, phosphorylated serine; pT, phosphorylated tyrosine; c, the numbers of phosphorylation sites 

obtained from their website on 2/27/2014 is 210,352 (http://www.phosphosite.org/homeAction.do); d, the number of substrates from 

their website listed on 2/27/2014 is 8,698; e, evidence: L, manual curated from scientific literature; E, experimentally verified data.
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using the motif-x algorithm (50), and GeneGo MetaCore 
pathway analysis. Table 3 provides an overview of the 
statistical methods or bioinformatics tools described in this 
section for inferring phosphorylation network. 

Network context of kinases and phosphoproteins are 
incorporated by some of prediction algorithms such as 
NetworKIN (52,53). The contextual information includes 
subcellular compartmentalization, co-localization via 
anchoring proteins and scaffolds, and temporal and cell-type 
specific co-expression. The algorithm uses neural networks 
and position-specific scoring matrices to assign phosphosites 
to one or more kinase families, based on the intrinsic 
preference of kinases for consensus substrate motifs (51) at 

the first stage. In the second stage, the contextual information 
from the STRING database is incorporated to improve 
the specificity from the motif-based predictions. It has 
reconstructed the phosphorylation network with 7,143 site-
specific interactions and improves the prediction accuracy of 
known KSRs from 25% to 64% (52). The data is available for 
download. In their follow-up paper focusing on their online 
database, it is indicated that there are 20,224 site-specific 
interactions available through their website involving 3,978 
phosphoproteins and 73 human kinases from 20 families (53). 

Building on predictions made from NetworKIN, 
downstream analysis can be performed. While NetworKIN 
is a powerful tool for predictions both the interface (web-

Table 3 A summary of methods or tools for phosphorylation network inference 

Categorya Method Description Ref

General PANTHER Protein annotation through evolutionary relationship classification combines 

gene function, ontology, pathways and statistical analysis tools 

(43,44)

KEGG A database resource for understanding high-level functions and utilities 

of the biological system, especially large-scale molecular datasets 

generated by genome sequencing and other high-throughput experimental 

technologies

(45)

STRING A database of known and predicted protein interactions. The interactions 

include direct (physical) and indirect (functional) association

(46)

Kinase-substrate 

relationship (KSR)

Scansite A motif-based prediction algorithm to infer kinase substrate relationship (51)

NetworkIn A prediction algorithm that augments motif-based predictions with the 

network context of kinases and phosphoproteins

(52,53)

PhosphoSiteAnalyzer A tool that incorporates network predictions with analysis and visualization 

tools

(54)

CEASAR An approach combines computational methods and experimental 

functional protein array data to identify KSRs

(55)

GPS A sequence-based tool, called the group-based prediction system (GPS) to 

hierarchically predict kinase-specific phosphosites for 408 human kinases

(56)

iGPS An extension to GPS by incorporating protein-protein interaction 

information to reduce the false positive rate and developed iGPS (in vivo 

GPS)

(57)

PKIS A novel encoding strategy combined with support vector machines (SVM’s) 

for predictions

(58)

Banjo A Bayesian network approach to identify network structure based on 

phosphoproteomics datasets and constraints of PPI from the HPRD 

database

(59)

Ontology Fingerprint 

Enhanced Bayesian 

Network

Using ontology fingerprint from biomedical literature and GO to inference 

network structure, LASSO regression for regularization, and BIC and cross 

validation for model selection. 

(60)

a, two broad categories are listed here: (I) general (including general pathway databases and/or analysis tools); and (II) algorithms 

or methods primarily focusing on the inference of kinase-substrate relationships (KSRs). Other information could be used as part 

of evidence to infer KSRs.
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based tool) and the licensing limit the flexibility to perform 
such analysis. PhosphoSiteAnalyzer (54) is one of the first 
tools to incorporate NetworKIN predictions with analysis 
tools. Kinase predictions are extracted from NetworKIN 
using automated software to “screen scrape” results from 
the NetworKIN website using C# scripts. The process is 
still semi-automated since user interaction is required to 
save result files locally. Input files for PhosphoSiteAnalyzer 
include FASTA files for protein sequences, specific 
phosphosite positions (used for kinase predictions), and 
additional annotation about the experimental conditions 
(e.g., responsive to a compound, log ratios, P values from 
a statistical test). Once the predictions are generated and 
extracted from NetworKIN, a variety of analyses are available 
that typically involve characterizing the kinases that are 
predicted to be phosphorylating proteins. For instance, there 
are subset-specific kinase enrichment analyses which combine 
experimental annotation (e.g., class labels) with the predicted 
kinases for enrichment among a subgroup (as determined 
by a Fisher exact test). Consensus motifs in kinase-
phosphorylation interactions can be compared between 
subgroups, suggesting a specific motif. Network analysis of 
KSR can be performed in Cytoscape (61) after exporting the 
connections from the software. Additionally, kinase-kinase 
relationships can be identified using clustering and heat 
maps of co-occurrence. PhosphoSiteAnalyzer provides an 
integrated environment for motif-enrichment analysis and 
kinase associations based on quantitative data.

Different proteomics platforms have been developed 
and applied to study phosphorylation. A recently developed 
approach, CEASAR (55), attempts to combine computational 
approaches and experimental data to identify KSRs using 
functional protein arrays. The authors first identified the 
proteins on the array that could be phosphorylated by a 
given kinase and then removed the false positive signals 
using control experiments. The collection of 289 kinases and 
1,967 substrates after step 1 is referred to as the “rawKSR” 
dataset. The second step to enrich for physiological relevance 
is performed by integrating the contextual information by 
applying a Bayesian model (62). Using a positive training 
set composed of 1,103 experimentally validated kinase-
substrate pairs; and a negative training set with 10,000 proteins 
containing no known kinases, a likelihood L score for each of 
the 24,046 KSRs was calculated. Applying a P value of 0.05 as 
threshold, a refined 3,656 KSRs involving 255 unique proteins 
and 742 substrates were predicted and referred to as “refKSRs”. 
The third step combines additional known and curated KSRs 
and generates the combined dataset, referred to as comKSR. 

The forth step uses an iterative motif prediction approach to 
combine the rawKSR and in vivo phosphosites. After the final 
step, a phosphorylation map with 4,417 KSRs, connecting 
between 2,591 sites from 652 substrates and 230 kinases  
was generated, and is referred to as a high-resolution map 
of human phosphorylation networks. Among the 7,143 site-
specific KSRs identified by NetworKIN, after removing 
the kinases or substrates with obsolete Ensembl IDs, 6,336 
site-specific kinase substrate  interactions remain. Newman 
et al. (55) used the known 1,156 site-specific KSRs as the 
bench mark to evaluate the performance of CEASAR against 
NetworKIN. The true positive rate of NetworKIN is 0.76% 
(48/6,336) while CEASAR has 17.2% true positive rate 
(758/4,417) with a >20-fold improvement in the true positive 
rate. This might not be surprising since the known 1,156 site-
specific KSRs, which were used to compare the performance, 
likely include all 1,103 interactions used as part of the positive 
training dataset in step 3. The authors primarily credited the 
improvement to using full length proteins, instead of using 
peptides. Fully folded protein structures could potentially be 
important for substrate recognition. 

Xue et al. have developed a sequence-based tool, called the 
group-based prediction system (GPS) to hierarchically predict 
kinase-specific phosphosites for 408 human kinases (56). 
Xue and his collaborators later extended their algorithms to 
incorporate protein-protein interaction information to reduce 
the false positive rate and developed iGPS (in vivo GPS) (57). 
They constructed eukaryotic phosphorylation networks and 
predicted a total of 186,922 site-specific KSRs from 1,079 
proteins kinases and 9,247 substrates for 44,290 phosphosites 
in five different species, including yeast, C. elegans, drosophila, 
mouse and human. The stand-alone applications are freely 
available for download (http://gps.biocuckoo.org/). Currently, 
on their website, it is indicated that GPS 3.0 can predict KSRs 
for 464 human kinases. 

Another approach, PKIS (58), uses a novel encoding 
strategy combined with support vector machines (SVMs) to 
predict a KSR. As reported by these authors, Phospho.ELM 
currently lists 3,151 KSRs. However, this is less than the 12% 
of the total 27,404 sites in the database thus arguing the need 
for additional work. The predictor for PKIS was trained to 
predict specific kinases interacting with specific phosphosites. 
It is trained on a subset of kinases from Phospho.ELM that 
had at least ten predicted phospho sites. Similar to GPS-
related methods, there is the inclusion of negative examples. 
That is, examples are provided in which kinases phosphorylate 
sites which are phosphorylated by other kinases (not the 
target kinase). This is distinguished from the more common 
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approach of examples in which a site is selected that is not 
phosphorylated at all. This approach allows the classifier to see 
both positive examples of kinase-phosphorylation relationships 
and negative examples of no relationship between kinase and 
phosphorylation. The sequence in the kinase was encoded 
using an occurrence frequency of each amino acid within a 
30AA window. The authors demonstrate successful prediction 
of a set of kinase-phosphorylation relationships identified 
using CEASER (55). The results of predictions were generally 
high in specificity and similar in sensitivity as other methods, 
including GPS2.1, Musite and others.

Bayesian network analysis provides a probabilistic graph-
based approach to model signaling pathways (63), account for 
the uncertainties (64), and to reconstruct signaling networks 
(65,66). A Bayesian network is a directed acyclic graph (DAG), 
in which the nodes are variables and the edges are dependence 
relations between two given nodes. For instance, Banjo (59) 
was used to search and identify network structure based on 
phosphoproteomics datasets. Due to a vast possible number of 
network structures, the following biological constraints were 
used to constrain the search (66): any interactions must be 
PPI from HPRD, the proteins must be connected to at least 
one protein in the HPRD database, the proteins have to be 
measured at least in two out of the four datasets, which the 
authors have measured in their datasets. Other approaches 
using Bayesian networks also exist. For instance, Ontology 
Fingerprint Enhanced Bayesian Network (60) first used the 
ontology fingerprint from biomedical literature and GO, 
which is a set of GO terms overrepresented in the PubMed 
abstracts linked to a gene (or phenotype) and its enrichment 
statistical significance, evaluated by P values (67). Based 
on the network structure, the search process then used the 
information on pair-wise similarity of ontology fingerprints to 
decide to add or remove edges, and to generate large numbers 
of candidate networks. The authors trained the networks based 
on the proteomics data using the expectation-maximization 
algorithm with LASSO regression for regularization. Finally, 
BIC and cross-validation were used to select the best predicted 
network in the training dataset. The results showed that their 
method seemed to be able to capture signal transduction 
and predicted phosphorylation levels with high correlation  
(R2 =0.93). Partial least-squares regression (PLSR) was used to 
reduce the dimensions and also evaluate the optimal number 
of partial least squares components to retain using root-mean-
squared error (RMSE) (68). 

There are also more statistical or mathematical models 
developed for inferring signaling networks or regulatory 
networks using transcriptomics data. This is partly due to the 

fact that microarray gene expression data are widely available. 
Although describing methods for inferring networks of other 
types (other than phosphorylation network) is not within the 
scope of this review, however, some of the methods could 
be modified and applied to infer phosphorylation networks. 
Network component analysis decomposes a matrix into two 
matrices, one for the connectivity strength and the other for the 
regulatory signals. It uncovers hidden regulatory signals from 
outputs of a network when partial knowledge is available (69). 
We also have developed a Bayesian method by incorporating 
information on pathways and gene networks in the analysis of 
DNA microarray data to select markers, which are associated 
with survival outcome in a breast cancer study (70). Prior 
pathway information was used to define pathway summaries, 
specify prior distributions, and structure the Markov chain 
Monte Carlo (MCMC) moves to fit the model. In a separate 
work on inferring the regulatory relationship between miRNA 
and mRNAs, instead of selecting predictive markers, i.e., the 
nodes in a network, we used a Bayesian graphical model to select 
the regulatory relationships, i.e., the edges, between miRNA and 
mRNAs (71). We will discuss more open questions including 
some of the extensions of this work in the final section.

IV. Connecting kinases or phosphorylation to 
medicine

Kinases have become one of the largest ‘druggable’ groups 
in cancer therapeutics in recent years. Various computational 
approaches were applied or developed to connect kinases or 
phosphorylation events to medicine, for potential therapeutic 
strategies or biomarker identification for drug response. For 
instance, unsupervised cluster analyses were applied to the 
phosphotyrosine profiling of tyrosine kinases from 41 non-
small cell lung cancer (NSCLC) cell lines and ~150 NSCLC 
tumors. The authors have identified existing known oncogenic 
kinases such as EGFR and c-Met as well as (at the time) 
novel drivers, such as ALK and ROS fusion proteins (72). For 
selecting phosphoproteomics markers for predicting Dasatinib 
response, Wilcoxon rank sum tests were first performed, 
followed by leave-one-out cross-validation to decide the 
number of markers/features to keep in the model, and a SVM 
with linear kernel was used for building the final classifier (73). 
Protein-protein interaction networks were visualized after the 
model building. However, the network information was not 
used for selection of the signature of 12 phosphosites in this 
study. A recent tool, HyperModules, was developed identifying 
clinically and phenotypically associated network modules with 
disease mutations for biomarker discovery (74). The kinase-
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substrate network was used in the algorithm.
Given a set of kinases with mutations, people are interested 

in finding out what potential kinase inhibitors could be used 
for cancer treatment. Recently, large scale kinase inhibitor 
selectivity profiles have become available (75,76). K-MAP (77),  
an online tool using these two kinase inhibition profiles 
(75,76) as reference databases, was developed to correlate and 
prioritize kinase inhibitors that enriches a set of query kinases 
provided by users. In the first reference database, Anastassiadis 
et al. systematically investigated 178 commercially available 
inhibitors against a panel of 300 protein kinases and assessed 
the kinase inhibition (IC50) (75) while Davis et al. evaluated 
the inhibitor selectivity and potency of 72 inhibitors on  
442 kinases using direct binding affinities between kinases 
and inhibitors (Kd) (76). The pattern matching approach is 
similar to the Connectivity Map (78), which uses Kolmogorov-
Smirnov (KS) statistics. The “score” reported on the website 
is normalized between 0 and 1 for each drug and inhibitors are 
ranked based on this normalized score. A permutation-based 
P value is based on randomly permuting the total number of 
kinases in each query from the ranked order list for each drug. 
A user-friendly web-based tool, implemented using Python, is 
available (http://tanlab.ucdenver.edu/kMap). 

V. Open opportunities

Phosphorylation at different phosphosites of a protein 
could lead to different molecular events and physiological 
responses. For instance, phosphorylation at different tyrosine 
sites of the SRC kinase could lead to either activation or 
inhibition of the SRC kinase (79). Different kinase inhibitor 
sensitivities were found among different sites of EGFR (17). 
Identifying and quantification of phosphorylation events 
associated with drug response to the site-specific level 
remains non-trivial and will be informative for characterizing 
the drug mechanism and their potential clinical utilities. 

Important functional roles for phosphorylation and other 
PTMs have been known for decades, but only in the past 10 
years has MS-based proteomics begun to reveal the extent of the 
PTM universe (80). The rapid evolution and development of new 
proteomics technologies pose challenges and also provide great 
research opportunities on how to quickly develop computational 
tools and statistical methods to analyze and incorporate 
data generated from these new platforms. An example of an 
emerging platform is the activity based protein profiling (ABPP) 
technique, which enables the quantification of a proteome-
level landscape of kinase activities (81,82). A number of enzyme 
families have been studied using this approach, including serine 

hydrolases, kinases, phosphatases, and metalloproteinases. 
ATP-based probes have been used to tag and enable LC-MS/
MS based identification and quantification of protein kinases 
and other important ATP-binding proteins in cancers cells. A 
large degree of the kinome can be captured (~80%) and effects 
of kinase inhibitors can be profiled. This kind of experimental 
data could be integrated with existing network knowledge in the 
public database or literature. 

There is an increasing recognition that understanding 
network interaction and interplay is essential to develop effective 
therapeutic strategies for treating complex diseases, such as 
cancer (6,83). As discussed in section III, phosphorylation 
network reconstruction has been a main research interest 
in the computational community, and improvement on 
phosphorylation network inference has been made in the past 
decade. Similarly, there has been proof of concept work on 
drug repurposing by connecting kinases to therapeutics using 
computational approaches (77,84) (section IV). Figure 1 shows a 
schematic representation of how a generalized linear regression 
model could be set up to integrate the phosphorylation network 
information and utilize the quantitative phosphoproteomics 
data to select targets and drugs computationally (Figure 1). 
The recent work of HyperModules is an example (74) of 
utilizing phosphorylation information for biomarker discovery. 
Other models could also be developed. For instance, Bayesian 
models incorporating pathways and network information 
could be modified for incorporating a phosphorylation 
network and/or protein-protein interaction network. We have 
previously developed an approach to select pathways and genes 
simultaneously on gene expression data through stochastic 
search to predict breast cancer survival outcome (70) and 
could be modified for this purpose. Furthermore, combination 
treatment strategies have become more common in recent 
years. There are attempts to select combinations of treatments 
using network information (85), however there remains an 
open question as to what an effective informatics or statistical 
method is to identify effective combination therapeutics. 
Biology is complex; the interplay between de-phosphorylation 
by phosphatases and phosphorylation by kinases, as well as the 
role of auto-phosphorylation, is not discussed in this review but 
clearly adds complexity to this type of analysis. 

There are many applications for the developments within 
phosphorylation network medicine. It is known that chemical 
compounds or drugs can interact with multiple and/or 
unintended targets including kinases. Drug-repurposing or 
repositioning has been one of the active areas in the past several 
years, suggesting that some medicines can be used to treat 
other (unintended) diseases. In addition, drug-drug interaction 
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(DDI) is an emerging threat to public health. Recent estimates 
indicate that DDIs cause nearly 74,000 emergency room visits 
and 195,000 hospitalizations each year in the USA (86). The 
adverse effects due to side effect of drugs or DDI are clearly an 
area for significant contribution by developments described in 
this review. Most gene-drug relationships are contained within 
the scientific literature, but are dispersed over a large number 
of publications, with thousands of new publications added each 
month. There has been successful computational work that 
serves as a proof of principle on automated text mining as a 
potential solution for identifying gene-drug relationships and 
aggregating them to predict novel DDIs (87). Research on 
using computational approaches to extract DDI or side effects 
with an emphasis on kinase inhibitor and phosphoproteomics 
knowledge for cancer therapeutics is largely under explored. 
Thus we believe that computational developments in 
understanding and constructing the signaling networks from 
phosphoproteomics will play a significant role in human health 
within cancer and beyond. 
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