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Introduction

Genomics is a branch of molecular biology concerned with 
the structure, function, and evolution of genomes, that is, 
of an organism’s hereditary information encoded in DNA. 
Cancer genomics is a subfield of genomics that deals with the 
application of high-throughput technologies used to identify 
genes associated with the development and progression of 
cancer. It is known that both, abnormalities in an individual’s 
germline genome, as well as somatic mutations play a role in 
cancer morbidity and mortality (1). To date, investigations in 
cancer genomics have resulted in the identification of roughly 
140 genes, which may facilitate, or “drive”, tumorigenesis as 
a consequence of their intragenic mutations. Mutations in 
these cancer “driver” genes serve to increase the “cell birth 
to cell death” ratio, thereby conferring a selective growth 
advantage to the cell in which these genetic alterations take 
place (2). 

The advent of DNA-microarray technology in the 1990s 
allowed researchers to simultaneously measure the expression 
levels of thousands of genes (3,4). This advance enabled 
scientist to (I) compare the genomes of tumors and healthy 
tissues, facilitating discovery and understanding of biological 

pathways involved in cell fate determination, cell survival, and 
genome maintenance (5-7); (II) improve diagnostic accuracy 
of tumor subtypes in cases where histological diagnosis is 
ambiguous (8-10); (III) monitor expression patterns over 
time to improve staging and risk assessment (11-13); and 
(IV) develop a deeper understanding of the tumor’s response 
to various therapeutics (14-16). Consequently, information 
gained form cancer genome studies may aid oncologists 
in the development of patient management plans that is 
guided by knowledge of an individual’s germline genome as 
well as the genome of the patient’s tumor (2).

Results from genomic research have already been 
translated to clinical implementation. In diagnostic 
applications, expression levels of 7 genes (PML-RARA, 
BCR-LBL1,  CBFB-MYH11,  ETV6-RUNX1, MLL-
rearranged, TCF3-PBX1, RBM15-MKL1) are used for WHO 
classification of leukemia subtypes, while 13 different genes 
have been clinically implemented to differentiate between 
various types of sarcomas. In prognostic applications, 
Oncotype Dx (a 21-gene signature) and Mammaprint 
(a 71-gene signature) are being used to distinguish risk 
subgroups. Also, mutations in the BRAF, TP53, and FLT3-
ITD genes are being used to identify prognostic subgroups 
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for colorectal cancer (CRC), lymphocytic leukemia, and 
myeloid leukemia, respectively. Among genes that have been 
identified as predictive of therapeutic response are the EGFR, 
KIT, KRAS, BRAF, and HER2, corresponding to non-small-
cell lung cancer, gastrointestinal stromal tumors, metastatic 
CRC, melanoma, and breast cancer, respectively (17). A 
famous example of germline mutations in tumor suppressor 
genes, BRCA1 and BRCA2 have been linked to a number of 
cancers, including breast and ovarian cancers (18).

The goal of this paper is to introduce the reader to 
artificial neural networks (ANNs) as they are used in cancer 
genomic studies, while providing a brief description of 
the components that comprise the analysis of genomic 
data. The rest of the paper is structured as follows: first, 
an introduction to the data and the issues that arise in 
its analysis; second, neural networks are described with 
the intent of providing a novice reader with information 
sufficient for understanding the processes that go on behind 
the scenes of a neural network implementation package in 
the performance of a basic classification task; third, a brief 
overview of pre-filtering and “gene-signature” selection 
methods is given; finally, a few notable applications are 
described in terms of the information given in parts 2 and 3. 
Also, a description of an illustrative example by the authors 
is provided at the end of the applications section.

Microarray technology and data collection

Due to its well-developed infrastructure, general acceptance, 
and relatively low cost, microarray experiments continue to 
be the most common source of data for cancer genomic 
studies (19). In microarray experiments, thousands of DNA 
sequences are arranged in probes and are exhibited in a high 
density array positioned on a microscope slide. Messenger 
RNA (mRNA) from both the tumor and the reference tissue 
are placed into the probes, where the mRNA of each tissue 
will bind to its complementary DNA (cDNA) in a process 
called hybridization. The data used for analysis is derived 
from the comparison of target gene expression across 
samples, which is accomplished by measuring the differential 
hybridization intensity of the sampled mRNA as it is reverse 
transcribed into the cDNA. In a two channel experiment, the 
two samples being compared are labeled with florescent dyes 
[usually Cy5 (red) for tumor and Cy3 (green) for the 
reference], and the hybridization of the samples with the 
arrayed DNA probes is measured by comparing fluorescence 
measurements of each dye. The relative gene expression 
between the tumor and reference samples is usually assessed 

as the log ratio of the two dye intensities (i.e., Expression = 
log2

Red
Green), where Red represents the dye intensity of the tumor, 

and Green represents that of the reference sample (20). One 
channel experiments are similar in nature, but involve 
hybridization of just one sample after it has been labeled with 
the dye (21). Other sources of genomic data stem from three 
generations of sequencing technologies that utilize a variety 
of techniques to amplify and compare expression of target 
DNA sequences. The reader is referred to (22) for a 
comprehensive review. 

Issues with data analysis

Data analysis usually involves the extraction of patterns 
that can be useful for classifying a given tissue sample based 
on its gene expression profile. This procedure consists of 
identifying the genes that contribute most to successful 
classification, thereby deriving what is commonly termed a 
“gene-signature” (23). The class of interest may represent 
a diagnostic category (e.g., malignant or benign), a survival 
group based on the outlook without treatment (e.g., survival 
of 5 years or more, or not), or categories of treatment 
response (e.g., toxicity response to treatment with an EGFR 
kinase inhibitor).

Whether the data is generated in microarray experiments 
or from studies utilizing sequencing technologies, similar issues 
arise during analysis (24). One of the main issues is due to the 
high dimensionality of the data, which results from the fact that 
expression levels are measured simultaneously for thousands of 
genes in each tissue sample, where the number of samples usually 
differs from the number of measured genes by a couple of orders 
of magnitude (e.g., 3,000 genes per sample, measured for 80 
samples) (25). Classifiers trained on highly dimensional data tend 
to fit the training data well, but when presented with a new set of 
gene features, as in clinical implementation, the classifier fails to 
correctly categorize the sample. This phenomenon of “overfitting” 
the data occurs when the classifier has learned to identify random, 
non-informative features that are peculiar to the particular dataset, 
instead of learning more general, high level features that are 
pertinent to the classification task at hand. 

Numerous statistical/machine learning methods have 
been proposed for the analysis task in cancer genomics, 
including classification trees (26,27), naïve-Bayes classifiers 
(28,29), and support vector machines (30,31). ANNs have 
been successfully utilized for both, sample classification, 
as well as identification of diagnostic, prognostic, and 
predictive gene-signatures. Among the reasons for the 
ANNs’ success is their ability to process many noisy, 
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correlated inputs, while utilizing their parallel nature for 
the simultaneous detection of a multitude of subtle features 
in the data. Further, an abundance of methods has been 
developed for finding the proper balance between model 
complexity, relevant feature extraction, and the modeling 
of non-linear discriminant boundaries necessary for the 
classification of genomic data.

Artificial neural networks (ANNs)

ANNs represent a class of computational models that are 
inspired by biological function of the human brain. ANNs 
are usually represented by a weighted, directed graph 
connecting inputs to a series of interconnected “hidden” 
layers that are comprised of multiple nodes called “neurons,” 
that are in turn connected to an output layer. The output 
nodes produce the desired approximations, often in terms 
of the conditional probability of class membership, given 
a particular input vector. The structure of each node in 
the “hidden” layer can be understood as a mathematical 
representation of a neuron, first suggested in the early 
works by McCulloch, Pitts, and Hebb (32). When this 
“neuron” receives stimuli from its connections to the 
preceding layer, it becomes activated and outputs a value, 
which is determined by a smooth activation function (e.g., 
sigmoid or tanh). The argument for the activation function 
is a weighted average of inputs produced by nodes from 
the preceding layer that are connected to this particular 

neuron by weighted connections. The weight that is 
associated with each directed connection represents 
the importance of the connection, while the directions 
establish the flow of information through the network. 
This pattern of interconnections is referred to as network 
architecture (33). Development of network architectures 
has been largely inspired by the connections among 
neurons in functional areas of the human brain, where 
the nodes in the ANN correspond to neurons that are 
stimulated by inputs at the dendrites (i.e., the weighted 
connections), that produce a single output at the axon, 
which in turn, is connected to other neurons at the next 
synaptic junction, and so on (34). When the architecture 
does not contain loops, the network is said to be a feed-
forward network, also called the multilayer perceptron 
(MLP). The MLP is the architecture most often used in 
cancer genomic studies. 

A graphical representation of a typical feed-forward multi-
layer perceptron, for a multi-class/softmax classification 
problem, is depicted in Figure 1, and a mathematical 
representation of a single neuron can be formulated as:

Output f W x bi i1 = +( )

where f x
e x( ) =

+ −( )
1

1  is the sigmoid transfer function, xi is the ith
 

input vector, Wi is the vector of connection weights for the 
ith input and b is the bias term associated with a particular 
layer of inputs. Another common choice of a smooth 
transfer function is the hyperbolic tangent, f x

e e
e e

x x

x x( ) = −
+

−

− .

Figure 1 Graphical representation of a feed-forward multi-layer perceptron, with a softmax classification output layer.
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Learning

It has been theorized that learning in the human brain, 
takes place by updating relationships between neurons, 
which is accomplished by changing the intensities of their 
connections, the synapses, such that the effect of one neuron’s 
activation on another neuron is no longer the same (35). In 
the ANN the synapse is modeled by the weight assigned to 
the connection between two neurons. The MLP learns to 
accurately associate input features with particular outputs 
by updating weights assigned to the multitude of network 
connections, such that the error between the network output 
values and the target outputs is minimized. This process can 
be imagined as iteratively moving around separating hyper-
planes, that form boundaries between sample categories 
in input space, until all of the training inputs are correctly 
separated/classified (i.e., network error is minimized).

Network error is often defined as the squared Euclidean 
distance between the network output and the target value, 
and can be stated as the following objective function:

[1]J W b x y h x yw b, ; , ,( ) = ( ) −1
2

2

where hw,b(x) is the hypothesized network output as a 
function of the inputs, x , and y is the target/true value. The 
same error function can be stated in more detail as:

[2]J W b h x yi
m

w b
i i

l
n

i
s

j
sl l l, ,( ) = ( ) −






 +=

( ) ( )
= = =∑ ∑ ∑ +
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2 21
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where m is the number of training samples, nl is the number 
of layers in the network, sl is the number of nodes in the lth 
layer, and sl+1 is the number of nodes to which each node in 
the  lth layer is connected. In other words, network error is 
comprised of the sum of squared errors, summed overall 
output units and all training samples. The second term in 
Eq. [2] is the “weight decay,” and will be described later in 
the paper. Since the network output value is represented 
as a function of network weights, the error function can be 
minimized with respect to these weights. The most popular 
method for solving this optimization problem is via a 
method known as gradient descent. 

Gradient descent is a weight updating rule that is 
based on the fact that for any multidimensional surface, 
the direction of greatest increase/ascent is determined by 
the gradient of the surface function with respect to the 
parameters that define the surface. Thus, moving in the 
direction opposite to the gradient implies movement in the 
direction of steepest descent. As the goal of the optimization 
problem is to find a configuration of the weights such that 
the error function is at a minimum (i.e., the bottom of the 

error surface), taking incremental steps in the direction of 
steepest descent should eventually bring us to this minimum. 
Thus, under gradient descent, the weights of the MLP are 
iteratively updated according to the following rule:

[3]w w
w

J W bij
l

ij
l

ij
l

( ) ( )
( )= −
∂

∂
( )α ,

[4]b b
b
J W bi

l
i
l

i
l

( ) ( )
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∂
( )α ,
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[5]
∂

∂
( ) = ( ) +( ) =∑w
J W b

m
J W b x w

ij
l ij

l
i

m, , , , y(i) (i)1
1

λ

and wij
l  is the connection weight between unit j in layer l and 

unit i in layer l+1, and bi
l  is the bias associated with unit i in 

layer l+1.
Learning is accomplished via the back propagation 

algorithm (36). An intuitive understanding of this process 
can be developed as follows. After the network architecture 
has been determined, the connection weights between all 
neurons are randomly initialized (usually to some small 
value, normally distributed around zero). Next, given a 
training example consisting of an input vector and the 
corresponding classification for the ith tissue sample, a 
forward pass through the network is performed, in which 
activation values at all neurons, including the outputs, are 
computed. The error between the network output and the 
target classification is computed, and propagated backwards to 
all neurons that participate in the production of the output. The 
goal is to obtain a measurement of classification error for which 
each node in the network is responsible (37). Computation of 
this error at the output node is straightforward, since the 
both the output and the target value are known, while the 
error at each node in the hidden layers is computed as a 
weighted average of the errors at nodes in the subsequent 
layer that use this particular node as an input. 

Step size

The parameter alpha in Eqs. [3,4] is known as “step size” 
or “learning rate” for the gradient descent algorithm, since 
it indicates the amount by which the weights are updated 
during each iteration of the algorithm. If this parameter 
is too small, then the algorithm may take a long time 
to converge and is more likely to get trapped in a local 
minimum. However, if step size is too large, the minimum 
may be overlooked and the algorithm may oscillate and fail 
to converge. Other issues regarding smooth and efficient 
implementation of the algorithm can be dealt with by an 
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inclusion of other tuning parameters such as momentum, 
that are described in more detail in (38,39).

Weight decay

Problematic model generalization is rooted in overfitting, which 
is usually associated with large numbers of model degrees of 
freedom (e.g., the connection weights), as the bias-variance 
trade-off becomes unbalanced in the variance direction (40). 
Thus, it is of benefit to implement a design in which irrelevant 
connections between model neurons are removed. This may 
be accomplished via “weight decay”. The addition of this term 
to the network objective function ensures that some of the 
connection weights are forced to zero, effectively getting rid of 
connections with small weights that could have been assigned 
as a result of random noise in the training sample rather than a 
recognition of a pattern that is characteristic of the phenomenon 
of interest. The proper number of neurons in the hidden layer 
(i.e., the architecture) as well as the best value for the weight 
decay parameter, λ in Eq. [2], is usually determined through a 
process of cross-validation. 

Cross validation

Cross validation is a quality assessment strategy which 
entails division of the training data into k distinct subsets. 
The model is than trained on the k–1 subsets, and its 
performance is tested on the omitted subset (41). This 
procedure is repeated, by “holding out” each of the k 
subsets, in turn, using the k–1 subsets for training, and the 
kth subset for validation. The prediction errors from k such 
cycles are averaged and used to compare ANN models 
with different architectures and various weight decay, step-
size, and momentum settings. This procedure is commonly 
termed k–fold cross validation. Another form of cross 
validation is performed by removing a single sample from 
the training set, training the classifier in its absence, and 
then using the input values of this missing sample to predict 
its output. This procedure is repeated for each sample in 
the training set, and the prediction quality is measured as an 
average of errors for each of these individual samples. This 
type of cross-validation procedure is referred to as “leave-
one-out” cross-validation (41).

Filtering and gene selection

Often before gene expression data is fed into a classifier 
such as the neural network, preprocessing or filtering 

is required, in order to identify the genes relevant for 
classification. Some of the genes in a data set resulting from 
microarray experiments may have gene expression values 
that are not meaningful and do not vary across classes. 
To fix this problem, genes that have a range outside some 
meaningful value are removed. For example (42), let gij be 
the gene expression level of gene i for training sample j, 
then gene i may be removed if
max min
j ij j ijg g( ) − ( ) < some meaninful quantity e.g., 500

max
j ijg( ) > some meaninful quantity e.g., 16,000

max

min
j ij

j ij

g

g

( )
( ) < some meaninful quantity e.g., 5

After such genes are removed, the relevance of genes can 
be ranked via a variety of methods. The two main criteria for 
the selection of relevant genes have to do with signal strength 
and redundancy. Signal strength may be measured by the 
signal to noise ratio (SNR), where the signal represents inter-
class expression differences, while the noise represents intra-
class variation (42). Similarly, relevance ranking for individual 
genes can be carried out by obtaining P-values from standard 
statistical tests [e.g., t-test comparing the expression levels 
of a particular gene across tumor and normal tissue (43), 
or a Cox regression model comparing survival time across 
different levels of gene expression (44)]. Significance analysis 
of microarrays (SAM), a version of the t-test that is based on 
a tolerable false discovery rate (FDR), is a popular choice for 
gene selection (45). Gene redundancy may result from co-
expressed genes which are expressed in similar quantities 
across classes (42). This redundancy can be measured by 
standard correlation measures between two individual 
genes, such as the Pearson correlation coefficient, and thus 
can be controlled by implementing methods that take this 
correlation into account (46).

The results of the neural network may also be used to 
identify the genes that are most relevant to the classification 
task. This is often referred to as the “wrapper” method, in 
which model results are used to identify relevant genes (42). 
For example, sensitivity analysis may be performed by 
numerically taking derivatives of the network outputs with 
respect to the inputs in order to identify the genes that 
cause the classification to change the most. This can also 
be accomplished by removing genes, one by one from the 
input vectors and examining the change in classification 
accuracy. One way to identify relevant genes, and to reduce 
redundancy at the same time, is through a “consecutive 
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search” method, of which there are two main types (42). 
Forward search begins with an empty set of genes to be 
used as inputs for the prediction model, and then adds 
one gene at a time to the set of inputs, based on the 
predictive value that the gene contributes to the set. In 
contrast, backward search begins with all of the available 
genes as inputs, and then sequentially gets rid of genes, 
whose removal has the smallest negative impact on the 
overall prediction value of the set of inputs. An approach 
that identifies relevant genes as well as reduces the 
dimensionality of the input space, is principal component 
analysis (PCA). PCA can be performed, using singular 
value decomposition (SVD) on the high dimensional 
input space, and then principal component scores, 
corresponding to the first p principal components that 
represent some acceptable amount of the total variation 
in the gene expression data (e.g., 70%), are used as inputs 
into the model. For a complete treatment of feature 
selection methods, the reader is referred to (47).

Applications

Javed Khan and colleagues were among the first to apply 
the power of neural networks to the problem of cancer 
classification (48). In this application, the researchers 
developed a model for classifying small, round blue cell 
tumors (SRBCTs) of childhood cancer into four diagnostic 
categories, neuroblastoma (NB), rhabdomyosarcoma 
(RMS), non-Hodgkin lymphoma (NHL), and the Ewing 
family of tumors (EWS) in order to supplement histological 
diagnosis, which is difficult due to the tumors’ similar 
appearance. The accuracy of diagnosis is of paramount 
importance because the prognosis, treatment options, and 
responses to therapy vary widely across the four categories. 
The researchers used cDNA microarray data of 88 samples 
(63 for training and 25 for independent testing), containing 
6,567 genes. After weeding out genes that produced very 
small expression values in the microarray experiment, 
2,308 genes remained to be used for the analysis. The 
dimensionality of this data set was further reduced via PCA, 
with the first ten principal components (accounting for 63% 
of the variation in the expression data) to be used for scoring 
the expression data, thus resulting in a 10-dimensional input 
vector for each of the samples. The network architecture 
was chosen to be a simple two layer linear perceptron, 
with ten inputs and four threshold units. The network 
was trained using gradient descent with a learning rate of 
0.7 and a momentum coefficient of 0.3, with calibration 

terminated after 100 iterations. Three-fold cross-validation 
was used, and the procedure was repeated 1,250 times, thus 
training a total of 3,750 ANNs, with the classifications 
in each of the validation samples being based on the 
committee vote of the 1,250 ANNs. The test samples, 
however, were classified using a committee vote from all 
of the 3,750 networks. Based on the 63 samples used for 
training, a 96 gene subset of genes deemed most relevant 
for classification was identified by a sensitivity analysis 
involving the evaluation of the partial derivative of each of 
the outcomes with respect to each of the 2,308 genes, taken 
as an absolute value and averaged over the four outcomes 
and over the 63 training samples. Following the extraction 
of the 96 relevant genes, ten principal components were 
again evaluated and the entire network training procedure 
was repeated. Using these 96 genes, the network achieved 
100% correct classification on the independent test data.

Pal et al. was able to use a multilayer neural network, 
combined with “online” gene selection and fuzzy clustering, 
and the same SBCRTs dataset as Khan et al., to identify a set 
of seven genes that could be used for precise classification 
of the four tumor subgroups (49). In this application, the 
researchers use a feature selection MLP (FSMLP) which 
associates a gate with each of the inputs. This gate is in the 
form of an attenuating function which attenuates the input, 
prior to it going into the network, based on the ability of 
the input to reduce the training error. This attenuating 
function is differentiable with respect to the parameter 
which governs the attenuation, and thus can be optimized 
by a standard back-propagation gradient descent algorithm 
(as in Eq. [2]). The chosen MLP architecture contains 
one hidden layer with 150 nodes. The FSMLP was able to 
select 20 genes that were most relevant to the classification 
task. Twenty ANNs, with the gates removed, where trained 
with these 20 genes, with various weight initializations, and 
all 20 networks resulted in 100% accuracy on the training 
data. The FSMLP was then again used to further reduce 
the gene signature to ten most relevant genes, while a non-
Euclidian relational fuzzy c-means (NERFCM) clustering 
algorithm (50) was applied to the 20 genes selected 
previously to identify positively correlated genes (i.e., to 
reduce redundancy in the gene signature). The clustering 
process resulted in the identification of 6 clusters among 
the 20 genes. Next, genes that were not in the list of the top 
ten (from the pool of 20) where discarded from the clusters, 
leaving only the genes with the largest “gate-opening” 
values. This process resulted in the identification of a 7-gene 
signature, which was able to achieve 100% test accuracy.
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Chang et al., used ANN analysis to identify micro RNAs 
(miRNAs) predictive of tumor status, in particular, to 
discriminate between stage II colorectal tumors and normal 
tissue, with a goal of better patient stratification with respect 
to the recommendations for adjuvant therapy (51). In CRC, 
responses to therapeutic agents are often unpredictable, which 
reflects the heterogeneity of the disease and highlights the 
need for accurately phenotyping the tumors in order to enable 
better personalized therapies and thereby optimize therapeutic 
outcome. The authors comment that miRNAs target mRNA 
cleavage and translational repression, thereby governing cell 
differentiation, proliferation, and apoptosis, and argue that 
miRNA profiles may be more effective in disease classification 
than genomic profiles. In this study, the researchers use a 
three layer MLP, optimized via feed forward back propagation 
gradient descent, with “relative expression of miRNA” as the 
inputs and a binary classification (stage II tumor or control) 
as the output. Cross-validation was utilized to help select the 
proper amount of neurons in the hidden layer.

In order to identify the miRNA signatures most 
predictive of tumor status, the authors utilized ANN-based 
algorithms, coupled with an additive stepwise approach. 
The stepwise procedure starts by cycling through all the 
steps in network optimization and validation with one 
input, choosing the best input according to prediction error 
on the validation set, and then repeating the process with 
two inputs (one that was chosen as best in the previous step, 
and cycling through the remainder of miRNAs), and so on. 
Fifty “reshuffelings” were performed to assign the cases as 
follows: 60% training, 20% testing (i.e., used to monitor 
and stopped the training once the model was optimized), 
20% validation (i.e., used to measure predictive error). 
Once the predictive miRNAs were identified, analysis 
proceeded by comparing the up/down regulation of these 
miRNAs across individual-matched tumor and normal 
tissue, using ANOVA and the t-test. The analysis resulted 
in the identification of a three miRNA signature (miR-139-
5p, miR-31, and miR-17-92) predictive of tumor status in 
stage II CRC samples with a median accuracy of 100%.

Petalidis et al., used a dataset of 65 highly annotated 
tumors and a simple, single-layer perceptron, to accomplish 
grading of human astrocytic tumors, derive specific 
transcriptional signatures from histopathologic subtypes 
of astrocytic tumors, and assess whether these molecular 
signatures define survival prognostic classes (52). In this 
study, the problem of classification into three tumor grades 
was reduced to three separate classification problems. 
Genes selected for inputs were identified via the “signal 

to noise” method on the entire U133A slide genome. 
Training performance, as well as the optimal number of 
genes required for grading was determined via leave-one-
out cross-validation. For each of the leave-one-out runs, 
genes were ranked in accordance with signal-to-noise (taken 
over all but the left out sample) and grading success rate was 
determined using increasing numbers of these ranked genes. 
These genes were aggregated into one set, in which 59 genes 
were left after the removal of redundancies. Hierarchical 
clustering revealed a clear pattern of distinction between the 
GB, AA, and A tumor grades, and defined three functional 
gene classes for the molecular tumor subtypes. One subtype 
included genes that were responsible for wound healing, 
extracellular matrix constituents, and cell adhesion, these 
were characteristic of the 4 GB grade. Another group was 
involved in cell signaling, protein biosynthesis, and cell cycle. 
Survival analysis was performed using the ANN assigned 
classes, which resulted in the categorization of survival groups 
consistent with those identified in hystopathological grading.

Fakoor et al., utilize a dimensionality reduction technique 
via an auto-associative form of learning, called deep learning 
(i.e., auto-encoder neural network) (53). An auto-encoder 
attempts to learn high level features by using inputs as 
outputs and utilizing a hidden layer with nonlinear transfer 
functions between the two (i.e., an autoencoder learns the 
identity function). In this study, the authors attempt to 
develop a more generalized version of a cancer classifier 
that can learn concise/high-level features from unlabeled 
data, and thus, has potential to be generalized to new cancer 
types without the redesign of new features. Unlike methods 
that require the input/training data to correspond to the 
particular cancer type in order for the appropriate label 
to be provided for learning, data for this classifier can be 
obtained by combining gene expression information from 
different tumor types, as long as the data is generated via 
the same platform for gene expression assessment. The 
approach proposed by the authors is comprised of two parts, 
the feature learning part and the classifier learning part. 
The feature learning phase is itself comprised of two parts. 
First, dimensionality is reduced via PCA, and principal 
component scores, as well as some randomly selected “raw” 
features are used in the sparse autoencoder that learns an 
approximation of the input data constructed by a limited 
number of the neurons in the hidden layer. This resulting 
network is trained via the back propagation gradient 
descent method with a sparsity penalty (54). The sparsity 
penalty forces the activations in the hidden layer to zero, thereby 
forcing the network to represent the inputs via a small number of 
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the hidden layer activations. The authors argue that the result of 
sparse encoding of the input space, is that hidden layer “features 
that allow for a sparse representation are more likely to encode 
discriminatory functionally monolithic properties of the original 
data and thus are more likely to form a good basis for classification 
learning”. In the classifier training phase of the process, the 
activations from the hidden layer of the feature learning phase are 
used with a set of labeled data to train a three layer MLP softmax 
classifier (described above in the paper). The authors point to 
work by Lu et al., where the possibility of discovering common 
gene features across various cancer types was demonstrated (55). 
The classifier was evaluated using 10-fold cross validation and 
compared against results of two “baseline” algorithms [a supper 
vector machine (SVM) trained with Gaussian kernel, and regular 
softmax regression] for 13 different data sets. The classifier 
proposed by the authors outperformed the baseline algorithms for 
11 out of the 13 datasets. 

Revisit of the SRBCT dataset

In order to conduct a simple experiment with the previously 

described feed forward MLP methodology, the authors 
constructed a neural network, with a soft-max classification 
output layer, and trained it to distinguish between the various 
types of SRBCTs, utilizing the data set  from Khan et al. (48). 
As previously described in this paper, the data consists of 88 
samples, 63 of which were used for training and 25 for testing 
the performance of the classifier. In the first step, using only 
the training set, all 2,308 significantly expressed genes were 
filtered (using ANOVA) for significant expression differences 
across tumor classes, and the top 100 (ranked in ascending 
order on basis of P values) were kept for PCA analysis. 
Training data was projected onto the first three components, 
which accounted for approximately 70% of the variance in the 
data. Only three components were selected in order to facilitate 
a graphical representation of neural network performance. A 
MLP, with one hidden layer (containing five neurons) and a 
four-class softmax output layer, was constructed and trained 
for 80 epochs utilizing the back propagation gradient descent 
algorithm (see Figure 2). The classifier was evaluated via the 20 
test samples which were histologically diagnosed cancers of the 
types used for training the classifier. Tissue types that did not 

Figure 2 Graphical representation of the feed forward MLP. The input layer contains four input nodes, three of which receive an input in 
the form of gene data projection onto a principal component, while the 4th represents the bias term. The second layer (hidden layer) contains 
five nodes, each of which receives a weighted average of the inputs and the bias term and plugs them into a sigmoid activations function. The 

Wi
j( )  represent a vector of weights from layer j to be used in the ith node (where the number of components in each vector corresponds to the 

number of inputs, not including the bias term), x(i) represent a vector of inputs from the ith layer, and b(i) represent the bias term for layer i. 
The activation values from the hidden layer are fed via weighted connections into the output layer, where each of the four nodes corresponds 
to a tumor class. The nodes of the output layer are activated via the softmax function and the activation values at each output node 
correspond to the probability of a tumor belonging to a particular class, given the values of the input. MLP, multilayer perceptron.
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correspond to a type of SRBCTs (i.e., skeletal muscle tissue, 
prostate cancer, etc.) were not used in for testing classifier 
performance. The classifier was able to correctly classify all 20 
of the histologically diagnosed SRBCTs. Figure 3 exhibits the 
separation of the test input instances, as classified by the MLP 
classifier.

Conclusions

ANNs are powerful tools in the domain of data analysis. 
Their reputations as accurate classifiers, robust predictors, 
and versatile approximation tools have remained strong. 
The power of neural network implementations has been 
enhanced by the ingenuity of a multitude of researchers 
who are constantly adapting currently developed 
methodologies to their domain of inquiry, as well as 
designing novel, more powerful implementations. As 
genomic data becomes cheaper and even more available 
than it is today, neural networks will continue to offer their 
robust and reliable structures for diagnostic, prognostic, 
and predictive software applications in the field of cancer 
genomics.
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