

Associations between polymorphisms in genes of base excision repair pathway and lung cancer risk

Shiqing Liu^{1,2}, Yao Xiao³, Chengping Hu^{1,2}, Min Li^{1,2,4}

¹Department of Respiratory Medicine, ²Xiangya Lung Cancer Center, ³Department of General Surgery, ⁴Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China

Contributions: (I) Conception and design: M Li; (II) Administrative support: C Hu, M Li; (III) Provision of study materials or patients: S Liu, Y Xiao; (IV) Collection and assembly of data: S Liu; (V) Data analysis and interpretation: S Liu, Y Xiao; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Min Li. Department of Respiratory and Critical Care Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China. Email: liminxy@protonmail.com; Yao Xiao. Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China. Email: yaoxiao@csu.edu.cn.

Background: The correlation between at-risk polymorphisms in genes of base excision repair (BER) pathways and lung cancer (LC) risk was newly considered but still not clear, a systematic review and updated meta-analysis was performed in the current study.

Methods: We identified and recorded the eligible publications from Google Scholar, PubMed, Medicine and Web of Science. For all calculates, odds ratios (ORs) and 95% confidence intervals (CIs) were applied to estimate the potential relationship between these genetic variants and LC risk. Subsequently, Begg's funnel plot and Egger's test were used to appraising the publication bias.

Results: A total of 202 case-control studies extracted from 116 publications were enrolled. Firstly, we analyzed six polymorphisms in *XRCC1*, the overall analysis results of homozygote and recessive models illustrated that rs3213245 polymorphism was remarkably linked to an upgrade LC risk. Then, in the subgroup analysis stratified by ethnicity, we uncovered a meaningfully raised risk of LC in Asian population in homozygote and recessive models for rs3213245 polymorphism, as well as in the allelic contrast, heterozygous and dominant models for rs915927 polymorphism. For *APEX1*-rs1760944 polymorphism, the overall analysis suggested a significantly decreased risk. Another gene was *OGG1*, we identified a significantly upregulated risk in recessive model of *OGG1*-rs1052133 polymorphism for LC.

Conclusions: *XRCC1*-rs3213245 and *OGG1*-rs1052133 polymorphisms are risk factors for LC, while *APEX1*-rs1760944 polymorphism is a protective factor.

Keywords: Lung cancer (LC); risk; base excision repair pathway (BER pathway); polymorphism

Submitted Oct 07, 2019. Accepted for publication Feb 05, 2020. doi: 10.21037/tcr.2020.02.44 View this article at: http://dx.doi.org/10.21037/tcr.2020.02.44

Introduction

Lung cancer (LC) is the most prevalent cancer and the main cause of cancer-specific death around the world, with a poor prognosis and a high mortality, there are about 228,150 new cases and 142,670 deaths of LC around the USA in 2019 (1). Non-small cell lung cancer (NSCLC) comprises 85% of all lung cancer, while small cell lung cancer (SCLC) accounts for 15–17% (2). The underlying mechanisms of LC remain unclear, however, a serious of studies indicated that tobacco smoking has been a high-risk factor (3-5). At the first years of this century, most evidence supported the notion that exposure to environmental carcinogens (6-9), including cigarette and electronic cigarette (10,11), result in alterations to the structural integrity of DNA and DNA lesions that may lead to mutations in oncogenes and tumor suppressor genes, thus initiating tumorigenesis (12-17).

The correlation between at-risk polymorphisms in genes of DNA repair pathways and LC risk was newly considered, reported from environmentally exposed workers or smokers (18-21). DNA repair pathway is a complex molecular network, which could continuously monitor and correct incorrect nucleotides after exposure to carcinogens, such as ultraviolet ray and benzene-based pollutants (22-24). There are several DNA repair pathways, which could minimize the mutant and toxic DNA sequence, including nucleotide excision repair (NER) pathway, base excision repair (BER) pathway, homologous recombination (HR) pathway, mismatch repair (MMR) pathway, as well as nonhomologous end-joining (NHEJ) pathway. Among them, the BER is an essential pathway involved in genome stability maintaining and thus in human diseases' prevention, ensuring to correct the abnormal DNA base modifications and base loss [such as apurinic/apyrimidinic (AP) sites] (25-27).

Recently, increasing studies indicated that DNA repair capacity could be influenced by genetic polymorphism in the BER pathway genes, which might also alter protein function that subsequently contributes to the unstable of gene sequence and cancer risk (28,29). Till now, numerous studies have focused on the potential relationship between genetic variants in BER pathway gene and LC risk, however, the results are discordant. In addition, many studies only focused on a few polymorphisms or neglected non-coding region genes, while other studies performed on a small number of cases. After all, we exhaustively extracted all eligible studies reported on genetic variations of BER pathway gene related to LC risk, and performing the current systematic review and meta-analysis to illustrated the overall relationship.

Methods

Obtain BER pathway gene set from KEGG

In order to obtain the whole gene set of BER pathway, we searched it on Kyoto Encyclopedia of Genes and Genomes (KEGG) website. Thirty-five genes in BER pathway were provided from online KEGG signaling database (http://software.broadinstitute.org/gsea/msigdb/geneset_ page.jsp?geneSet Name=KEGG_BASE_EXCISION_ REPAIR&keywords=BASE%20EXCISION%20REPAIR).

Study description

The resent study was conducted to reveal the correlation

between genetic variants in BER pathway and LC risk. In current work, PubMed, Google Scholar, Medicine, EMbase and Web of Science databases were used to comprehensively enrolled and recorded all eligible publications. The retrieve formula was: ('gene name' OR 'abbreviation of gene name') AND ('cancer' OR 'tumor' OR 'carcinoma' OR 'neoplasms') AND ('polymorphism' OR 'mutation' OR 'variant' OR 'SNP' OR 'genotype'). We also reviewed each reference of eligible articles, avoiding to missing any additional conform-to-criteria study. The entire retrieval was finished on October 5th, 2019. All enrolled studies were published in primary literature without any replication one. In addition, for these polymorphisms, whose eligible case-control studies are less than three will be excluded.

Enrolled criteria and exclusion criteria

There are several criteria which should be conformed are: (I) assessing whether the gene polymorphisms of BER pathway affect LC risk; (II) studies with specific case group and control group; and (III) genotype frequencies could be obtained directly or after calculating. Meanwhile, some other criteria should not be touched: (I) lacking control group, such as case-only study or review and (II) lacking sufficient genotype data.

Extraction of basic data

The ground on the enrollment standard mentioned above, all the basic data was extracted by two independent reviewers, accompany with an argument, discussion and reach an agreement. In each publication, several items were recorded, including the name of the first author, year of publication, ethnicity, source of control, number of each genotype group, and so on. Finally, we also estimated the quality of each enrolled study with the help of Newcastle-Ottawa Scale (NOS).

Statistical analysis

Hardy-Weinberg equilibrium (HWE) in the control group was tested, and P>0.05 means that the study does not deviate from HWE (30). Strength of the links between polymorphisms in BER pathway gene and LC risk was evaluated through calculating ORs and 95% CIs in five genetic models (W present for wild type allele; M present for mutant allele): allele contrast model (M vs. W), dominant contrast model (MM + MW vs. WW), recessive

contrast model (MM vs. MW + WW), homozygous contrast model (MM vs. WW), and heterozygous contrast model (MW vs. WW). After that, subgroup analysis stratified by different items were also conducted. I² statistics were used to evaluate the heterogeneity assumption between studies in each calculating group, aim to obtain the quantified inconsistency caused by heterogeneity (31). Among these studies, I² value was regarded as a significant heterogeneity if it is higher than 50% (32), and random-effect model was performed the calculated the pooled OR and 95% CI; on the contrast, fixed-effect model will be hireling (33). To confirm the veracity of result, we use sensitivity analysis to assess the stability of results, use Begg's funnel plot and Egger's test to appraise any publication bias (34). We use STATA (version 12.0; STATA Corp.) to calculate all the results, and P<0.05 was regarded as statistically significant.

Results

The studies and meta-analysis data pool

After searching in diverse databases, we retrieved 116 publications comprising 202 case-control studies that met inclusion and exclusion criteria (at least three eligible casecontrol studies should be enrolled for each polymorphism). These publications concerned about five BER pathway gene, including X-Ray Repair Cross Complementing 1 (XRCC1), Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1), DNA Ligase 1 (LIG1), 8-Oxoguanine DNA Glycosylase (OGG1) and MutY DNA Glycosylase (MUTYH) gene. In Table 1, characteristics and genotype frequency distributions of all enrolled studies for BER pathway gene were showed, including XRCC1-rs1799782/rs25487 (35-60), rs25489/ rs3213245 (61-85), rs3547/rs915927 (86-90), PARP1-rs1136410 (87,91-94), APEX1-rs1130409/rs1760944/rs2307486 (42,43,47,74,76,79,80,89,92,95-101), LIG1-rs156641/rs20579/ rs20581/rs3730931/rs439132 (64,71,102,103), OGG1rs1052133 (43,47,49,70,72,74,84,85,89,92,104-126) and MUTYH-rs3219489 (104,115,118,127) polymorphisms, and the selection process of current work was described in Figure 1. For this study, we performed each process along with PRISMA 2009 checklist (Table 2), and with the aid of NOS, we also assessed each enrolled study, most of the enrolled study is higher than 7 star, which represented the good quality (129).

Meta-analysis

XRCC1 polymorphisms and LC risk

We investigated six polymorphisms in XRCC1 gene and LC

Liu et al. BER pathway polymorphism and lung cancer risk

risk, including rs1799782, rs25487, rs25489, rs3213245, rs3547 and rs915927 polymorphisms (Table 3). Overall, rs3213245 polymorphism was observed associated with a significantly raised susceptibility of LC in homozygote contrast model and recessive contrast model (MM vs. WW: OR 2.023, 95% CI: 1.452–2.819, P=3.124×10⁻⁵, Figure 2A; MM vs. MW + WW: OR 1.926, 95% CI: 1.396-2.656, $P=6.468\times10^{-5}$, Figure 2B), while for other genetic polymorphisms, overall analyses uncovered no remarkable association. In addition, for rs3213245 polymorphism, in the ethnicity subgroup analysis, a meaningful upward risk of LC for Asian population was also uncovered in homozygote and recessive models. While for the subgroup analysis by source of control subgroup, we uncovered a remarkable upgrade risk of LC for H-B groups in allelic contrast, heterogeneous and dominant models. Furthermore, for rs915927 polymorphism, we also performed the subgroup analysis in different ethnicity and source of control, and identified the raised risk for Asian, H-B group in allelic contrast model, heterozygous model, as well as dominant model. For rs25487 polymorphism, overall analysis suggested a null association. We identified that HWE (N) group was associated with LC risk in allelic, homozygote, and recessive models, suggesting potential bias existed. After removing the HWE (N) studies from the pooled analyses, and the final results also suggested a negative result for XRCC1-rs25487 polymorphism.

APEX1 polymorphism and LC risk

For rs1760944 polymorphism, overall analysis suggested a sharp reduced risk of LC in allelic, homozygote and recessive models (M vs. W: OR 0.851, 95% CI: 0.786–0.922, P=7.243×10⁻⁵, *Figure 2C*; MM vs. WW: OR 0.705, 95% CI: 0.598–0.832, P=3.409×10⁻⁵; and MM vs. MW + WW: OR 0.780, 95% CI: 0.684–0.889, P=1.927×10⁻⁴, *Table 3*).

OGG1 polymorphism and LC risk

For *OGG1*-rs1052133 polymorphism, the recessive model showed an increased risk overall group (MM *vs.* MW + WW: OR 1.157, 95% CI: 1.071–1.249, P=2.119×10⁻⁴, *Figure 2D*). In addition, when the stratification analysis of Asian subgroup, we illustrated a significantly increased risk of LC in allelic contrast model and homozygote model (*Table 3*).

Other gene polymorphism and LC risk

While for other polymorphisms in genes the BER pathway, such as *LIG1*-rs156641, *MUTYH*-rs3219489, we failed to identify any significant association.

Table 1 Details of enrolled studies for current meta-analysis and systematic review

Control			
MM	Y (HWE)		
2	Y		
0	Y		
5	Y		
21	Y		
8	Y		
16	Y		
3	Y		
12	Y		
63	Y		
2	Y		
1	Y		
2	Y		
87	Y		
0	Y		
23	Ν		
0	Y		
21	Y		
21	Y		
1	Y		
8	Y		
10	Y		
2	Y		
6	N		
27	Y		
11	Ν		
54	Y		
3	Ν		
17	Y		
29	N		
3	Y		
14	Y		
9	Y		
11	Y		
58	Y		
7	Y		
6	Y		
29	Y		
143	Y		
8	Y		
40	Y		
26	Y		
	MM 2 0 5 21 8 16 3 12 63 2 1 2 0 23 0 21 1 8 10 2 6 27 11 54 3 17 29 3 14 9 11 58 7 6 29 143 8 40 26		

Table 1 (continued)

O				Source of	Case			Control			
Gene-polymorphism	First author	Year	control		WW	MW	MM	WW	MW	MM	Y (HWE)
	Popanda et al.	2004	Caucasian	H-B	186	214	63	171	222	67	Y
	Liu <i>et al.</i>	2004	Caucasian	H-B	400	397	138	551	539	143	Y
	Li et al.	2005	Asian	H-B	22	20	8	27	21	2	Y
	Shen et al.	2005	Asian	P-B	72	40	4	54	51	4	Y
	Chan et al.	2005	Asian	H-B	40	31	4	90	61	11	Y
	Schneider et al.	2005	Caucasian	H-B	199	198	49	264	280	78	Y
	Hu et al.	2005	Asian	H-B	378	284	48	370	282	58	Y
	Zhang et al.	2005	Asian	H-B	535	363	102	531	380	89	Y
	Hung et al.	2005	Caucasian	H-B	844	951	254	874	881	260	Y
	Zienolddiny et al.	2006	Caucasian	P-B	129	171	31	151	186	54	Y
	Hao et al.	2006	Asian	H-B	566	376	82	585	432	101	Y
	Matullo et al.	2006	Caucasian	Mixed	51	58	7	484	482	128	Y
	De Ruyck et al.	2007	Caucasian	H-B	38	53	18	46	50	13	Y
	Yin <i>et al.</i>	2007	Asian	H-B	138	65	2	132	52	9	Y
	Pachouri et al.	2007	Caucasian	P-B	53	38	12	35	70	17	Y
	López-Cima et al.	2007	Caucasian	H-B	222	219	75	217	234	82	Y
	Improta <i>et al.</i>	2008	Caucasian	P-B	42	41	11	53	61	7	Ν
	Sreeja et al.	2008	Caucasian	P-B	78	86	47	102	80	29	Ν
	Li et al.	2008	Asian	H-B	168	139	43	201	123	26	Y
	Yin <i>et al.</i>	2009	Asian	H-B	31	13	1	36	15	1	Y
	Cote et al.	2009	African	P-B	86	23	6	88	28	5	Y
	Chang et al.	2009	African	P-B	182	69	4	209	65	5	Y
	Chang et al.	2009	Caucasian	P-B	54	47	12	155	127	16	Y
	Cote et al.	2009	Caucasian	P-B	172	159	56	160	200	46	Y
	Li et al.	2011	Asian	H-B	236	193	26	220	196	27	Y
	Kiyohara et al.	2012	Asian	H-B	243	171	48	242	121	16	Y
	Natukula et al.	2013	Caucasian	P-B	40	19	41	55	10	36	Ν
	Ouyang et al.	2013	Asian	P-B	52	22	8	105	86	10	Y
	Mei et al.	2013	Asian	P-B	142	95	14	145	126	30	Y
	Letkova et al.	2013	Caucasian	P-B	138	202	42	157	185	37	Y
	Du et al.	2014	Asian	P-B	81	16	23	95	15	10	Ν
	Sarlinova <i>et al.</i>	2014	Caucasian	P-B	17	24	9	23	41	5	Ν
	Uppal <i>et al.</i>	2014	Caucasian	P-B	18	32	50	12	65	23	Ν
	Saikia et al.	2014	Caucasian	P-B	146	103	23	322	188	34	Y
	Yoo et al.	2014	Asian	P-B	344	207	47	313	245	33	Y
	Han et al.	2015	Asian	P-B	156	34	20	164	30	16	Ν
	Wang et al.	2015	Asian	P-B	259	24	217	273	43	184	Ν
	Zhu et al.	2015	Asian	P-B	221	80	19	269	72	5	Y
	Cătană et al.	2015	Caucasian	P-B	43	43	16	112	86	24	Y
	Liu et al.	2016	Asian	P-B	162	114	32	162	81	10	Y

Table 1 (continued)

Senter polyminificitient real central WW MW MW MW MW MM V/W XRCC1-n220489 Singh et al. 2016 Caucasian P-B 80 18 20 3 177 22 280 42 0 Y XRCC1-n220489 Ratassinghreet al. 2005 Acian P-B 280 47 22 280 42 0 Y Voget et al. 2005 Caucasian P-B 404 400 22 582 60 0 Y Schenadee et al. 2005 Caucasian P-B 404 400 22 582 60 10 43 10 Lacenciding ret al. 2005 Caucasian P-B 404 400 20 580 41 10 42 40 40 Lacen al. 2006 Caucasian P-B 848 189 75 58 48 12 75 14 12 <td< th=""><th>Cana nalymarphism</th><th>First suthor</th><th>Voor</th><th rowspan="2">Ethnicity</th><th>Source of</th><th></th><th>Case</th><th></th><th></th><th>С</th><th colspan="2"></th></td<>	Cana nalymarphism	First suthor	Voor	Ethnicity	Source of		Case			С		
Singheral.<	Gene-polymorphism	First aution	fear		control	WW	MW	MM	WW	MW	MM	Y (HWE)
XHCC1+nz25489 Patnasinghe et al. 2001 Asian P-B 83 20 3 177 32 0 Y Misra et al. 2003 Caucasian P-B 260 47 2 260 42 0 Y Shen et al. 2005 Caucasian P-B 76 30 5 81 28 1 Y Shen et al. 2005 Caucasian P-B 266 31 22 350 24 3 10 Y Ling et al. 2005 Caucasian P-B 296 31 22 350 24 3 10 Y Janskort et al. 2005 Caucasian P-B 1906 46 29 179 50 74 50 44 10 Y Y 10 10 10 10 12 12 12 14 10 10 10 10 10 10 10 10 10		Singh et al.	2016	Caucasian	P-B	93	186	51	79	176	70	Y
Mine et al.2000GaucasianP-B200472200420VVogel et al.2000GaucasianH-B22920120261280VSchneider et al.2005GaucasianH-B4044020562600VHung et al.2005GaucasianH-B1011151611501607040201NHung et al.2006AsianH-B11054810461010N10<	XRCC1-rs25489	Ratnasinghe et al.	2001	Asian	P-B	83	20	3	177	32	0	Y
Vogel et al.2004CaucasianH-B22926124124100Shan de r2005GaucasianH-B7630552626757Shan de r2005GaucasianH-B190118161891906871Han et al.2005GaucasianP-B286312350245371Han et al.2005GaucasianH-B180400661471<		Misra et al.	2003	Caucasian	P-B	260	47	2	260	42	0	Y
Shen et al.200AsianP-B76305612161 </td <td></td> <td>Vogel et al.</td> <td>2004</td> <td>Caucasian</td> <td>H-B</td> <td>229</td> <td>26</td> <td>1</td> <td>241</td> <td>28</td> <td>0</td> <td>Υ</td>		Vogel et al.	2004	Caucasian	H-B	229	26	1	241	28	0	Υ
Schneider af.2005CaucasianH-B40040020562562600191Hung et af.2005CaucasianH-B28031235010919191Zenoldiny et af.2006CaucasianH-B28010970904201091De Runck et af.2007CaucasianH-B100400290517159491Liet af.2008AsianH-B28070527159491Yin et af.2009AsianH-B280705211521892Yin et af.2009AsianP-B2868518282519291Yin et af.2009CaucasianP-B1008723181241991Yin et af.2014AsianP-B1008723184091<		Shen et al.	2005	Asian	P-B	76	30	5	81	28	1	Y
Hung et al.2005CaucasianH-B100118161180618066293Zienolddiny et al.2006CaucasianP-B20461010101010De Ruyck et al.2007CaucasianH-B8481105440904201010Yin et al.2008AsianH-B190462017950141010Yin et al.2008AsianH-B206850152021510221010Yin et al.2009CaucasianP-B682510225151101010Yoo et al.2016AsianP-B50688531481210<		Schneider et al.	2005	Caucasian	H-B	404	40	2	562	60	0	Y
Ziencidatiny et al.2006CaucasianP-B.29631213502433NHao at al.2008AsianH-B.10040070902040709010 </td <td></td> <td>Hung et al.</td> <td>2005</td> <td>Caucasian</td> <td>H-B</td> <td>1901</td> <td>181</td> <td>6</td> <td>1896</td> <td>190</td> <td>6</td> <td>Υ</td>		Hung et al.	2005	Caucasian	H-B	1901	181	6	1896	190	6	Υ
Hao et al.2006AsianH-B448169790420410YDe Ruyck et al.2007CaucasianH-B1064066140YYin et al.2008AsianH-B2019462170521822YYin et al.2009AsianH-B41171521822YChang et al.2009CaucasianP-B8682512425151YYoo et al.2014AsianP-B5006885348863181018YSingh et al.2016CaucasianP-B500188128188121812YDe Ruyck et al.2006AsianH-B75318921814YYLi et al.2006AsianH-B75318921814YYDe Ruyck et al.2006AsianH-B753189218YYY <td< td=""><td></td><td>Zienolddiny et al.</td><td>2006</td><td>Caucasian</td><td>P-B</td><td>296</td><td>31</td><td>2</td><td>350</td><td>24</td><td>3</td><td>Ν</td></td<>		Zienolddiny et al.	2006	Caucasian	P-B	296	31	2	350	24	3	Ν
De Ruyck et al.2007CaucasianH-B1054096140014Yin et al.2008AsianH-B1904622170594YinLi et al.2008AsianH-B266795074724YinYin et al.2009CaucasianP-B6862512425151YinYoo et al.2019CaucasianP-B50688548812753YinYoo et al.2015AsianP-B50688548862125831Yin et al.2015AsianP-B506185218201YinYinSingh et al.2015AsianH-B7823186241521814YECC1-rs3213245Hue et al.2005AsianH-B7511201534YinHao et al.2005AsianH-B261101405218YinYinDe Ruyck et al.2007CaucasianP-B26110140521314YinYoo et al.2015AsianP-B26116145261114YinYoo et al.2015AsianP-B1611611014911YinYinYin et al.2005AsianP-B161101 <td></td> <td>Hao et al.</td> <td>2006</td> <td>Asian</td> <td>H-B</td> <td>848</td> <td>169</td> <td>7</td> <td>904</td> <td>204</td> <td>10</td> <td>Υ</td>		Hao et al.	2006	Asian	H-B	848	169	7	904	204	10	Υ
Yin et al.2008AsianH-B19046217594YinLi et al.2008AsianH-B266795574724NYin et al.2009AsianH-B41715574724NYin et al.2009CaucasianP-B846251124251YYChang et al.2014AsianP-B10087231098219YYoo et al.2015AsianP-B3225048261821YHan et al.2016CaucasianP-B3223189218YPace al.2007CaucasianH-B5319405218YDe Ruyck et al.2007CaucasianH-B75112015314YYoo et al.2008AsianH-B7613141011YYYoo et al.2015AsianP-B212163141011YY <td></td> <td>De Ruyck et al.</td> <td>2007</td> <td>Caucasian</td> <td>H-B</td> <td>105</td> <td>4</td> <td>0</td> <td>96</td> <td>14</td> <td>0</td> <td>Υ</td>		De Ruyck et al.	2007	Caucasian	H-B	105	4	0	96	14	0	Υ
Li et al.2008AsianH-B26679574724NYn et al.2009AsianH-B417152182YChang et al.2009CaucasianP-B862512425150YYoo et al.2015AsianP-B506880251482075YSingh et al.2016CaucasianP-B500188122581484YXRCC1-rs3213245Hu et al.2005AsianH-B500188122581484YHao et al.2005AsianH-B735319405218YYDe Ruyck et al.2007CaucasianH-B735319405218YYDe Ruyck et al.2007CaucasianH-B7353194015218YYHaie et al.2007CaucasianH-B211032551414YYY<		Yin et al.	2008	Asian	H-B	190	46	2	179	59	4	Y
Yin et al.2009AsianH-B417152182YChang et al.2009CaucasianP-B86251242515YYoo et al.2014AsianP-B506885048202092		Li et al.	2008	Asian	H-B	266	79	5	74	72	4	Ν
Chang et al.2009CaucasianP-B8625124515YYoo et al.2014AsianP-B50688554481275YHan et al.2015AsianP-B100672310062181212YSingh et al.2005AsianP-B3225048268484YYHu et al.2005AsianH-B5701828182412YDe Ruyck et al.2007CaucasianH-B2647511291554YLi et al.2008AsianP-B261403250371YTang et al.2014AsianP-B2121634522518119YYoo et al.2015AsianP-B2121634522518119YYin et al.2008AsianP-B183431191402YYin et al.2009AsianP-B183431191402YYin et al.2009AsianP-B183431191402YYin et al.2009AsianP-B18410443161314121124YYin et al.2009AsianP-B11410414		Yin et al.	2009	Asian	H-B	41	7	1	52	18	2	Y
Yoo et al.2014AsianP-B5068854481275YHan et al.2015AsianP-B10087231098219YSingh et al.2005AsianP-B32250482682614YHa et al.2005AsianH-B7302231892418212YDe Ruyck et al.2006AsianH-B7632231892415214YDe Ruyck et al.2007CaucasianH-B7641751120534YHielen et al.2009AsianP-B264751120534YHielen et al.2009AsianP-B2121634522518119NYoo et al.2015AsianP-B18343119144YYYin et al.2009AsianH-B18343119144YYYin et al.2009AsianH-B18343119144YYYin et al.2009AsianH-B1834311914320YYYin et al.2009CaucasianP-B1611043712612232YYYin et al.2009AsianH-B163164121160179 <td></td> <td>Chang et al.</td> <td>2009</td> <td>Caucasian</td> <td>P-B</td> <td>86</td> <td>25</td> <td>1</td> <td>242</td> <td>51</td> <td>5</td> <td>Y</td>		Chang et al.	2009	Caucasian	P-B	86	25	1	242	51	5	Y
Han et al.2015AsianP-B10087231098219YSingh et al.2016CaucasianP-B322504826831NXRCC1-rs3213245Hu et al.2006AsianH-B7832231892412212YHa ot al.2007CaucasianH-B37531940521812YDe Ruyck et al.2007CaucasianH-B375319405214YHaien et al.2009AsianH-B2614005218119NYHaien et al.2019AsianP-B2121634522518119NYTang et al.2014AsianP-B124104444621114YYYin et al.2009AsianH-B1834311914922YYYin et al.2009AsianH-B18312101114YYYin et al.2009AsianH-B1611403712612232YYin et al.2009AsianH-B1611401271241271412YYin et al.2009AsianH-B161140121241271412YYin et al.2009Asian		Yoo et al.	2014	Asian	P-B	506	88	5	448	127	5	Y
Singh et al.2016CaucasianP-B32250482626831NXRCC1-rs3213245Hu et al.2005AsianH-B500198125581484YHao et al.2006AsianH-B7832231892418212YDe Ruyck et al.2007CaucasianH-B375319405218YLi et al.2008AsianH-B2647511291554YHsieh et al.2009AsianP-B21216345025518119NTang et al.2011AsianP-B21216345025518119NYin et al.2009AsianH-B1841044601114141411414141141411414114		Han et al.	2015	Asian	P-B	100	87	23	109	82	19	Y
XRCC1-rs3213245Hu et al.2005AsianH-B500198125581484YHao et al.2006AsianH-B7832231892412212YDe Ruyck et al.2007CaucasianH-B375319405218YLi et al.2008AsianH-B2647511201554YHsieh et al.2009AsianP-B2514032205371YTang et al.2014AsianP-B2121634522518119NYo et al.2015AsianP-B181431019492YYin et al.2009AsianH-B183431019492YYin et al.2009AsianH-B184141043712612232YChang et al.2009AsianH-B16414217719923YYChang et al.2009AsianP-B1141043712612232YXRCC1-rs915927Matulo et al.2006CaucasianP-B1141411414141414XRCC1-rs915927Matulo et al.2006AsianH-B361416670YXRCC1-rs915927Matulo et al. <t< td=""><td></td><td>Singh et al.</td><td>2016</td><td>Caucasian</td><td>P-B</td><td>32</td><td>250</td><td>48</td><td>26</td><td>268</td><td>31</td><td>Ν</td></t<>		Singh et al.	2016	Caucasian	P-B	32	250	48	26	268	31	Ν
Hao et al.2006AsianH-B7832231892418212YDe Ruyck et al.2007CaucasianH-B375319405218YLi et al.2008AsianH-B2647511201554YHsieh et al.2009AsianP-B212163452051819NTang et al.2014AsianP-B212163444621114YYoo et al.2015AsianP-B183431191492YYoo et al.2015AsianP-B183431191492YYin et al.2009AsianH-B183431191492YChang et al.2009AsianH-B183431191492YChang et al.2009AsianH-B161122121212YYChang et al.2009AfricanP-B6114212712412774NXRCC1-rs915927Matullo et al.2009AsianH-B1696822203430YAfrican2009AsianH-B16964161670YYin et al.2009AsianH-B169161162016<	XRCC1-rs3213245	Hu et al.	2005	Asian	H-B	500	198	12	558	148	4	Y
De Ruyck et al.2007CaucasianH-B375319405218YLi et al.2008AsianH-B2647511291554YHsieh et al.2009AsianP-B251403250371YTang et al.2014AsianP-B2121634522518119NYoo et al.2015AsianP-B49410444621114YYin et al.2009AsianH-B18343119492YYin et al.2009AsianH-B18343119492YChang et al.2009CaucasianP-B624561779923YChang et al.2009AfricanP-B1141043712612232YSingh et al.2006CaucasianP-B6114212712412774NXRCC1-rs915927Matulo et al.2006CaucasianP-B611421271241393414Yin et al.2006CaucasianP-B6114212712412514YYin et al.2006CaucasianP-B1641616700YYYin et al.2006CaucasianP-B164167 <td< td=""><td></td><td>Hao et al.</td><td>2006</td><td>Asian</td><td>H-B</td><td>783</td><td>223</td><td>18</td><td>924</td><td>182</td><td>12</td><td>Y</td></td<>		Hao et al.	2006	Asian	H-B	783	223	18	924	182	12	Y
Li et al.2008AsianH-B2647511291554YHsieh et al.2009AsianP-B251403250371YTang et al.2014AsianP-B2121634522518119NYoo et al.2015AsianP-B49410444621114YXRCC1-rs3547Yin et al.2009AsianH-B183431191492YYin et al.2009CaucasianP-B624561779923YChang et al.2009AfricanP-B1141043712612232YChang et al.2009AfricanP-B1141043712612232YSingh et al.2016CaucasianP-B6114212712412774NXRCC1-rs915927Matulo et al.2006CaucasianP-B6114212712412774NXRCC1-rs915927Matulo et al.2009AsianH-B361416670YXRCC1-rs915927Matulo et al.2009AsianH-B169682203430YXRCC1-rs915927Matulo et al.2003CaucasianP-B164161616070Y <t< td=""><td></td><td>De Ruyck et al.</td><td>2007</td><td>Caucasian</td><td>H-B</td><td>37</td><td>53</td><td>19</td><td>40</td><td>52</td><td>18</td><td>Y</td></t<>		De Ruyck et al.	2007	Caucasian	H-B	37	53	19	40	52	18	Y
Hsieh et al.2009AsianP-B251403250371YTang et al.2014AsianP-B2121634522518119NYoo et al.2015AsianP-B49410444621114YYin et al.2009AsianH-B183431191492YChang et al.2009AsianH-B351206191YChang et al.2009AfricanP-B1141043712612232YChang et al.2009AfricanP-B1141043712612232YSingh et al.2016CaucasianP-B1141043712612232YXRCC1-rs915927Matullo et al.2006CaucasianP-B11410437126203430YXRCC1-rs915927Matullo et al.2006AsianH-B361416670YXRCC1-rs915927Matullo et al.2009AsianH-B136144116670YXRCC1-rs915927Matullo et al.2009AsianH-B169682203430YXRCC1-rs915927Matullo et al.2009AsianH-B1641671939YY<		Li et al.	2008	Asian	H-B	264	75	11	291	55	4	Y
Tang et al.2014AsianP-B2121634522518119NYoo et al.2015AsianP-B49410444621114YXRCC1-rs3547Yin et al.2008AsianH-B183431191492YYin et al.2009AsianH-B351206191YChang et al.2009CaucasianP-B611043712612232YChang et al.2016CaucasianP-B6114212712412774NXRCC1-rs915927Matullo et al.2006CaucasianP-B6114212712412774NXRCC1-rs915927Matullo et al.2006CaucasianP-B611421271340YYin et al.2009AsianH-B366114106670YYin et al.2009AsianH-B361416670YAPEX1-rs1130409Misra et al.2016CaucasianP-B1341643216113994YAPEX1-rs1130409Misra et al.2004AsianH-B1352358911823106YPopanda et al.2005AsianH-B1352358911823106Y		Hsieh et al.	2009	Asian	P-B	251	40	3	250	37	1	Y
Yoo et al.2015AsianP-B49410444621114YXRCC1-rs3547Yin et al.2008AsianH-B183431191492YYin et al.2009AsianH-B351206191YChang et al.2009CaucasianP-B6245661779923YChang et al.2009AfricanP-B6114212712612232YSingh et al.2016CaucasianP-B6114212712612232YXRCC1-rs915927Matullo et al.2006CaucasianMixed3658223430YYin et al.2009AsianH-B169682203430YYin et al.2009AsianH-B1341643214713939YAPEX1-rs1130409Misra et al.2003CaucasianP-B1341643216077YAPEX1-rs1130409Misra et al.2004CaucasianH-B13523589118233106YAPEX1-rs1130409Misra et al.2005AsianH-B13523589118233106YAPEX1-rs1130409Misra et al.2005AsianH-B13523589118233106		Tang et al.	2014	Asian	P-B	212	163	45	225	181	19	Ν
XRCC1-rs3547Yin et al.2008AsianH-B183431191492YYin et al.2009AsianH-B351206191YChang et al.2009CaucasianP-B624561779923YChang et al.2009AfricanP-B6114212712412232YSingh et al.2016CaucasianP-B6114212712412774NXRCC1-rs915927Matullo et al.2008CaucasianMixed3658223430YYin et al.2009AsianH-B169682203430YYin et al.2009AsianH-B169682103430YAPEX1-rs1130409Misra et al.2016CaucasianP-B1341643214713939YAPEX1-rs1130409Misra et al.2004CaucasianP-B64167796516077YAPEX1-rs1130409Misra et al.2005AsianH-B62843211623166YAPEX1-rs1130409Misra et al.2004CaucasianP-B1341643215822664YApenda et al.2005AsianH-B1352358911823310		Yoo et al.	2015	Asian	P-B	494	104	4	462	111	4	Y
Yin et al.2009AsianH-B351206191YChang et al.2009CaucasianP-B624561779923YChang et al.2009AfricanP-B1141043712612232YSingh et al.2016CaucasianP-B6114212712412774NXRCC1-rs915927Matullo et al.2006CaucasianMixed365822323430YYin et al.2008AsianH-B169682203430YYin et al.2009AsianH-B3614416670YYin et al.2009AsianH-B36144166770YSingh et al.2016CaucasianP-B1341643214939YAPEX1-rs1130409Misra et al.203CaucasianP-B61167796516077YIto et al.204AsianH-B13523589118233106YPopanda et al.205AsianP-B306126376115YZienoldiny et al.206CaucasianP-B33562730956259YDe Ruyck et al.206CaucasianP-B33 <td>XRCC1-rs3547</td> <td>Yin et al.</td> <td>2008</td> <td>Asian</td> <td>H-B</td> <td>183</td> <td>43</td> <td>1</td> <td>191</td> <td>49</td> <td>2</td> <td>Y</td>	XRCC1-rs3547	Yin et al.	2008	Asian	H-B	183	43	1	191	49	2	Y
Chang et al. 2009 Caucasian P-B 62 45 6 177 99 23 Y Chang et al. 2009 African P-B 114 104 37 126 122 32 Y Singh et al. 2016 Caucasian P-B 61 142 127 124 127 74 N XRCC1-rs915927 Matullo et al. 2006 Caucasian Mixed 36 58 22 342 508 243 N XRCC1-rs915927 Matullo et al. 2008 Caucasian Mixed 36 58 22 323 433 0 Y Yin et al. 2009 Asian H-B 169 68 2 103 433 0 Y APEX1-rs1130409 Misra et al. 2003 Caucasian P-B 134 164 32 160 77 97 91 93 91 91 93 91 91 93 91 91 93 91 91 93 91 91 91 </td <td></td> <td>Yin et al.</td> <td>2009</td> <td>Asian</td> <td>H-B</td> <td>35</td> <td>12</td> <td>0</td> <td>61</td> <td>9</td> <td>1</td> <td>Y</td>		Yin et al.	2009	Asian	H-B	35	12	0	61	9	1	Y
Chang et al. 2009 African P-B 114 104 37 126 122 32 Y Singh et al. 2016 Caucasian P-B 61 142 127 124 127 74 N XRCC1-rs915927 Matullo et al. 2006 Caucasian Mixed 36 58 22 32 43 0 Y Yin et al. 2008 Asian H-B 169 68 2 203 43 0 Y Yin et al. 2009 Asian H-B 36 14 1 66 7 0 Y APEX1-rs1130409 Misra et al. 2016 Caucasian P-B 134 164 32 147 139 39 Y APEX1-rs1130409 Misra et al. 2003 Caucasian P-B 64 167 79 65 160 77 Y Ito et al. 2004 Asian H-B 135 235 89 118 233 106 Y Shen et al. 2005		Chang et al.	2009	Caucasian	P-B	62	45	6	177	99	23	Y
Singh et al.2016CaucasianP-B6114212712412774NXRCC1-rs915927Matullo et al.2006CaucasianMixed365822342508243NYin et al.2009AsianH-B169682203430YYin et al.2009AsianH-B361416670YSingh et al.2016CaucasianP-B1341643214713939YAPEX1-rs1130409Misra et al.2003CaucasianP-B64167796516077YIto et al.2004CaucasianP-B62843215922664YPopanda et al.2005AsianH-B13523589118233106YShen et al.2005AsianP-B3106126376115YCaucasianP-B306126376115YMatullo et al.2005CaucasianP-B317678013860122NDe Ruyck et al.2007CaucasianP-B335627309526259YDe Ruyck et al.2007CaucasianP-B216029414128N		Chang et al.	2009	African	P-B	114	104	37	126	122	32	Y
XRCC1-rs915927 Matullo et al. 2006 Caucasian Mixed 36 58 22 342 508 243 N Yin et al. 2008 Asian H-B 169 68 2 203 43 0 Y Yin et al. 2009 Asian H-B 36 14 1 66 7 0 Y Singh et al. 2016 Caucasian P-B 134 164 32 147 139 39 Y APEX1-rs1130409 Misra et al. 2003 Caucasian P-B 64 167 79 65 160 77 Y APEX1-rs1130409 Misra et al. 2004 Asian H-B 62 84 32 159 226 64 Y Ito et al. 2004 Caucasian H-B 135 235 89 118 233 106 Y Shen et al. 2005 Asian P-B 30 61 26 37 61 15 Y Zienolddiny et al. 2006 <td></td> <td>Singh et al.</td> <td>2016</td> <td>Caucasian</td> <td>P-B</td> <td>61</td> <td>142</td> <td>127</td> <td>124</td> <td>127</td> <td>74</td> <td>Ν</td>		Singh et al.	2016	Caucasian	P-B	61	142	127	124	127	74	Ν
Yin et al.2008AsianH-B169682203430YYin et al.2009AsianH-B361416670YSingh et al.2016CaucasianP-B1341643214713939YAPEX1-rs1130409Misra et al.2003CaucasianP-B64167796516077YIt o et al.2004AsianH-B62843215922664YPopanda et al.2004CaucasianH-B13523589118233106YShen et al.2005AsianP-B306126376115YZienolddiny et al.2006CaucasianP-B117678013860122NMatullo et al.2006CaucasianP-B335627309526259YDe Ruyck et al.2007CaucasianH-B216029414128N	XRCC1-rs915927	Matullo et al.	2006	Caucasian	Mixed	36	58	22	342	508	243	Ν
Yin et al.2009AsianH-B361416670YSingh et al.2016CaucasianP-B1341643214713939YAPEX1-rs1130409Misra et al.2003CaucasianP-B64167796516077YIto et al.2004AsianH-B62843215922664YPopanda et al.2004CaucasianH-B13523589118233106YShen et al.2005AsianP-B306126376115YZienolddiny et al.2006CaucasianP-B117678013860122NMatullo et al.2006CaucasianP-B335627309526259YDe Ruyck et al.2007CaucasianH-B216029414128N		Yin et al.	2008	Asian	H-B	169	68	2	203	43	0	Y
Singh et al. 2016 Caucasian P-B 134 164 32 147 139 39 Y APEX1-rs1130409 Misra et al. 2003 Caucasian P-B 64 167 79 65 160 77 Y Ito et al. 2004 Asian H-B 62 84 32 118 233 106 Y Popanda et al. 2004 Caucasian H-B 135 235 89 118 233 106 Y Shen et al. 2005 Asian P-B 30 61 26 37 61 15 Y Shen et al. 2005 Asian P-B 30 61 26 37 61 15 Y Zienolddiny et al. 2006 Caucasian P-B 31 67 80 138 60 122 N Matullo et al. 2006 Caucasian P-B 33 56 27 309 526 259 Y De Ruyck et al. 2007 Caucasian H-B <td></td> <td>Yin <i>et al.</i></td> <td>2009</td> <td>Asian</td> <td>H-B</td> <td>36</td> <td>14</td> <td>1</td> <td>66</td> <td>7</td> <td>0</td> <td>Y</td>		Yin <i>et al.</i>	2009	Asian	H-B	36	14	1	66	7	0	Y
APEX1-rs1130409 Misra et al. 2003 Caucasian P-B 64 167 79 65 160 77 Y Ito et al. 2004 Asian H-B 62 84 32 159 226 64 Y Popanda et al. 2004 Caucasian H-B 135 235 89 118 233 106 Y Shen et al. 2005 Asian P-B 30 61 26 37 61 15 Y Zienolddiny et al. 2006 Caucasian P-B 117 67 80 138 60 122 N Matullo et al. 2006 Caucasian P-B 33 56 27 309 526 259 Y De Ruyck et al. 2007 Caucasian H-B 21 60 29 41 41 28 N		Singh et al.	2016	Caucasian	P-B	134	164	32	147	139	39	Y
Ito et al. 2004 Asian H-B 62 84 32 159 226 64 Y Popanda et al. 2004 Caucasian H-B 135 235 89 118 233 106 Y Shen et al. 2005 Asian P-B 30 61 26 37 61 15 Y Zienolddiny et al. 2006 Caucasian P-B 117 67 80 138 60 122 N Matullo et al. 2006 Caucasian P-B 33 56 27 309 526 259 Y De Ruyck et al. 2007 Caucasian H-B 21 60 29 41 41 28 N	APEX1-rs1130409	Misra et al.	2003	Caucasian	P-B	64	167	79	65	160	77	Y
Popanda et al. 2004 Caucasian H-B 135 235 89 118 233 106 Y Shen et al. 2005 Asian P-B 30 61 26 37 61 15 Y Zienolddiny et al. 2006 Caucasian P-B 117 67 80 138 60 122 N Matullo et al. 2006 Caucasian P-B 33 56 27 309 526 259 Y De Ruyck et al. 2007 Caucasian H-B 21 60 29 41 41 28 N		Ito et al.	2004	Asian	H-B	62	84	32	159	226	64	Y
Shen et al. 2005 Asian P-B 30 61 26 37 61 15 Y Zienolddiny et al. 2006 Caucasian P-B 117 67 80 138 60 122 N Matullo et al. 2006 Caucasian P-B 33 56 27 309 526 259 Y De Ruyck et al. 2007 Caucasian H-B 21 60 29 41 41 28 N		Popanda et al.	2004	Caucasian	H-B	135	235	89	118	233	106	Y
Zienolddiny et al. 2006 Caucasian P-B 117 67 80 138 60 122 N Matullo et al. 2006 Caucasian P-B 33 56 27 309 526 259 Y De Ruyck et al. 2007 Caucasian H-B 21 60 29 41 41 28 N		Shen et al.	2005	Asian	P-B	30	61	26	37	61	15	Y
Matullo et al. 2006 Caucasian P-B 33 56 27 309 526 259 Y De Ruyck et al. 2007 Caucasian H-B 21 60 29 41 41 28 N		Zienolddiny et al.	2006	Caucasian	P-B	117	67	80	138	60	122	Ν
De Ruyck <i>et al.</i> 2007 Caucasian H-B 21 60 29 41 41 28 N		Matullo et al.	2006	Caucasian	P-B	33	56	27	309	526	259	Y
		De Ruyck et al.	2007	Caucasian	H-B	21	60	29	41	41	28	Ν

Table 1 (continued)

O an a sa bura ana biana	Einst suith su	Ma an	Ethersis it a	Source of		Case			C	ontrol	
Gene-polymorphism	First author	Year	Ethnicity	control	WW	MW	MM	WW	MW	MM	Y (HWE)
	Agachan et al.	2009	Caucasian	P-B	38	40	20	45	17	5	Y
	Lu et al.	2009	Asian	H-B	182	228	90	176	265	76	Y
	Lo et al.	2009	Asian	H-B	261	349	119	272	332	118	Y
	Deng et al.	2010	Asian	P-B	123	143	49	97	159	58	Y
	Li et al.	2011	Asian	H-B	179	199	77	172	213	58	Υ
	Xue et al.	2013	Asian	H-B	116	183	111	130	190	90	Y
	Pan et al.	2013	Asian	H-B	48	273	498	25	247	531	Y
	Li <i>et al.</i>	2014	Asian	H-B	2	11	3	50	46	14	Y
	Sevilya et al.	2015	Caucasian	H-B	34	50	15	42	46	11	Y
APEX1-rs1760944	Lu et al.	2009	Asian	H-B	184	241	75	170	238	109	Y
	Lo et al.	2009	Asian	H-B	271	332	122	234	341	153	Y
	Li <i>et al.</i>	2011	Asian	H-B	162	227	66	143	206	94	Y
	Pan et al.	2013	Asian	H-B	114	384	321	98	369	336	Y
	Li et al.	2014	Asian	H-B	3	10	3	36	56	18	Y
APEX1-rs2307486	Zienolddiny et al.	2006	Caucasian	P-B	263	76	1	276	124	10	Y
	Lo et al.	2009	Asian	H-B	669	59	0	659	64	2	Y
	Li et al.	2014	Asian	H-B	11	2	0	103	7	0	Y
OGG1-rs1052133	Kohno <i>et al.</i>	1998	Asian	Mixed	16	19	10	15	20	7	Y
	Sugimura et al.	1999	Mixed	H-B	85	115	41	63	107	27	Y
	Wikman et al.	2000	Caucasian	P-B	68	32	5	60	43	2	Y
	Marchand et al.	2002	Mixed	P-B	15	31	29	29	48	19	Y
	Marchand et al.	2002	Caucasian	P-B	78	39	9	98	53	8	Y
	Sunaga et al.	2002	Asian	H-B	54	106	38	50	66	36	Y
	Marchand et al.	2002	Asian	P-B	30	40	27	50	74	26	Y
	Ito <i>et al.</i>	2002	Asian	H-B	40	71	27	68	118	54	Y
	Lan et al.	2004	Asian	P-B	37	61	20	51	43	15	Y
	Park et al.	2004	Caucasian	P-B	88	60	12	255	87	8	Y
	Vogel et al.	2004	Caucasian	P-B	149	93	14	159	91	19	Y
	Liang et al.	2005	Asian	H-B	27	132	68	28	123	76	Ν
	Hung et al.	2005	Caucasian	H-B	1401	661	93	1368	716	79	Y
	Loft et al.	2006	Caucasian	P-B	144	93	14	154	88	19	Y
	Zienolddiny et al.	2006	Caucasian	P-B	182	100	44	194	117	75	Ν
	Kohno et al.	2006	Asian	H-B	285	544	268	123	190	81	Y
	Sorensen et al.	2006	Caucasian	P-B	254	155	22	479	284	33	Y
	Matullo et al.	2006	Caucasian	P-B	66	46	4	673	371	50	Y
	De Ruyck et al.	2007	Caucasian	H-B	74	33	3	60	46	4	Y
	Hatt et al.	2008	Caucasian	P-B	92	58	8	93	59	12	Y
	Karahalil et al.	2008	Caucasian	H-B	86	65	14	115	106	29	Y
	Miyaishi <i>et al.</i>	2009	Asian	H-B	27	55	26	39	54	28	Y
	Chang et al.	2009	African	P-B	170	78	6	202	70	8	Y

Table 1 (continued)

Cana polymorphism	First suther	Voor	Ethnicity	Source of		Case					
Gene-polymorphism	FIISt autility	Tear	Etrinicity	control	WW	MW	MM	WW	MW	MM	Y (HWE)
	Chang et al.	2009	Caucasian	P-B	53	47	12	135	132	29	Y
	Chang et al.	2009	Asian	P-B	142	518	436	154	482	361	Υ
	Okasaka et al.	2009	Asian	H-B	117	257	141	250	544	236	Υ
	Liu et al.	2010	Asian	H-B	68	158	132	110	294	312	Ν
	Janik <i>et al.</i>	2011	Caucasian	H-B	48	24	16	57	21	1	Υ
	Li et al.	2011	Asian	H-B	83	208	164	60	219	164	Υ
	Qian <i>et al.</i>	2011	Asian	H-B	100	288	193	125	291	185	Υ
	Cheng et al.	2012	Asian	P-B	26	9	15	17	3	10	Ν
	Ouyan <i>et al.</i>	2013	Asian	P-B	14	42	26	40	94	67	Y
	Letkova et al.	2013	Caucasian	P-B	244	119	19	250	110	18	Υ
	Xue et al.	2013	Asian	H-B	55	178	177	68	200	142	Y
	Doherty et al.	2013	Caucasian	P-B	440	265	39	873	519	85	Y
	Wang et al.	2015	Asian	P-B	77	182	241	80	165	25	Ν
	Qin <i>et al.</i>	2016	Asian	P-B	59	121	37	72	124	30	Ν
LIG1-rs20579	Landi et al.	2006	Caucasian	Mixed	206	73	6	245	61	0	Y
	Chang et al.	2008	Caucasian	P-B	72	36	5	217	75	7	Y
	Chang et al.	2008	African	P-B	150	92	13	137	117	26	Υ
	Lee et al.	2008	Caucasian	P-B	294	118	11	586	187	7	Y
	Sakoda et al.	2012	Caucasian	P-B	583	141	18	1126	312	36	Ν
LIG1-rs3730931	Landi et al.	2006	Caucasian	Mixed	220	64	5	255	52	2	Y
	Chang et al.	2008	Caucasian	P-B	79	30	4	226	67	6	Y
	Chang et al.	2008	African	P-B	151	92	11	158	103	19	Y
	Sakoda et al.	2012	Caucasian	P-B	595	137	11	1137	313	26	Y
LIG1-rs156641	Chang et al.	2008	African	P-B	189	62	4	215	60	5	Y
	Chang et al.	2008	Caucasian	P-B	59	43	11	143	126	30	Y
	Sakoda et al.	2012	Caucasian	P-B	271	352	121	596	709	164	Ν
LIG1-rs20581	Chang et al.	2008	African	P-B	176	73	6	199	68	13	Ν
	Chang et al.	2008	Caucasian	P-B	38	48	27	89	151	59	Y
	Lee et al.	2008	Caucasian	P-B	78	148	86	142	346	155	Y
LIG1-rs439132	Chang et al.	2008	Caucasian	P-B	108	5	0	269	29	1	Y
	Lee et al.	2008	Caucasian	P-B	326	39	6	585	54	2	Y
	Chang et al.	2008	African	P-B	129	112	14	117	91	12	Y
MUTYH-rs3219489	Al-tassan <i>et al.</i>	2003	Caucasian	P-B	142	109	14	58	36	7	Υ
	Miyaishi et al.	2009	Asian	P-B	22	57	29	37	69	15	Ν
	Qian <i>et al.</i>	2011	Asian	P-B	230	261	90	243	283	77	Y
	Doherty et al.	2013	Caucasian	P-B	417	279	42	825	562	79	Y
PARP1-rs1136410	Zhang et al.	2005	Asian	H-B	307	509	184	359	504	137	Y
	Yin et al.	2011	Mixed	H-B	117	35	7	50	12	2	Y
	Xue et al.	2013	Asian	H-B	129	202	79	138	205	67	Y
	Yu et al.	2014	Asian	H-B	46	164	163	34	164	162	Y
	Wang et al.	2015	Asian	P-B	151	97	252	14	109	251	Y

M, mutant allele; W, wild type allele; P-B, population-based; H-B, hospital-based; Mixed, more than one ethnicity; N.A., not mentioned; Y, studies that conforms to HWE; N, study that deviates from HWE.

2788

Liu et al. BER pathway polymorphism and lung cancer risk

Section/topic	#	Checklist item	Reported on page #
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Page 1
Abstract			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 2–3
Introduction			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Page 4–5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 5
Methods			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	N/A
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Study selection: page 6–7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Search strategy: page 5–6,
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Search strategy: page 5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Figure 1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Data extraction and quality assessment: page 7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Data extraction and quality assessment: page 7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Statistical analysis: page 8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Statistical analysis: page 8
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., 1^2) for each meta-analysis.	Statistical analysis: page 8
Section/topic			
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Statistical analysis: page 8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Statistical analysis: page 8

Table 2 PRISMA 2009 checklist

Table	2 (con	tinued)
Laure .	(u) n	unnun

Section/topic	#	Checklist item	Reported on page #
Results			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Description of studies: page 8–9
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Table 1–3
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Page 10-12
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 10–12
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Page 10-12
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Page 10-12
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16)].	page 10
Discussion			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 13–15
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Page 15
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Page 17
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Page 17

Adapted from ref. (128).

Evaluation of stability and publication bias

The test of the stability of results was assessed by sensitivity analysis, each time we separated one study form data pool, and reviewed whether it affects the ORs and 95% CIs. The results displayed that no substantial change for *XRCC1*-rs1799782/rs25487/rs25489/rs3213245/rs3547/rs915927, *LIG1*-rs156641/rs20579/rs20581/rs3730931/rs439132, *APEX1*-rs1130409/rs1760944/rs2307486, *PARP1*-rs1136410, *OGG1*-rs1052133 and *MUTYH*-rs3219489 polymorphisms.

For behalf of evaluating potential publication bias, we use Begg's funnel plot and Egger's test. Significant publication bias may reflect differences in control options, age distributions and other lifestyles. Finally, the shape of Begg's funnel plot in each polymorphism is symmetrical, while the P value of Egger's test in each polymorphism and subgroup is higher than 0.05, indicating no evidence of publication bias was found (*Table 4*).

Discussion

The stability of the general genomic sequence is sustained by a pivotal gene family, BER signaling pathway. In human cells, the inability of remove endogenous DNA damage would link with single nucleotide polymorphisms (130-132). On the other hand, the abnormal process occurs on BER pathway or the enzymes mediate it would finally lead to the instable cell chromosomal (133). Recently, increasing evidence suggested that genetic variants in the BER pathway were associated with LC risk. However, these results were

Table 3 Significant results of the association between polymorphisms in BER pathway gene and LC risk

U		1 + 1					
SNP	Comparison	Subgroup	Ν	P _H	Pz	Random OR (95% CI)	Fixed OR (95% CI)
XRCC1-rs3213245	MM vs. WW	Overall	7	0.512	3.124*10 ⁻⁵	1.992 (1.422–2.791)	2.023 (1.452–2.819)
	MM vs. MW + WW	Overall	7	0.434	6.468*10 ⁻⁵	1.894 (1.365–2.627)	1.926 (1.396–2.656)
	MM vs. WW	Asian	6	0.720	1.169*10 ⁻⁵	2.260 (1.556–3.284)	2.285 (1.579–3.306)
	MM vs. MW + WW	Asian	6	0.730	1.660*10 ⁻⁵	2.208 (1.526–3.193)	2.231 (1.549–3.215)
	M vs. W	H-B	4	0.406	1.970*10 ⁻⁸	1.433 (1.263–1.625)	1.433 (1.264–1.625)
	MW vs. WW	H-B	4	0.820	6.322*10 ⁻⁷	1.446 (1.251–1.672)	1.446 (1.251–1.672)
	MW + MM vs. WW	H-B	4	0.723	4.140*10 ⁻⁸	1.485 (1.289–1.710)	1.485 (1.289–1.710)
XRCC1-rs915927	M vs. W	Asian	2	0.180	9.975*10 ⁻⁵	2.292 (1.226–4.284)	2.071 (1.435–2.988)
	MW vs. WW	Asian	2	0.234	2.147*10 ⁻⁴	2.252 (1.280–3.962)	2.111 (1.421–3.136)
	MW + MM vs. WW	Asian	2	0.203	9.341*10 ⁻⁵	2.395 (1.287–4.455)	2.191 (1.478–3.247)
	M vs. W	H-B	2	0.180	9.975*10 ⁻⁵	2.292 (1.226–4.284)	2.071 (1.435–2.988)
	MW vs. WW	H-B	2	0.234	2.147*10 ⁻⁴	2.252 (1.280–3.962)	2.111 (1.421–3.136)
	MW + MM vs. WW	H-B	2	0.203	9.341*10 ⁻⁵	2.395 (1.287–4.455)	2.191 (1.478–3.247)
XRCC1-rs25487	M vs. W	Ν	8	0.414	2.741*10 ⁻⁷	1.345 (1.199–1.508)	1.343 (1.200–1.502)
	MM vs. WW	Ν	8	0.471	4.463*10 ⁻⁵	1.481 (1.223–1.793)	1.486 (1.229–1.797)
	MM vs. MW + WW	Ν	8	0.102	3.663*10 ⁻⁷	1.758 (1.332–2.321)	1.592 (1.331–1.904)
APEX1-rs1760944	M vs. W	Overall	5	0.530	7.243*10 ⁻⁵	0.851 (0.786–0.922)	0.851 (0.786–0.921)
	MM vs. WW	Overall	5	0.534	3.409*10 ⁻⁵	0.705 (0.598–0.832)	0.705 (0.598–0.832)
	MM vs. MW + WW	Overall	5	0.315	1.927*10 ⁻⁴	0.770 (0.663–0.895)	0.780 (0.684–0.889)
OGG1-rs1052133	MM vs. MW + WW	Overall	31	0.106	2.119*10 ⁻⁴	1.143 (1.032–1.265)	1.157 (1.071–1.249)
	M vs. W	Asian	13	0.355	9.988*10 ⁻⁵	1.123 (1.054–1.196)	1.123 (1.059–1.191)
	MM vs. WW	Asian	13	0.353	3.585*10 ⁻⁴	1.242 (1.090–1.414)	1.244 (1.103–1.403)

M, mutant allele; W, wild type allele; P-B, population-based; H-B, hospital-based; Y, studies that conforms to HWE; N, study that deviates from HWE; P_H, P value of heterogeneity test; Pz, adjusted P value of Z test [P<0.05/(17 polymorphisms * 5 genetic models)].

inclusive or even controversial. Therefore, we presented the comprehensively updated meta-analysis, aiming to systematically screen out the LC risk or protective factors within genes of the BER pathway.

Firstly, we investigated the *XRCC1*, a crucial element of the BER system, it has multiple key roles in the repair process of DNA single nucleotide polymorphism (134,135). We analyzed six commonly studied polymorphisms in *XRCC1*, and overall analyses suggested that MM genotype of rs3213245 (-77T > C) polymorphism was linked to a sharply enhanced risk of LC compared with WW and MW/WW genotypes, and not the rs25487 and rs1799782 polymorphisms, which were proved associated with LC risk in Chen *et al.*'s meta-analysis work (136). In addition, rs3213245-MM genotype was also combined with an increased hazard of LC for Asian population. For *XRCC1* rs3213245 polymorphism, the affinity of *XRCC1* promoter region to nuclear protein Sp1 would be enhanced by T to C mutation, caused the inhibition of its transcription (40). In our study, seven studies were focused on the correlation of rs3213245 polymorphism and LC risk, and the overall results suggested that the risk in MM genotype group was 2.023 and 1.926-fold raised than WW group and MW + WW group, respectively, almost consistent with Vineis *et al.*'s (137) findings.

In addition, the overall calculate illustrated a negative association between XRCC1-rs915927 and LC, but we also identified that M allele, MW and MW + MM genotypes

Liu et al. BER pathway polymorphism and lung cancer risk

Figure 2 The forest plot of the meta-analysis for rs3213245 polymorphism. (A) Homozygous model and (B) recessive model, for rs1760944 polymorphism. (C) Homozygous model, and for rs1052133 polymorphism (D) recessive model.

led to an enhanced risk of LC for the Asian population. For the mechanism part, rs915927 leads to a synonymous mutation, which is a kind of mutation which may not influence the translation of amino acid product, however, this kind of mutation might change the translational efficiency of mRNA, therefore, non-synonymous mutations like *XRCC1* rs1799782 (Arg194Trp) and *XRCC1* rs25489 (Arg280His) might regulate LC susceptibility, affecting complex assembly or repair efficiency (138). Furthermore, for another *XRCC1*-rs25487 polymorphism, we observed an enhanced risk of LC in allelic, homozygote, and recessive

models for HWE (N) group, which tell us that there might be some potential bias caused by HWE status. Therefore, we decided to remove these HWE (N) studies from pooled analysis, and finally negative results were obtained.

Secondly, *APEX1* gene was also analyzed, which specifically activates DNA repair through the identification and cleavage of phosphodiester bonds on the 5' side of the basic site (139). *APEX1* can also participate in oxidative stress, control of cell cycle, and apoptosis (140,141). Recent days, several researchers reported that APEX1 gene polymorphisms would influence the cancer risks (142-144),
 Table 4 Egger's regression test for polymorphisms in BER pathway

 gene

Gene	Polymorphism	Egger's test (P > t)
XRCC1	rs1799782	0.896
	rs25487	0.248
	rs25489	0.99
	rs3213245	0.497
	rs3547	0.565
	rs915927	0.115
LIG1	rs156641	0.377
	rs20579	0.401
	rs20581	0.388
	rs3730931	0.127
	rs439132	0.589
APEX1	rs1130409	0.006
	rs1760944	0.312
	rs2307486	0.38
PARP1	rs1136410	0.603
OGG1	rs1052133	0.337

as well as some meta-analyses (most of them only focus on a few variants) (145). In current work, we analyzed three most commonly polymorphisms reported in *APEX1* (rs1130409, rs1760944 and rs2307486) and LC risk, and we found that M allele, MM genotype at rs1760944 were associated with a reduced risk of LC relative to W allele, WW and MW+WW genotypes, respectively. While for the other two polymorphisms, we failed to identify any significant correlations.

In the progression of different types of cancers, APEX1 is another key role. For *APEX1*-rs1130409, Zhang *et al.* (146) reported that the G allele and GG/TG genotype associated with the decreased risk of ovarian carcinoma. However, Yuan *et al.* (147) revealed that rs1130409 do not play any role in head and neck neoplasms in Chinese, another study conducted in gastric cancer reported the same conclusion (148). In our work, we obtained the result that re1130409 is not associated with LC risks. For another role polymorphism in *APEX1*, Lu *et al.* (99) first reported the potential risk of rs1760944 in LC. In a study about Korean, rs1760944 was reported associated with the risk of gastric cancer, but another study conducted in Chinese indicated that GT or GG genotypes might have a higher survival rate (148,149). Dai *et al.* managed a meta-analysis, the result supported the conclusion that rs1760944 acts as a protector in cancer of Asian (150). Consistent with these data, we demonstrated that M allele and MM genotype were associated with a decreased risk of LC than W allele, WW and MW + WW genotypes.

Another BER gene we analyzed here is *OGG1*, which plays a key role during the repair process of oxidative DNA damage. rs1052133 polymorphism had been reported could substitution Serene to Cysteine at codon 326, and influence the function of OGG1 protein (151). As reported by Wikman *et al.* (122), LC susceptibility might not be impacted by the *OGG1* polymorphisms in Caucasians. Hung *et al.* (70) and Vogel *et al.* (84) also observed no link between *OGG1* polymorphisms and LC susceptibility. Ito *et al.* (107) found that *OGG1*-rs1052133 polymorphism had no effect on the development of adenocarcinoma or small cell carcinoma. Whereas in our work, overall results suggested a null correlation for this polymorphism and LC risk.

In this meta-analysis, we comprehensively searched all available eligible studies to obtain the precise result. Some advantages of this study should be focused on. Firstly, a wide search was conducted to identify more qualified studies for each genetic variant in BER genes, therefore these analyses were persuasive and substantive. For example, several previous meta-analyses have been published concerning XRCC1 polymorphisms and LC risk, while they only focus limited polymorphisms on LC risk, and their results were not adjusted, increasing the falsepositive results rate. Secondly, we evaluated the quality of each registered research by NOS scale before calculating, and eliminated low-quality studies. and adjusted all the results according to Bonferroni corrections, making the conclusions more convincing. Thirdly, according to the subgroup, we also conducted the stratification analyses by ethnicity, source of controls, tumor type or race, in order to eliminate the influence of heterogeneity. Fourthly, the sensitivity analysis was performed to confirm the stability of the obtained results, and Egger's test and Begg's funnel plot were performed to draw out the potential publication bias.

Several disadvantages should also be displayed to avoid any incorrect understanding of the results. First of all, there were no sufficient samples for the analyses of some variants, and it might prove an undependable association between polymorphisms and LC. For example, there are only 3 or 4 studies in APEX1-rs2307486, LIG1-rs156641 and PARP1rs1136410, more studies conducted in these polymorphisms are needed to reveal a more convincible result in the future.

Liu et al. BER pathway polymorphism and lung cancer risk

Moreover, only the articles in English were enrolled, which might miss the important result in other languages and countries. Finally, the detail information about the histological result of each LC patient was missed, so the stratification analyses based on histological type and the clinical stage could not be conducted.

Conclusions

To conclude, this meta-analysis shows that *XRCC1*rs3213245 and *OGG1*-rs1052133 polymorphisms are risk factors for LC, while *APEX1*-rs1760944 polymorphism is a protective factor. Future studies with larger sample size are warranted to verify these findings.

Acknowledgments

Funding: The study was supported by Natural Science Foundation of China (81903020), China Postdoctoral Science Foundation (2019M652812), National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project for Major Diseases (Lung Cancer)

Footnote

Conflicts of Interest: TThe authors have completed the ICMJE uniform disclosure from (available at http://dx.doi. org/10.21037/tcr.2020.02.44). The authors have no conflicts of interests to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7-34.
- Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
- Hosgood HD, 3rd, Cosgrove C, Klugman M, et al. Lung cancer mortality among smokers and never-smokers in the United States. Epidemiology 2020. [Epub ahead of print].
- Klebe S, Leigh J, Henderson DW, et al. Asbestos, Smoking and Lung Cancer: An Update. Int J Environ Res Public Health 2019. doi: 10.3390/ijerph17010258.
- Adie Y, Kats DJ, Tlimat A, et al. Neighborhood Disadvantage and Lung Cancer Incidence in Ever-Smokers at a Safety Net Health-Care System: A Retrospective Study. Chest 2019. [Epub ahead of print].
- Yu S, Gong LS, Li NF, et al. Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-kappaB and Bcl-2/Bax signaling pathways. Biomed Pharmacother 2018;97:213-24.
- Zhao J, Wen C, Li M. Association Analysis of Interleukin-17 Gene Polymorphisms with the Risk Susceptibility to Tuberculosis. Lung 2016;194:459-67.
- Wang SS, Zhu XQ, Yang SD, et al. Association of p73 G4C14-to-A4T14 polymorphism with non-small cell lung cancer risk. Oncol Lett 2015;10:995-9.
- Barnes JL, Zubair M, John K, et al. Carcinogens and DNA damage. Biochem Soc Trans 2018;46:1213-24.
- Ganapathy V, Manyanga J, Brame L, et al. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage. PLoS One 2017;12:e0177780.
- Izzotti A, Balansky R, Micale RT, et al. Modulation of smoke-induced DNA and microRNA alterations in mouse lung by licofelone, a triple COX-1, COX-2 and 5-LOX inhibitor. Carcinogenesis 2019. [Epub ahead of print].
- 12. Smith LE, Denissenko MF, Bennett WP, et al. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst 2000;92:803-11.
- Brancato B, Munnia A, Cellai F, et al. 8-Oxo-7,8dihydro-2'-deoxyguanosine and other lesions along the coding strand of the exon 5 of the tumour suppressor gene P53 in a breast cancer case-control study. DNA Res 2016;23:395-402.

2794

- Peng Z, Wang J, Shan B, et al. Genome-wide analyses of long noncoding RNA expression profiles in lung adenocarcinoma. Sci Rep 2017;7:15331.
- Gan PP, Zhou YY, Zhong MZ, et al. Endoplasmic Reticulum Stress Promotes Autophagy and Apoptosis and Reduces Chemotherapy Resistance in Mutant p53 Lung Cancer Cells. Cell Physiol Biochem 2017;44:133-51.
- Chen J, Wu L, Wang Y, et al. Effect of transporter and DNA repair gene polymorphisms to lung cancer chemotherapy toxicity. Tumour Biol 2016;37:2275-84.
- Yang B, Zhao F, Zong Z, et al. Preferences for treatment of lobectomy in Chinese lung cancer patients: video-assisted thoracoscopic surgery or open thoracotomy? Patient Prefer Adherence 2014;8:1393-7.
- Li W, Zhang M, Huang C, et al. Genetic variants of DNA repair pathway genes on lung cancer risk. Pathol Res Pract 2019;215:152548.
- Lawania S, Singh A, Sharma S, et al. The multi-faceted high order polymorphic synergistic interactions among nucleotide excision repair genes increase the risk of lung cancer in North Indians. Mutat Res 2019;816-818:111673.
- 20. Singh A, Singh N, Behera D, et al. Role of polymorphic XRCC6 (Ku70)/XRCC7 (DNA-PKcs) genes towards susceptibility and prognosis of lung cancer patients undergoing platinum based doublet chemotherapy. Mol Biol Rep 2018;45:253-61.
- Munnia A, Giese RW, Polvani S, et al. Bulky DNA Adducts, Tobacco Smoking, Genetic Susceptibility, and Lung Cancer Risk. Adv Clin Chem 2017;81:231-77.
- Trenner A, Sartori AA. Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Front Oncol 2019;9:1388.
- 23. Lee TH, Kang TH. DNA Oxidation and Excision Repair Pathways. Int J Mol Sci 2019. doi: 10.3390/ijms20236092.
- 24. Zhou R, Xu T, Nguyen QN, et al. Radiation Dose, Local Disease Progression, and Overall Survival in Patients With Inoperable Non-Small Cell Lung Cancer After Concurrent Chemoradiation Therapy. Int J Radiat Oncol Biol Phys 2018;100:452-61.
- Whitaker AM, Schaich MA, Smith MS, et al. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 2017;22:1493.
- Poletto M, Legrand AJ, Dianov GL. DNA base excision repair: the Achilles' heel of tumour cells and their microenvironment? Curr Pharm Des 2017;23:4758-72.
- 27. Abbotts R. Coordination of DNA single strand break repair. Free Radic Biol Med 2017;107:228-44.
- 28. Alberg AJ, Jorgensen TJ, Ruczinski I, et al. DNA

repair gene variants in relation to overall cancer risk: a population-based study. Carcinogenesis 2013;34:86-92.

- Howard MJ, Wilson SH. DNA scanning by base excision repair enzymes and implications for pathway coordination. DNA Repair (Amst) 2018;71:101-7.
- Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629-34.
- Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med 1997;127:820-6.
- 32. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60.
- 33. Yong G, Pan X, Su T, et al. Glutathione S-transferase P1 Ile105Val polymorphism and colorectal cancer risk: a meta-analysis and HuGE review. Eur J Cancer 2009;45:3303-14.
- Harbord RM, Egger M, Sterne JAC. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 2006;25:3443-57.
- 35. Cătană A, Pop M, Hincu BD, et al. TheXRCC1Arg194Trp polymorphism is significantly associated with lung adenocarcinoma: a case-control study in an Eastern European Caucasian group. Onco Targets Ther 2015;8:3533-8.
- 36. Chan EC, Lam SY, Fu KH, et al. Polymorphisms of the GSTM1, GSTP1, MPO, XRCC1, and NQO1 genes in Chinese patients with non-small cell lung cancers: relationship with aberrant promoter methylation of the CDKN2A and RARB genes. Cancer Genet Cytogenet 2005;162:10.
- David-Beabes GL, London SJ. Genetic polymorphism of XRCC1 and lung cancer risk among African-Americans and Caucasians. Lung Cancer 2001;34:333.
- Divine KK, Gilliland FD, Crowell RE, et al. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutat Res 2001;461:273-8.
- Han JC, Zhang YJ, Li XD. Association between polymorphisms in the XRCC1 gene and the risk of nonsmall cell lung cancer. Genet Mol Res 2015;14:12888.
- Hao B, Miao X, Li Y, et al. A novel T-77C polymorphism in DNA repair gene XRCC1 contributes to diminished promoter activity and increased risk of non-small cell lung cancer. Oncogene 2006;25:3613-20.
- Harms C, Salama SA, Sierra-Torres CH, et al. Polymorphisms in DNA repair genes, chromosome aberrations, and lung cancer. Environ Mol Mutagen 2004;44:74–82.
- 42. Ito H, Matsuo K, Hamajima N, et al. Gene-environment

Liu et al. BER pathway polymorphism and lung cancer risk

interactions between the smoking habit and polymorphisms in the DNA repair genes, APE1 Asp148Glu and XRCC1 Arg399Gln, in Japanese lung cancer risk. Carcinogenesis 2004;25:1395.

- 43. K DR, M S, I DR, et al. Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res 2007;631:101-10.
- 44. Kiyohara C, Horiuchi T, Takayama K, et al. Genetic Polymorphisms Involved in Carcinogen Metabolism and DNA Repair and Lung Cancer Risk in a Japanese Population. J Thorac Oncol 2012;7:954-62.
- 45. Liu G, Zhou W, Park S, et al. The SOD2 Val/Val genotype enhances the risk of nonsmall cell lung carcinoma by p53 and XRCC1 polymorphisms. Cancer 2004;101:2802.
- 46. Liu HX, Li J, Ye BG. Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer. Genet Mol Res 2016;15.
- Matullo G, Dunning AM, Guarrera S, et al. DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis 2006;27:997-1007.
- Mei C, Mei H, Guo S, et al. Polymorphisms in DNA repair genes of XRCC1, XPA, XPC, XPD and associations with lung cancer risk in Chinese people. Thoracic Cancer 2014;5:232-42.
- 49. Ouyang FD, Yang FL, Chen HC, et al. Polymorphisms of DNA repair genes XPD, XRCC1, and OGG1, and lung adenocarcinoma susceptibility in Chinese population. Tumour Biol 2013;34:2843-8.
- Park JY, Lee SY, Jeon HS, et al. Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 2002;11:23-7.
- Ratnasinghe D, Yao SX, Tangrea JA, et al. Polymorphisms of the DNA repair gene XRCC1 and lung cancer risk. Cancer Epidemiol Biomarkers Prev 2001;10:119-23.
- 52. Ratnasinghe DL, Yao SX, Forman M, et al. Geneenvironment interactions between the codon 194 polymorphism of XRCC1 and antioxidants influence lung cancer risk. Anticancer Res 2003;23:627-32.
- 53. Ryk C, Kumar R, Thirumaran RK, et al. Polymorphisms in the DNA repair genes XRCC1, APEX1, XRCC3 and NBS1, and the risk for lung cancer in never- and eversmokers. Lung Cancer 2006;54:285-92.
- 54. Saikia BJ, Phukan RK, Sharma SK, et al. Interaction of XRCC1 and XPD gene polymorphisms with lifestyle and environmental factors regarding susceptibility to lung cancer in a high incidence population in North East India. Asian Pac J Cancer Prev 2014;15:1993.

- 55. Schneider J, Classen V, Bernges U, et al. XRCC1 polymorphism and lung cancer risk in relation to tobacco smoking. Int J Mol Med 2005;16:709.
- 56. Singh A, Singh N, Behera D, et al. Association and multiple interaction analysis among five XRCC1 polymorphic variants in modulating lung cancer risk in North Indian population. Dna Repair 2016;47:30-41.
- Tang J, Zhao J, Zhao J. The relationship between genetic variants of XRCC1 gene and lung cancer susceptibility in Chinese Han population. Med Oncol 2014;31:157.
- 58. Tecmer P, Bast R, Ruud K, et al. Polymorphisms of the DNA repair genes XRCC1 and XRCC3 and risk of lung and colorectal cancer: a case-control study in a Southern Italian population. Anticancer Res 2008;28:2941-6.
- 59. Yin J, Vogel U, Ma Y, et al. The DNA repair gene XRCC1 and genetic susceptibility of lung cancer in a northeastern Chinese population. Lung Cancer 2007;56:153-60.
- 60. Yin J, Vogel U, Ma Y, et al. Association of DNA repair gene XRCC1 and lung cancer susceptibility among nonsmoking Chinese women. Cancer Genet Cytogenet 2009;188:26-31.
- 61. Yin J, Vogel U, Ma Y, et al. Haplotypes of nine single nucleotide polymorphisms on chromosome 19q13.2-3 associated with susceptibility of lung cancer in a Chinese population. Mutat Res 2008;641:12.
- 62. Hu Z1, Ma H, Lu D, et al. A promoter polymorphism (-77T>C) of DNA repair gene XRCC1 is associated with risk of lung cancer in relation to tobacco smoking. Pharmacogenet Genomics 2005;15:457.
- Chu DQ, Zou Q, Hu CH, et al. XRCC1 genetic polymorphism acts a potential biomarker for lung cancer. Tumour Biol 2015;36:3745-50.
- 64. Chang JS, Wrensch MR, Hansen HM, et al. Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. Int J Cancer 2008;123:2095.
- 65. Chen S, Tang D, Xue K, et al. DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population. Carcinogenesis 2002;23:1321.
- 66. Buch SC, Diergaarde B, Nukui T, et al. Genetic variability in DNA repair and cell cycle control pathway genes and risk of smoking-related lung cancer. Mol Carcinog 2012;51 Suppl 1:E11.
- 67. Cote ML, Yoo W, Wenzlaff AS, et al. Tobacco and estrogen metabolic polymorphisms and risk of non-small cell lung cancer in women. Carcinogenesis 2009;30:626.
- 68. Du Y, He Y, Mei Z, et al. Association between genetic polymorphisms in XPD and XRCC1 genes and risks

of non-small-cell lung cancer in East Chinese Han population. Clin Respir J 2016;10:311.

- Hsieh WC, Cheng YW, Lin CJ, et al. Prognostic significance of X-ray cross-complementing group 1 T-77C polymorphism in resected non-small cell lung cancer. Jpn J Clin Oncol 2009;39:81-5.
- Hung RJ, Brennan P, Canzian F, et al. Large-scale investigation of base excision repair genetic polymorphisms and lung cancer risk in a multicenter study. J Natl Cancer Inst 2005;97:567-76.
- 71. Landi S, Gemignani F, Canzian F, et al. DNA repair and cell cycle control genes and the risk of young-onset lung cancer. Cancer Res 2006;66:11062.
- Letkova L, Matakova T, Musak L, et al. DNA repair genes polymorphism and lung cancer risk with the emphasis to sex differences. Mol Biol Rep 2013;40:5261-73.
- 73. Li M, Yin Z, Guan P, et al. XRCC1 polymorphisms, cooking oil fume and lung cancer in Chinese women nonsmokers. Lung Cancer 2008;62:145.
- 74. Li Z, Guan W, Li MX, et al. Genetic Polymorphism of DNA Base-excision Repair Genes (APE1, OGG1 and XRCC1) and Their Correlation with Risk of Lung Cancer in a Chinese Population. Arch Med Res 2011;42:226.
- 75. Lópezcima MF, Gonzálezarriaga P, Garcíacastro L, et al. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of Northern Spain. BMC Cancer 2007;7:162.
- 76. Misra RR, Ratnasinghe D, Tangrea JA, et al. Polymorphisms in the DNA repair genes XPD, XRCC1, XRCC3, and APE/ref-1, and the risk of lung cancer among male smokers in Finland. Cancer Lett 2003;191:171.
- 77. Natukula K, Jamil K, Pingali UR, et al. The codon 399 Arg/Gln XRCC1 polymorphism is associated with lung cancer in Indians. Asian Pac J Cancer Prev 2013;14:5275-9.
- Pachouri SS, Sobti RC, Kaur P, et al. Contrasting impact of DNA repair gene XRCC1 polymorphisms Arg399Gln and Arg194Trp on the risk of lung cancer in the north-Indian population. DNA Cell Biol 2007;26:186-91.
- Popanda O, Schattenberg T, Phong CT, et al. Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer. Carcinogenesis 2004;25:2433.
- Shen M, Berndt SI, Rothman N, et al. Polymorphisms in the DNA base excision repair genes APEX1 and XRCC1 and lung cancer risk in Xuan Wei, China. Anticancer Res 2005;25:537.
- 81. Sreeja L, Syamala VS, Syamala V, et al. Prognostic

importance of DNA repair gene polymorphisms of XRCC1 Arg399Gln and XPD Lys751Gln in lung cancer patients from India. J Cancer Res Clin Oncol 2008;134:645-52.

- Tanaka Y, Maniwa Y, Bermudez VP, et al. Nonsynonymous single nucleotide polymorphisms in DNA damage repair pathways and lung cancer risk. Cancer 2010;116:896.
- Uppal V, Mehndiratta M, Mohapatra D, et al. XRCC-1 Gene Polymorphism (Arg399Gln) and Susceptibility to Development of Lung Cancer in Cohort of North Indian Population: A Pilot Study. J Clin Diagn Res 2014;8:17-20.
- Vogel U, Nexø BA, Wallin H, et al. No Association Between Base Excision Repair Gene Polymorphisms and Risk of Lung Cancer. Biochem Genet 2004;42:453-60.
- 85. Wang X, Ma KW, Zhao YG, et al. XRCC1 rs25487 polymorphism is associated with lung cancer risk in epidemiologically susceptible Chinese people. Genet Mol Res 2015;14:15530.
- 86. Yoo SS, Jin C, Jung DK, et al. Putative functional variants of XRCC1 identified by RegulomeDB were not associated with lung cancer risk in a Korean population. Cancer Genet 2015;208:19.
- 87. Zhang X, Miao X, Liang G, et al. Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res 2005;65:722-6.
- Zhou W, Liu G, Miller DP, et al. Polymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, and lung cancer risk. Cancer Epidemiol Biomarkers Prev 2003;12:359.
- Zienolddiny S, Campa D, Lind H, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 2006;27:560.
- 90. Sarlinova M, Majerova L, Matakova T, et al. Polymorphisms of DNA repair genes and lung cancer in chromium exposure. Adv Exp Med Biol 2015;833:1-8.
- Wang HT, Gao Y, Zhao YX, et al. PARP-1 rs3219073 Polymorphism May Contribute to Susceptibility to Lung Cancer. Genet Test Mol Biomarkers 2014;18:736-40.
- 92. Xue X, Yin Z, Lu Y, et al. The joint effect of hOGG1, APE1, and ADPRT polymorphisms and cooking oil fumes on the risk of lung adenocarcinoma in Chinese nonsmoking females. PLos One 2013;8:e71157.
- 93. Yin M, Liao Z, Liu Z, et al. Functional polymorphisms of base excision repair genes XRCC1 and APEX1 predict risk of radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys 2011;81:e67.
- 94. Yu P, Liu YP, Zhang JD, et al. Correlation between PARP-

Liu et al. BER pathway polymorphism and lung cancer risk

1 Val762Ala polymorphism and the risk of lung cancer in a Chinese population. Tumour Biol 2015;36:177.

- 95. Agaçhan B, Küçükhüseyin O, Aksoy P, et al. Apurinic/ apyrimidinic endonuclease (APE1) gene polymorphisms and lung cancer risk in relation to tobacco smoking. Anticancer Res 2009;29:2417-20.
- 96. Deng Q, Sheng L, Su D, et al. Genetic polymorphisms in ATM, ERCC1, APE1 and iASPP genes and lung cancer risk in a population of southeast China. Med Oncol 2011;28:667-72.
- 97. Li H, Liu G, Xia L, et al. A polymorphism in the DNA repair domain of APEX1 is associated with the radiationinduced pneumonitis risk among lung cancer patients after radiotherapy. Br J Radiol 2014;87:20140093.
- 98. Shannon AM, Telfer BA, Smith PD, et al. The mitogenactivated protein/extracellular signal-regulated kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) enhances the radiation responsiveness of lung and colorectal tumor xenografts. Clin Cancer Res 2009;15:6619-29.
- 99. Lu J, Zhang SD. Functional characterization of a promoter polymorphism in APE1/Ref-1 that contributes to reduced lung cancer susceptibility. Faseb J 2009;23:3459.
- 100. Pan H, Niu W, He L, et al. Contributory role of five common polymorphisms of RAGE and APE1 genes in lung cancer among Han Chinese. PLos One 2013;8:e69018.
- 101. Sevilya Z, Leitnerdagan Y, Pinchev M, et al. Development of APE1 enzymatic DNA repair assays: low APE1 activity is associated with increase lung cancer risk. Carcinogenesis 2015;36:982-91.
- 102. Lee YC, Morgenstern H, Greenland S, et al. A casecontrol study of the association of the polymorphisms and haplotypes of DNA ligase I with lung and upperaerodigestive-tract cancers. Int J Cancer 2008;122:1630–8.
- 103.Sakoda LC, Loomis MM, Doherty JA, et al. Germ line variation in nucleotide excision repair genes and lung cancer risk in smokers. Int J Mol Epidemiol Genet 2012;3:1.
- 104. Doherty JA, Sakoda LC, Loomis MM, et al. DNA repair genotype and lung cancer risk in the beta-carotene and retinol efficacy trial. Int J Mol Epidemiol Genet 2013;4:11-34.
- 105.H S, Kohno T, Wakai K, et al. hOGG1 Ser326Cys polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1999;8:669-74.
- 106.Hatt L, Loft S, Risom L, et al. OGG1 expression and OGG1 Ser326Cys polymorphism and risk of lung cancer in a prospective study. Mutat Res 2008;639:45-54.

- 107. Ito H, Hamajima N, Takezaki T, et al. A limited association of OGG1 Ser326Cys polymorphism for adenocarcinoma of the lung. J Epidemiol 2002;12:258-65.
- 108. Janik J, Swoboda M, Janowska B, et al. 8-Oxoguanine incision activity is impaired in lung tissues of NSCLC patients with the polymorphism of OGG1 and XRCC1 genes. Mutat Res 2011;709-710:21-31.
- 109.Kohno T, Kunitoh H, Toyama K, et al. Association of the OGG1 -Ser326Cys polymorphism with lung adenocarcinoma risk. Cancer Sci 2006;97:724-8.
- 110.Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 1998;16:3219-25.
- 111.Lan Q, Mumford JL, Shen M, et al. Oxidative damagerelated genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions. Carcinogenesis 2004;25:2177.
- 112. Liang G, Pu Y, Yin L. Rapid Detection of Single Nucleotide Polymorphisms Related with Lung Cancer Susceptibility of Chinese Population. Cancer Lett 2005;223:265.
- 113.Liu CJ, Hsia TC, Tsai RY, et al. The joint effect of hOGG1 single nucleotide polymorphism and smoking habit on lung cancer in Taiwan. Anticancer Res 2010;30:4141.
- 114.Loft S, Svoboda P, Kasai H, et al. Prospective study of 8-oxo-7,8-dihydro-2'-deoxyguanosine excretion and the risk of lung cancer. Carcinogenesis 2006;27:1245-50.
- 115. Miyaishi A, Osawa K, Osawa Y, et al. MUTYH Gln324His gene polymorphism and genetic susceptibility for lung cancer in a Japanese population. J Exp Clin Cancer Res 2009;28:10.
- 116. Okasaka T, Matsuo K, Suzuki T, et al. hOGG1 Ser326Cys polymorphism and risk of lung cancer by histological type. J Hum Genet 2009;54:739.
- 117. Park J, Chen L, Tockman MS, et al. The human8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNArepair enzyme and its association with lung cancer risk.Pharmacogenetics 2004;14:103.
- 118. Qian B, Zhang H, Zhang L, et al. Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer 2011;73:138.
- 119. Qin H, Zhu J, Zeng Y, et al. Aberrant promoter methylation of hOGG1 may be associated with increased risk of non-small cell lung cancer. Oncotarget 2017;8:8330-41.
- 120. Sørensen M, Raaschou-Nielsen O, Hansen RD, et al.

2798

Interactions between the OGG1 Ser326Cys polymorphism and intake of fruit and vegetables in relation to lung cancer. Free Radic Res 2006;164:885-91.

- 121. Sunaga N, Kohno T, Yanagitani N, et al. Contribution of the NQO1 and GSTT1 Polymorphisms to Lung Adenocarcinoma Susceptibility. Cancer Epidemiol Biomarkers Prev 2002;11:730-8.
- 122. Wikman H, Risch A, Klimek F, et al. hOGG1 polymorphism and loss of heterozygosity (LOH): significance for lung cancer susceptibility in a caucasian population. Int J Cancer 2000;88:932-7.
- 123. Cheng Z, Wang W, Song YN, et al. hOGG1, p53 genes, and smoking interactions are associated with the development of lung cancer. Asian Pacific J Cancer Prevention 2012;13:1803-8.
- 124. Karahalil B, Emerce E, Koçer B, et al. The association of OGG1 Ser326Cys polymorphism and urinary 8-OHdG levels with lung cancer susceptibility: a hospital-based case-control study in Turkey. Arh Hig Rada Toksikol 2008;59:241-50.
- 125.Le ML, Donlon T, Lumjones A, et al. Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev 2002;11:409.
- 126. Chang CH, Hsiao CF, Chang GC, et al. Interactive effect of cigarette smoking with human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) polymorphisms on the risk of lung cancer: a case-control study in Taiwan. Am J Epidemiol 2009;170:695-702.
- 127.Al-Tassan N, Eisen T, Maynard J, et al. Inherited variants in MYH are unlikely to contribute to the risk of lung carcinoma. Hum Genet 2004;114:207-10.
- 128. Moher D, Liberati A, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 2009;6:e1000097.
- 129. Wells GA, Shea BJ, O'Connell D, et al. The Newcastle– Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. Appl Eng Agric 2012;18:727-34.
- 130.de Souza MR, Rohr P, Kahl VFS, et al. The influence of polymorphisms of xenobiotic-metabolizing and DNA repair genes in DNA damage, telomere length and global DNA methylation evaluated in opencast coal mining workers. Ecotoxicol Environ Saf 2020;189:109975.
- 131.Zhang Y, Yang L, Kucherlapati M, et al. Global impact of somatic structural variation on the DNA methylome of human cancers. Genome Biol 2019;20:209.
- 132.Lorenzo-Gonzalez M, Ruano-Ravina A, Torres-Duran

M, et al. Residential radon, genetic polymorphisms in DNA damage and repair-related. Lung Cancer 2019;135:10-5.

- 133.Degtyareva NP, Chen L, Mieczkowski P, et al. Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae. Mol Cell Biol 2008;28:5432-45.
- 134. Shakeri M, Zakeri F, Changizi V, et al. Cytogenetic effects of radiation and genetic polymorphisms of the XRCC1 and XRCC3 repair genes in industrial radiographers. Radiat Environ Biophys 2019;58:247-55.
- 135.Polo LM, Xu Y, Hornyak P, et al. Efficient Single-Strand Break Repair Requires Binding to Both Poly(ADP-Ribose) and DNA by the Central BRCT Domain of XRCC1. Cell Rep 2019;26:573-81.e5.
- 136. Chen L, Zhuo D, Chen J, et al. XRCC1 polymorphisms and lung cancer risk in Caucasian populations: a metaanalysis. Int J Clin Exp Med 2015;8:14969-76.
- 137. Vineis P, Manuguerra M, Kavvoura FK, et al. A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. J Natl Cancer Inst 2009;101:24-36.
- 138.Huang G, Cai S, Wang W, et al. Association between XRCC1 and XRCC3 Polymorphisms with Lung Cancer Risk: A Meta-Analysis from Case-Control Studies. PLos One 2013;8:e68457.
- 139.Liu ZJ, Martinez Cuesta S, van Delft P, et al. Sequencing abasic sites in DNA at single-nucleotide resolution. Nat Chem 2019;11:629-37.
- 140.Kim JM, Yeo MK, Lim JS, et al. APEX1 Expression as a Potential Diagnostic Biomarker of Clear Cell Renal Cell Carcinoma and Hepatobiliary Carcinomas. J Clin Med 2019. doi: 10.3390/jcm8081151.
- 141.Lu GS, Li M, Xu CX, et al. APE1 stimulates EGFR-TKI resistance by activating Akt signaling through a redoxdependent mechanism in lung adenocarcinoma. Cell Death Dis 2018;9:1111.
- 142. Wang T, Wang H, Yang S, et al. Association of APEX1 and OGG1 gene polymorphisms with breast cancer risk among Han women in the Gansu Province of China. BMC Med Genet 2018;19:67.
- 143.Kim H, Seo H, Park Y, et al. APEX1 Polymorphism and Mercaptopurine-Related Early Onset Neutropenia in Pediatric Acute Lymphoblastic Leukemia. Cancer Res Treat 2018;50:823-34.
- 144. Xiao X, Yang Y, Ren Y, et al. rs1760944 Polymorphism in the APE1 Region is Associated with Risk and Prognosis of Osteosarcoma in the Chinese Han Population. Sci Rep

Liu et al. BER pathway polymorphism and lung cancer risk

2017;7:9331.

- 145.Ding G, Chen Y, Pan H, et al. Association between apurinic/apyrimidinic endonuclease 1 rs1760944 T>G polymorphism and susceptibility of cancer: a meta-analysis involving 21764 subjects. Biosci Rep 2019;39.
- 146. Zhang X, Xin X, Zhang J, et al. Apurinic/apyrimidinic endonuclease 1 polymorphisms are associated with ovarian cancer susceptibility in a Chinese population. Int J Gynecol Cancer 2013;23:1393-9.
- 147. Yuan H, Li H, Ma H, et al. Genetic polymorphisms in key DNA repair genes and risk of head and neck cancer in a Chinese population. Exp Ther Med 2012;3:719-24.
- 148.Jin EH, Kim J, Lee SI, et al. Association between polymorphisms in APE1 and XRCC1 and the risk of

Cite this article as: Liu S, Xiao Y, Hu C, Li M. Associations between polymorphisms in genes of base excision repair pathway and lung cancer risk. Transl Cancer Res 2020;9(4):2780-2800. doi: 10.21037/tcr.2020.02.44

gastric cancer in Korean population. Int J Clin Exp Med 2015;8:11484.

- 149.Luo D, Gao Y, Wang S, et al. Genetic variation in PLCE1 is associated with gastric cancer survival in a Chinese population. J Gastroenterol 2011;46:1260.
- 150. Dai ZJ, Wang XJ, Kang AJ, et al. Association between APE1 Single Nucleotide Polymorphism (rs1760944) and Cancer Risk: a Meta-Analysis Based on 6,419 Cancer Cases and 6,781 Case-free Controls. J Cancer 2014;5:253-9.
- 151.Abduljaleel Z. Structural and Functional Analysis of human lung cancer risk associated hOGG1 variant Ser326Cys in DNA repair gene by molecular dynamics simulation. Noncoding RNA Res 2019;4:109-19.

2800