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Background: Of great interest in cancer prevention is how nutrient components affect gene pathways 
associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast 
or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to 
insights about nutrient-gene interactions and the development of more effective prevention approaches to 
reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray 
analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. 
However, the vast number of genes and combinations of gene pathways, coupled with the expense of the 
experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical 
approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance 
the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain 
reaction model to simulate gene pathways, in which the gene expression changes through the pathway are 
represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool 
to solve for the species changes due to the chain reactions over time. Through this approach we can examine 
the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time 
with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. 
We apply this approach to microarray analysis data from an experiment which involved the effects of three 
polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a 
study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. 
Results: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. 
By applying it to microarray data, the chain reaction model computed a set of reaction rates to examine the 
effects of three polyphenols (EGCG, genistein, and resveratrol) on gene expression in this pathway during 
puberty. We first performed statistical analysis to test the time factor on the estrogen synthesis pathway. 
Global tests were used to evaluate an overall gene expression change during puberty for each experimental 
group. Then, a chain reaction model was employed to simulate the estrogen synthesis pathway. Specifically, 
the model computed the reaction rates in a set of ordinary differential equations to describe interactions 
between genes in the pathway (A reaction rate K of A to B represents gene A will induce gene B per unit at 
a rate of K; we give details in the “method” section). Since disparate changes of gene expression may cause 
numerical error problems in solving these differential equations, we used an implicit scheme to address 
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this issue. We first applied the chain reaction model to obtain the reaction rates for the control group. A 
sensitivity study was conducted to evaluate how well the model fits to the control group data at Day 50. 
Results showed a small bias and mean square error. These observations indicated the model is robust to low 
random noises and has a good fit for the control group. Then the chain reaction model derived from the 
control group data was used to predict gene expression at Day 50 for the three polyphenol groups. If these 
nutrients affect the estrogen synthesis pathways during puberty, we expect discrepancy between observed and 
expected expressions. Results indicated some genes had large differences in the EGCG (e.g., Hsd3b and Sts) 
and the resveratrol (e.g., Hsd3b and Hrmt12) groups.
Conclusions: In the present study, we have presented (I) experimental studies of the effect of nutrient diets 
on the gene expression changes in a selected estrogen synthesis pathway. This experiment is valuable because 
it allows us to examine how the nutrient-containing diets regulate gene expression in the estrogen synthesis 
pathway during puberty; (II) global tests to assess an overall association of this particular pathway with time 
factor by utilizing generalized linear models to analyze microarray data; and (III) a chain reaction model to 
simulate the pathway. This is a novel application because we are able to translate the gene pathway into the 
chemical reactions in which each reaction channel describes gene-gene relationship in the pathway. In the 
chain reaction model, the implicit scheme is employed to efficiently solve the differential equations. Data 
analysis results show the proposed model is capable of predicting gene expression changes and demonstrating 
the effect of nutrient-containing diets on gene expression changes in the pathway.

One of the objectives of this study is to explore and develop a numerical approach for simulating the gene 
expression change so that it can be applied and calibrated when the data of more time slices are available, and 
thus can be used to interpolate the expression change at a desired time point without conducting expensive 
experiments for a large amount of time points. Hence, we are not claiming this is either essential or the most 
efficient way for simulating this problem, rather a mathematical/numerical approach that can model the 
expression change of a large set of genes of a complex pathway. In addition, we understand the limitation of this 
experiment and realize that it is still far from being a complete model of predicting nutrient-gene interactions. 
The reason is that in the present model, the reaction rates were estimated based on available data at two time 
points; hence, the gene expression change is dependent upon the reaction rates and a linear function of the gene 
expressions. More data sets containing gene expression at various time slices are needed in order to improve the 
present model so that a non-linear variation of gene expression changes at different time can be predicted. 
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Background 

Cancer can be viewed as a chronic disease that may be 
influenced by genetic and nutritional factors at various 
stages in its natural history. The interaction of genes 
and nutrient components is associated with cancer 
incidence and tumor behaviour (1-3). It is estimated that 
one third of all cancer cases may be influenced by diet 
and associated lifestyle factors, such as food and excess 
calories for increasing cancer risk (4). On the other hand, 
many dietary components may have anti-cancer effects by 
affecting simultaneously multiple cancer processes, such as 

carcinogen metabolism, hormonal balance, cell signalling, 
cell-cycle control, and angiogenesis (5). Polyphenols are a 
group of dietary components found in plants, characterized 
by the presence of more than one phenol group per 
molecule. It has been suggested that polyphenols are 
antioxidants with potential health benefits in reduction 
of cancer risk (6). Sources of polyphenols include green 
tea, red wine, soybeans and other fruits and vegetables. To 
study the interaction of polyphenols on gene expression, 
the UAB Center for Nutrient-Gene Interaction (CNGI, 
a NCI funded research program) conducted experiments 
to examine three dietary polyphenols: genistein from soy, 
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resveratrol from grapes, and epigallocatechin 3-gallate 
(EGCG) from green tea. A component of this study is to 
investigate the nutritional modulation of genetic pathways 
of estrogen synthesis and metabolism using microarray 
data.

Various pathway databases and methods (e.g., KEGG, 
GENMAPP, REACTOME, CYTOSCAPE, and BIOCARTA) 
are available on the internet for pathway analysis (7-12). 
These curated databases are useful resources to study 
biological processes, such as the pathways of intermediary 
metabolism, regulatory pathways, and signal transduction. 
They also help investigators gain insight into the potential 
functions of new genes. Since the databases contain massive 
amounts of information, it becomes challenging for 
researchers to convert the enormous amount of information 
into useful knowledge. Many approaches have been 
developed to provide parsimonious models to analyze gene 
pathways. For example, MAPPFinder and Pathway-Miner 
are bioinformatics tools to create global gene expression 
profiles across biological pathways (13,14). They classify 
genes by integrating the gene ontology (GO) annotations 
based on metabolic, cellular and regulatory pathways. 
Typically, a top list of genes selected by one of these 
statistical methods is mapped onto pathways with gene 
product association networks for genes that occur in the 
pathways. A z-score or the Fisher exact test is then used 
to test statistical significance of pathways. The pathways 
can be ranked in accordance with the P values. These tools 
depict biological interaction among genes and provide 
insights to study associations of the biological pathways 
with research outcomes (e.g., disease versus non-disease or 
treatment versus control). Though these methods provide 
valuable statistical assessment of gene expression changes, 
they do not offer the quantitative description of the 
dynamic relationship and interaction between the genes 
of interest. Hence, it is difficult to use these methods 
to disentangle biological processes, and to predict the 
outcome of gene expression changes due to different initial 
gene profiles and treatment processes.

The chain reaction model has been widely used in 
the engineering field to simulate chemical reactions 
that occur in combustion devices such as jet and rocket 
engines, etc. (15,16). The chain reaction model contains a 
set of chemical reactions, where the rate of each reaction 
was estimated either based on the molecular collision 
theory of quantum mechanics or from the test data 
(such as shock tube experiments). In the present study, 
we propose a chain reaction model to simulate gene 

pathways as an alternative. The proposed chain reaction 
model provides a systematic approach for pathway level 
analyses such that parametric studies of various pathways, 
selections of genes and nutrient-gene interaction can be 
performed in an efficient and cost-effective manner. In 
the proposed model, we use the regulated genes as a set 
of reacting species and calculate the species changes as 
the gene expression changes. This approach is applied to 
a microarray experiment designed to study the nutrient 
effects on the estrogen synthesis pathway during puberty 
in which nutrient-, time-, and gene- interactions play a 
critical role. 

Data example

Estrogen synthesis pathway

Figure 1 shows an estrogen synthesis pathway, developed at 
the Center for Nutrient-Gene Interaction (CNGI) at the 
University of Alabama at Birmingham (UAB). Estrogens 
are formed in a series of metabolic channels starting from 
cholesterol. For example, Desmolase (CYP11a) removes 
part of the cholesterol side chain to produce the first 
steroid pregnenolone. Pregnenolone, in turn, undergoes 
17α-hydroxylation by CYP17. 17α-hydroxypregenolone is 
converted to the adrenal androgen dehydroepiandrosterone 
(DHEA) by CYP11a. Pregnenolone is also converted 
to progesterone by 3-hydroxysteroid dehydrogenase 
(HSD3b1). Progesterone is converted to testosterone by 
CYP17, CYP11a and HSD3b1. Aromatase (CYP19) converts 
testosterone and androstenedione to 17-estradiol and 
estrone, respectively. Estrone is reversibly converted to 
estradiol by 17-hydroxysteroid dehydrogenase (HSD17b3). 
Conjugation of estrogens to 3-glucuronides and 3-sulfates 
is catalyzed by UDP-glucuronosyltransferases (UGTs) and 
PAPS-sulfotransferases (SULTs), respectively. There are also 
corresponding hydrolases (glucuronidases and sulfatases) 
that may selectively release estrogens from conjugates that 
circulate in the blood.

Polyphenols have been shown to inhibit the enzymatic 
properties of many enzymes in the estrogen synthesis 
pathway (17,18). However, it is less known about the 
effects of the polyphenols on the rates of transcription 
and translation of the genes encoding these enzymes (19). 
The use of microarray analysis may provide important 
information about the regulation of these enzymes and 
identifying gene and protein partners that modulate their 
activities.
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Experimental design

The purpose of this experiment is to examine how the 
three polyphenols, EGCG, genistein, and resveratrol, affect 
gene expression in the estrogen synthesis pathway during 
puberty. The experiment was carried out in a study of 21-
day old (puberty) and 50-day old (post-puberty) female 
Sprague-Dawley rats which were exposed to one of the 
three polyphenols from birth. At birth, their dams were 
provided with one of the following: AIN-76A diet (control), 
AIN-76A diet containing genistein (250 ppm) or resveratrol 
(1,000 ppm), or AIN-76A diet with EGCG added to the 
drinking water. The offspring were exposed to one of these 
nutrients via the dam’s milk and then (after day 21) directly 
via the diet. The offspring continued to be fed these diets 
until the time of sacrifice at either day 21 or day 50 - 
their 4th mammary gland was removed for the microarray 
experiment. There were 8-10 rats in each treatment 
group. Mammary glands were snap-frozen and stored at 

–80 oC for approximately 6 months. The samples were 
run on the Affymetrix GeneChip Rat Genome 230 2.0 
(RAE 230) in the UAB Comprehensive Cancer Center 
Microarray Facility. Data quality was checked using a 2D 
image plot (20); no problems in these microarrays were 
found. The Affymetrix gene chip (i.e., RAE 230) contains 
31,099 genes and ESTs. Among these genes, there are 
8 genes involved in the estrogen synthesis pathway as 
shown in Table 1. We used the data on these 8 gene 
expressions to analyze the estrogen synthesis pathway. 

Statistical and biomechanical approaches

We first performed a statistical analysis to test the time 
factor on the estrogen synthesis pathway. Since we have 
interest in this particular estrogen synthesis pathway 
(not to compare to a known pathway), we used the self-
contained gene set methods to evaluate if this pathway 

Figure 1 Estrogen synthesis pathway (http://www.heflingenetics.uab.edu/cngi/esp/pathway.html)

Cholesterol

Dehydroepiandrosterone sulfate

Pregnenolone

Progesterone

17α-hydroxy-pregnenolone

17α-hydroxyprogesterone

2-Hydroxyestradiol-17b

2-Methoxyestradiol-17b

Hrmt 1/2

Hsd17b3

cyp19 cyp19 Ugt2b
3-Sulfate

3-Glucuronide

Hsd3b Hsd3b Hsd3b

Sts Smp2a

Hsd3b

cyp17

cyp17

cyp17
G       V

G             V

G          V

G       V G       V

G       V G         V G      V

G        V

G          V

cyp11a

cyp11a

cyp11a

cyp11a
cyp11a

cyp11a

Testosterone

Estrone
Estradiol-17b

Dehydroepiandrosterone

Androst-4-ene-3,17-dione



65Translational Cancer Research, Vol 1, No 2 September 2012

© Pioneer Bioscience Publishing Company. All rights reserved. Transl Cancer Res 2012;1(2):61-73www.theTCR.org

is activated from day 21 to day 50. Specifically, two 
global tests (21-23) were employed to evaluate an overall 
gene expression change from day 21 to day 50 for each 
experimental group: a global test with random effects (22) 
and an ANOVA global test (23). The global test with 
random effects employs a generalized linear model 
with a random effect where the random effect is used 

to examine the time effect from day 21 to day 50. The 
ANOVA global test is to test the association between 
gene expressions and the time factor by comparison of 
linear models through the extra sum of squares principle. 
Both approaches have been evaluated by Dinu et al. (24) 
and Fridley et al. (25) and show both have comparable 
power with similar P values and also have a higher 

Table 1 Descriptive statistics of gene expressions in estrogen synthesis pathway at Day 21 and Day 50

Experimental group Gene name
day 21 day 50

Mean SD Mean SD

Control

Cyp11a1 6.28 0.59 5.24 0.36

Cyp17a1 0.96 0.41 1.4 0.77

Hsd3b 2.93 0.96 3.52 0.68

Hsd17b3 3.3 0.99 2.98 0.98

Hrmt1l2 9.39 0.24 9.38 0.17

Sts 6.31 0.33 6.34 0.36

Smp2a 3.1 0.91 2.4 0.94

Ugt2b 1.95 0.92 1.73 1.11

EGCG

Cyp11a1 6.03 0.31 5.48 0.37

Cyp17a1 1.27 0.82 1.76 0.88

Hsd3b 3.47 0.72 3.35 0.56

Hsd17b3 3.43 1.07 3.6 0.71

Hrmt1l2 9.01 0.17 9.32 0.14

Sts 6.83 0.24 6.29 0.29

Smp2a 2.44 0.94 2.4 1.26

Ugt2b 1.43 0.87 1.71 0.99

Genistein

Cyp11a1 6.01 0.57 5.07 0.37

Cyp17a1 1.07 0.32 1.71 1.09

Hsd3b 3.22 1.06 3.53 0.94

Hsd17b3 4.1 0.81 2.82 0.85

Hrmt1l2 9.18 0.21 9.44 0.21

Sts 6.47 0.38 6.25 0.21

Smp2a 3.04 1.04 2.36 0.97

Ugt2b 1.62 1.16 1.39 1.15

Resveratrol

Cyp11a1 6.43 0.34 5.45 0.4

Cyp17a1 1.3 0.38 1.35 0.71

Hsd3b 3 1.1 3.09 0.79

Hsd17b3 3.3 1.09 3.58 0.66

Hrmt1l2 9.15 0.19 9.44 0.21

Sts 6.56 0.36 6.29 0.21

Smp2a 2.5 0.93 2.06 1.01

Ugt2b 1.86 0.96 1.51 0.76
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power than the Fisher test. Here we used 0.05 as the 
P value cut-off for the statistical significance level for 
both global tests. Univariate analysis for each individual 
gene was also performed by two-sample t-test to test any 
expression change from day 21 to day 50. The P value 
was adjusted for simultaneously multiple testing by the 
false discovery rate method (26). Then, a chain reaction 
model was used to simulate the estrogen synthesis 
pathway. In this model, the regulated genes are treated 
as a set of chemical species, and the gene change through 
a conversion process in the pathway is represented 
by the species change through a reaction channel of 
the chain reaction model. The chain reaction model 
involves a set of ordinary differential equations (ODEs) 
to represent the rates of species change. The reaction 
rates associated with each reaction channel are used 
to describe interactions between genes in the pathway. 
Since numerical errors may occur due to a stiffness 
problem (e.g., disparate changes of gene expression), we 
employ an implicit scheme to solve the set of ODEs. The 
implicit scheme is a numerical algorithm to linearize the 
gene expression change and approximate the reaction 
rates using the Taylor series expansion. Employment of 
the implicit scheme can increase numerical stability and 
accuracy.

Our hypothesis for this experiment is that the three 
polyphenols can affect gene expression in the estrogen 
synthesis pathway during puberty. Thus, we expect gene 
expression differences between the three treatment groups 
versus the control group. We first applied the chain reaction 
model to obtain reaction rates for the control group 
based on data at day 21 and day 50. A sensitivity study 
was conducted to evaluate how well the model fits to the 
control group data at day 50. In the sensitivity analysis, we 
added a certain degree of normal random noise (0.5 and 
1 standard deviations) to expression data at day 21. The 
chain reaction model then analyzed these noise-added data 
to obtain a set of predicted expressions. These predicted 
expressions were compared to the predicted expressions 
that were estimated based on original data (i.e., no noise 
added). We computed the bias and mean square error (MSE) 
for evaluation. A smaller bias and MSE close to 0 indicates 
robustness of the model. Then the chain reaction model 
built based on the control group data was used to predict 
gene expression at day 50 for the three polyphenol groups. 
When these nutrients affect the estrogen synthesis pathway, 
we expect discrepancies between observed and expected 
gene expressions. 

Results 

Global test approaches to test overall gene expression 
on the estrogen synthesis pathway

Descriptive statistics and distribution of these 8 gene 
expressions are displayed in Table 1 and Figure 2. Gene 
expression change from day 21 to day 50 yielded various 
patterns. For example in Table 2A, gene Cyp11a1 was down-
regulated from day 21 to day 50 in the four experimental 
groups (P=0.009-0.0001). In contrast, gene Hrmt12 had 
similar expression between day 21 and day 50 in the control 
group, but was up-regulated from day 21 to day 50 in the 
other three polyphenol groups (P=0.04-0.001). Statistical 
data analysis based on the two global tests showed the 
overall expression changed significantly for the control 
(P=0.044-0.048) and genistein (P=0.004-0.005) groups 
based on the P value cutoff of 0.05, but not the EGCG 
(P=0.27) and resveratrol (P=0.07) groups (Table 2B). This 
observation indicates the estrogen synthesis pathway had 
been activated from pre- to post- puberty period based on 
the reference group (i.e., control group). As the nutrients 
intervened, the pathway was either less activated (e.g., 
EGCG and resveratrol) or moved to a higher significant 
activation level (e.g., genistein).

Chain reaction model to evaluate the estrogen synthesis 
pathway

In the present study, we propose an 8-channel chain 
reaction model, listed in Table 3, to simulate the estrogen 
synthesis pathway. The 8-channel chain reaction model 
is selected based on the UAB-CNGI’s estrogen synthesis 
pathway shown in Figure 1. The reaction rates used in 
this chain reaction model, estimated based on the mean 
value of gene expression changes between day 21 and day 
50 of the control group, are listed in Table 3. For example, 
gene Cyp11a regulates gene Cyp17 with a reaction rate, 
K1, in the model. Gene Hsd3b co-regulates with gene 
Cyp17 with a forward rate, K2, and a backward rate, K3. 
Table 3 shows a negative reaction rate from Sts to Smp2a, 
and two zero rates from Hsd3b to Hsd17b3 and Ugt2b. 
The zero reaction rates indicate no appreciable gene 
expression change observed from the microarray data, 
while the negative reaction rate was caused by opposite 
trends between the microarray data and the estrogen 
synthesis pathway. The chain reaction model was 
employed to analyze the gene expression changes for the 
control group and 3 treatment groups (EGCG, genistein, 
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Figure 2 Distribution of gene expressions in estrogen synthesis pathway for the four treatment groups at day 21 and day 50
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and resveratrol), and the predicted gene expressions at 
Day 50 are shown in Table 4. The difference between the 
numerical results and the observed data in the control 
group ranges from –0.18 to 0.22. In the sensitivity 
analysis, Table 5 shows smaller biases and mean square 
errors (MSE) for 0.5 and 1 standard deviations (SD) (bias: 
–0.092~0.214 for 0.5 SD and –0.162~0.254 for 1 SD; 
MSE: 0.011~0.258 for 0.5 SD and 0.057~0.557 for 1 SD). 
The sensitivity analysis results indicate that the model is 
robust to a small amount of random noise (at least within 
1 SD). The similarity in the range of difference between 
the control group in Table 1 and that in the sensitivity 
analysis result for 1 SD (–0.18~0.22 versus –0.162~0.254) 
suggests that the model has a good fit for the control 

group. Moreover, it is expected that there is a discrepancy 
between the numerical result and the observed results 
in the treatment groups at Day 50 due to the effect of 
nutrient diets. The results showed some genes with a 
large discrepancy between the predicted and observed 
values, such as Hsd3b and Sts in the EGCG group, and 
Hsd3b and Hrmt12 in the resveratrol group. These 
observations suggest nutrient effects in gene expression 
on this pathway, and, consequently, suggest that the chain 
reaction model can be estimated for different treatments. 
Further study can be conducted to obtain the reaction 
rates for different diet treatment groups and to correlate 
the nutrient effect on the reaction rates of the estrogen 
synthesis pathway.

Discussion 

In this paper, we have presented an animal experiment 
using the microarray technology to study nutrient-gene 
effects. Since the effects of polyphenols on the estrogen 
synthesis pathway are not fully understood, this experiment 
is valuable and allows us to examine how the nutrient-
containing diets affect gene expression during puberty. 
The results may help scientists understand the effect 
of nutrients on genes and develop effective prevention 
approaches to reduce cancer risk. To evaluate an overall 
gene expression change from day 21 to day 50, we 

Table 2 Results of univariate analysis and global tests on estrogen synthesis pathway from day 21 to day 50
(A) Univariate analysis
Adjusted P value^ Control EGCG Genistein Resveratrol
Cyp11a1    0.009*    0.004*    0.004*      0.0001*
Cyp17a1 0.34 0.40 0.20 0.84
Hsd3b 0.34 0.78 0.57 0.84
Hsd17b3 0.81 0.78  0.01* 0.64
Hrmt1l2 0.95    0.001*  0.04*  0.02*
Sts 0.94    0.001* 0.20 0.13
Smp2a 0.34 0.94 0.20 0.59
Ugt2b 0.86 0.78 0.67 0.59

^P value was adjusted by FDR method. *P<0.05

(B) Global tests

P value Global test with a random effect ANOVA global test

Control 0.044* 0.048*

EGCG 0.27 0.27

Genistein 0.004* 0.005*

Resveratrol 0.07 0.07

*P<0.05

Table 3 Reaction rates of gene to gene in the estrogen 
synthesis pathway

Gene name Reaction rate     Gene name

Cyp11a K1 (0.152):  Cyp17 

Hsd3b K2 (1.485): Cyp17

K3 (4.199): 

Sts K4 (0.519):  Hsd3b

Sts K5 (-0.215):  Smp2a

Hsd3b K6 (0):  Hsd17b3

Hsd3b K7 (0.089):  Hrmt1/2

Hsd3b K8 (0):  Ugt2b
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employed two global tests to evaluate association of the 
estrogen synthesis pathway with the time effect (22,23). 
To study gene-gene interaction, we applied a chain 
reaction model to simulate the pathway. Although the 
chain reaction model has been widely used to simulate 
chemical reactions in the engineering field, this is the 
first application of this approach to microarray data to 
the best of our knowledge. The use of the chain reaction 
model to simulate gene expression changes is a novel 
application because we translated the gene pathway into a 
set of chemical reactions in which each reaction channel 
describes gene-gene interaction in the pathway. Moreover, 
to address the numerical error issue in the chain reaction 
model, the implicit scheme was employed to solve the 
differential equations. The implicit scheme linearizes the 
gene expression change and approximates the reaction 
rates with the Taylor series expansions such that numerical 
stability and accuracy can be increased.

However, due to the limitations of this microarray 
experiment, the reaction rates used in this study were 
estimated based on available data at two time slices. 
Hence, the gene expression change is dependent upon 
the reaction rates and a linear function of the gene 

concentrations. This deficiency can be overcome in 
the future once the test data at various time slices are 
available to compute the reaction order for each reaction. 
This additional data will enable us to predict the non-
linear gene expression changes throughout puberty, and 
not just at the end of the puberty cycle. Despite this 
deficiency, the result of applying the present model to the 
example data set with a control and 3 three polyphenol 
treatments provides assessment of the influence of 
different nutrient treatments on different genes. 
For example in Table 4, both EGCG and resveratrol 
groups showed some genes in which the predicted 
expression greatly differed from the observed value. This 
observation indicates both nutrients affect the estrogen 
synthesis pathway, especially for Hsd17b3 and Hrmt12 
in the resveratrol group, and Hsd3b and Sts in the 
EGCG group when compared to the control group. The 
results are consistent with those of the global tests which 
yielded different statistically significant levels between 
the EGCG and the resveratrol groups versus the control 
group.  

Lastly, we would like to point out that the present model 
is a deterministic approach; thus, it cannot account for the 

Table 4 Prediction of gene expression at day 50

Experimental 

group
Day 50

Gene name

Cyp11a1 Cyp17a1 Hsd3b Hsd17b3 Hrmt1l2 Sts Smp2a Ugt2b

Control Observed 5.24 1.4 3.52 2.98 9.38 6.34 2.4 1.73

Predicted 5.25 1.32 3.33 3.2 9.31 6.3 2.41 1.88

EGCG Observed 5.48 1.76 3.35 3.6 9.32 6.29 2.4 1.71

Predicted 5.26 1.56 4 3.42 9.36 6.92 2 1.42

Genistein Observed 5.07 1.71 3.53 2.82 9.44 6.25 2.36 1.39

Predicted 4.82 1.37 3.48 3.84 8.92 6.28 2.34 1.53

Resveratrol Observed 5.45 1.35 3.09 3.58 9.44 6.29 2.06 1.51

Predicted 5.37 1.41 3.6 3.18 9.08 6.42 1.93 1.77

Table 5 Sensitivity analysis for evaluation of prediction performance

Degrees of random noise
Gene name

Cyp11a1 Cyp17a1 Hsd3b Hsd17b3 Hrmt1l2 Sts Smp2a Ugt2b

0.5 SD Bias 0.007 –0.036 –0.092 0.214 0.033 0.02 –0.079 –0.066

MSE 0.045 0.011 0.084 0.258 0.026 0.055 0.048 0.233

1 SD Bias 0.254 –0.013 –0.069 –0.02 0.139 –0.033 –0.162 –0.096

MSE 0.399 0.057 0.421 0.557 0.181 0.084 0.15 0.457

Note: 1. Random noise was generated using standard normal distribution with 0.5 and 1 standard deviations. We simulated data 
100 times. 2. SD=standard deviation. 3. MSE=mean square error 
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dynamic effects, such as environmental exposure, dietary 
behavior change, and other unknown factors, which can 
also contribute to change in expression. Hence, a statistical 
sampling of the numerical result predicted by the present 
model is warranted in order to obtain the uncertainty and 
the margin of errors.

Methods

Chain reaction model

We propose a chain reaction model containing a set of 
chemical reactions to represent the pathway for the genes of 
interest, where each reaction channel represents a process 
of converting a gene to another one in the pathway. In this 
reaction model, we treat a set of regulated genes as a set 
of reacting species. By solving the species changes from 
the reaction model, the change of gene expression can be 
obtained. 

The general form of the chain reaction model (27) can 
be expressed as
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where ijν ′ means stoichiometric coefficients of reactant gene 
j in reaction channel i, and ijν ′′  represents stoichiometric 
coefficients of product gene j in reaction channel i. Kf,i 
and Kb,i are forward and backward rates of gene expression 
changes in reaction channel i and were estimated based 
on the gene expression change from day 21 to day 50 (of 
the control group) obtained from the statistical analysis. 
j indicates the gene j, and ng means the number of genes 
involved in the chain reaction model. For example, the 
selected estrogen synthesis pathway contains several genes 
related to cholesterol, and part of the pathway can be 
expressed as
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where j (j=1,……,5) represent Cyp11a, Cyp17, Hsd3b, 
Cyp19, and Hsd17b3, respectively. In the present chain 
reaction model, the net expression change of gene j can be 

calculated from the following equation:
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where nr is the number of reaction channels in the 

pathway model, and ikr′  ( ikr ′′ ) is the power dependence 

(or so-called reaction order) for reactant (product) gene 
k in reaction channel i. Xk is the concentration of gene 
k, defined as the ratio of the expression level of gene 
k to the sum of the expression levels of all the genes 
considered in this study. It can be seen that the gene 
expression change not only depends on the reaction rate, 
but also is a non-linear function of gene concentrations. 
This  i s  the mathematica l  model  commonly used 
in the kinetic chemistry for calculating the rate of 
concentration/fraction change. The use of multiplication 
is part of the mathematical model to account for the 
effect of the concentration of all participant genes as 
reactants. Since each reaction channel can contribute 
directly or indirectly to the expression change of a given 
gene, the total expression change rate of a given gene 
is the sum of the expression change rate associated with 
each reaction channel. In this preliminary study, the 
reaction order for all reaction channels is assumed to be 
unity in order to calculate the reaction rate since we only 
have data at two time slices (day 21 and day 50).

The chain reaction model involves a set of ordinary 
differential equations, and may pose a stiffness problem in 
obtaining a numerical solution (disparate changes of gene 
expression/species concentration at different time slices) 
(28-30). Typically, there are two numerical approaches 
to resolve the stiffness problem: an explicit scheme with 
a penalty function and an implicit scheme. These two 
numerical approaches are briefly described as follows.

Explicit scheme for solving the pathway equations

For the explicit scheme, gene concentrations can be 
calculated from the following equation.              
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The superscripts, n and n+1, denote the values at the 
previous and current time steps, and rt is the time-step 
size used for the time integration. The explicit scheme is a 
very simple method and is computationally efficient because 
the gene concentration at the next time level can be directly 
evaluated from the concentration at the previous time level 
(which is known). However, it may lead to large numerical 
errors if the reaction model is stiff. A penalty function can 
be employed to determine the appropriate time step size 
for integrating the gene expression change, such that the 
numerical error can be minimized. The penalty function 
can be expressed as 
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w h e r e ajX )(∆ i s  a  p r e - s e t  v a l u e  o f  t h e  m a x i m u m 
concentration change allowed. Though the penalty function 
can improve the numerical accuracy, the step size of time 
integration can be extremely small throughout the time 
domain, and thus the overall computational time (number 
of integration steps) can become very long. In addition, 
the numerical accuracy of this method is highly dependent 
upon the selected value of maximum concentration change 
allowed. Hence, users need some experience in order to 
determine an appropriate value for this parameter.

Implicit scheme for solving the pathway equations

For the implicit scheme, the gene concentrations are 
calculated based on
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It can be seen that unknowns ( 11, ++ n
j

n
j fX ) appear on both 

the right and left hand sides of the equations; hence, the 
set of equations cannot be solved directly. Taylor’s series 
expansion was employed to linearize the production/

dissipation rate term 1+n
jf , and can be expressed as
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Using different approximations to achieve various orders 
of numerical accuracy, a general form of a set of algebraic 
equations can be obtained as
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 [12]

The values of C1, C2, and C3 for different orders of 
numerical accuracy are listed in Table 6, respectively.  

Though the implicit methods require solving the matrix, 
the possible numerical error due the stiffness problem 
can be greatly reduced. In addition, users do not have to 
select an ad-hoc value for the allowable maximum gene 
changes. Therefore, we employed the implicit scheme 
to solve the chain reaction model of the pathway. The 
numerical accuracy of the employed implicit scheme has 
been demonstrated by solving a much stiffer chemical 
reaction such as hydrogen-oxygen and hydrocarbon-oxygen 
reactions, and the result was published previously (15,16).
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