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Introduction

Ovarian cancer is the fifth leading cause of death in women 
in the United states with an estimated 21,980 new cases and 
14,270 deaths in 2014 (1). Most women are diagnosed at an 
advanced stage and standard treatment is surgical debulking 
combined with a platinum and taxane-based chemotherapy 
regimen. This multimodal approach results in complete 
clinical remission in up to 75% of patients. However, only 
30% of patients will be cured by initial treatment and the 
remaining will relapse within 2-3 years, thus potentially 
benefitting from consolidation. Recurrent ovarian cancer 
generally does not exhibit the same level of chemo-sensitivity, 
and cure after relapse is unlikely (2,3). Rational therapies 
directed toward specific molecular targets may help overcome 
the problem of disease resistance and change the prognosis 
for ovarian cancer patients (4). Poly (ADP-ribose) polymerase 

(PARP) inhibitors are a promising new class of targeted agents 
currently in clinical trials for ovarian cancer (5).

Mechanism of action 

PARP enzymes catalyze a reaction called poly(ADP-
ribosyl)ation, consisting of the sequential attachment of 
ADP-ribose moieties from NAD+ to the side chains of 
polar residues of target proteins. Poly(ADP-ribosyl)ation 
was first described in the 1960s but recently has received 
increasing attention due to its discovered role in multiple 
diseases including stroke, cardiac ischemia, inflammation, 
diabetes and cancer. PARP-1, PARP-2, and PARP-3 are a 
group of PARPs that display nuclear localization and DNA-
dependent activity (6). These PARPs are essential in the 
response to DNA damage and loss of their function can 
result in carcinogenesis. PARPs have been implicated in 
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DNA repair via three mechanisms: 
(I) Base excisional repair (BER): PARP binds to single-

stranded DNA breaks (SSBs) and recruits DNA 
repair proteins including DNA polymerase β, DNA 
ligase III, and scaffolding proteins such as X-ray 
cross complementing protein 1 (XRCC1) (7,8);

(II) Homologous recombination (HR) double-stranded 
DNA repair: PARP facilitates HR by recruiting 
the factors ataxia telangiectasia-mutated (ATM), 
mitotic recombination 11 (Mre11), and Nijmegen 
breakage syndrome 1 (Nbs1) to sites of double-
stranded DNA breaks (DSBs) (9);

(III) Non-homologous end-joining (NHEJ): NHEJ is a 
pathway that repairs DSBs by directly ligating the 
break ends without a homologous template. NHEJ 
is less precise and more error prone that HR. PARP 
interacts with the DNA protein kinase complex 
involved in NHEJ (10). 

Each day thousands of spontaneous SSBs occur in the 
genome of a normal cell and are repaired by PARP via BER. 
When PARP activity is compromised these SSBs persist 
and are converted into DSBs at DNA replication forks. In 
a normal cell, DSBs are repaired by HR, a mechanism that 
is separate from BER and therefore, even without PARP 
activity and the resulting loss of BER, DNA damage repair 
can occur effectively through the HR pathway. However, 
cells can have a double-hit whereby both BER and HR 
are compromised. These cells rely on NHEJ for damage 
repair but this pathway is less accurate and results in errors 
that cause DNA instability, chromosomal aberrations and 
eventually cell death (5,11). The double-hit of HR and BER 
dysfunction results in “synthetic lethality” or the potent and 
lethal synergy between two otherwise nonlethal events (12). 
The concept of synthetic lethality emerged from Drosophila 
studies whereby a combination of mutations in two or 
more separate genes led to cell death. This is in contrast 
to cell viability, which occurs when only one of the genes 
is mutated or deleted. The concept gave rise to a unique 
and exciting method of targeting cancer. Synthetically 
lethal therapeutic approaches to cancer exploit the inherent 
differences between cancer cells, which may already have 
one hit or mutation, and normal cells in a way that is often 
not feasible with conventional chemotherapeutic agents (13). 

Preclinical data and rationale in BRCA 
mutated cells

The BRCA1 and BRCA2 genes were first cloned in the 1990s. 

They encode tumor-suppressor proteins that are essential 
components in HR. Dysfunction of BRCA1 and BRCA2 
is associated with an elevated risk of developing multiple 
cancers, among which breast and ovarian are most common. 
BRCA1/2 mutations were initially considered uncommon, 
however, research over the past 2 decades contests this 
assumption. Germline BRCA1/2 mutations are now thought 
to contribute to 15% of epithelial ovarian cancers and 23% 
of high grade serous carcinomas (HGSC) (14,15). The 
concept of synthetic lethality was the rationale for initially 
investigating PARP inhibitors in BRCA1/2 mutated cell 
lines. In patients with BRCA mutations, every cell carries a 
heterozygous loss-of-function BRCA mutation, but cells in 
this heterozygous state have a functional HR system. Tumor 
cells, however, have lost the remaining wild type BRCA allele 
and therefore HR becomes dysfunctional. When exposed 
to PARP inhibitors, normal cells can repair DNA damage 
through HR and survive but tumor cells, which are missing 
HR and BER, must rely on the more error-prone NHEJ. 
NHEJ mediated repair causes DNA instability and eventual 
cell death in the BRCA mutated cells (5,11). PARP inhibitors 
utilize this tumor-specific defect, causing selective tumor 
toxicity and sparing normal cells (12).

Synthetic lethality with PARP inhibitors was first 
reported in two landmark studies published in 2005 (16,17). 
Farmer et al. (16) found that cells deficient in BRCA1 
or BRCA2 function showed a greater than 1,000-fold 
enhanced sensitivity to PARP inhibitors when compared 
to wild-type cells. PARP inhibition elicited a profound 
arrest in the G2 or M phase of the cell cycle for these 
BRCA-deficient cells. The efficacy of PARP inhibition was 
reproduced in vivo with BRCA2-deficient mouse models. 
Bryant et al. (17) demonstrated that HR-deficient cell 
lines were sensitive to all PARP inhibitors and correction 
of the HR defect reversed this sensitivity. Furthermore, 
by comparing BRCA2-deficient cell lines to controls, they 
showed that sensitivity to the PARP inhibitor is a direct 
consequence of the BRCA2 defect. 

Three years later Evers et al. (18) established a BRCA2-
deficient mammary tumor cell line to further study PARP 
inhibition. This group showed that the PARP inhibitor 
olaparib caused the strongest differential growth inhibition 
in BRCA2-deficient vs. BRCA2-proficient mammary tumor 
cells. They performed drug combination studies and 
showed a synergistic cytotoxicity of olaparib and cisplatin in 
BRCA2-deficient cells but not in BRCA2-proficient controls. 
Xenograft models have been established for other types of 
solid tumors including cervix, colon, lung, glioblastoma, 
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and squamous cell carcinoma of the head and neck and have 
shown that PARP inhibitors given hours prior to radiation 
delayed tumor growth or reduced tumor volume (19-24). 
Additive or synergistic antitumor effects have been shown 
with multiple drugs in addition to cisplatin including 
doxorubicin and topotecan (25,26). 

Beyond BRCA mutation carriers

While PARP inhibition is usually thought of in the 
context of BRCA germline mutations, synthetic lethality 
requires only that the HR system be compromised and 
there are ways to achieve this outcome besides BRCA1/2 
germline mutations. Alternative mechanisms of defective 
HR, sometimes referred to as conferring cells with 
“BRCAness,” result from somatic BRCA1/2 mutations, 
BRCA1 promoter methylation, and other genetic or 
epigenetic abnormalities of HR pathway genes. Somatic 
mutations in BRCA1/2 have been identified in up to 7% 
of ovarian cancers. BRCA1 inactivation via epigenetic 
silencing has been identified in 35% of sporadic serous 
ovarian cancers (14,15,27-29). Inherited mutations in 
genes that work in concert with BRCA1/2 including ATM, 
PTEN, MRE-11, EMSY and Fanconi anemia (FA) proteins 
are affected in 17% to 60% of patients with ovarian 
cancer (30-33). Finally, a molecular characterization 
study of HGSC discovered that approximately 50% of 
HGSCs harbor a genetic or epigenetic alteration in the 
HR pathway (34). These alternative mechanisms of BRCA 
dysfunction render cells sensitive to PARP inhibition. This 
explains why PARP inhibitor activity has been found in 
patients without germline BRCA1/2 mutations and supports 
the study of PARP inhibitors in sporadic ovarian cancers 
that display BRCAness (35). Currently, many phase III 
PARP inhibitor trials include patients without germline 
BRCA1/2 mutations. 

Specific drugs and clinical trials

Table 1 outlines the sentinel completed phase II studies of 
PARP inhibitors in ovarian cancer. Areas currently being 
explored include using PARP inhibitors as induction 
agents in front line treatment, consolidation agents 
following front line treatment or following platinum 
sensitive recurrence that has responded to treatment with 
a platinum. PARP inhibitors have been used as single 
agents and in combination with cytotoxic drugs or other 
targeted therapies.

Olaparib (AZD2281)

Olaparib is an oral PARP-1 and PARP-2 inhibitor. Olaparib 
has been the most extensively studied among the drugs 
in this class. In 2009, Fong et al. (12) published a phase I 
trial of olaparib in 60 patients with refractory solid tumors. 
The study was enriched for patients carrying BRCA1/2 
mutations. The maximum tolerated dose of olaparib was 
established at 400 mg BID with only minimal adverse effects 
observed (mainly fatigue and gastrointestinal side effects). 
BRCA1/2 mutation carriers had a significant objective tumor 
response. Eight of nine BRCA-associated ovarian cancer 
patients exhibited a partial response (PR) and 63% of these 
patients derived clinical benefit, defined either as a Response 
Evaluation Criteria in Solid Tumors (RECIST) radiologic 
response or tumor marker response or stable disease (SD) of 
four months or greater. In an expanded cohort of 50 ovarian 
cancer patients with germline BRCA1/2 mutations, 40% of 
patients demonstrated a radiologic or CA125 response (43). 
The expansion study supported the role of olaparib in BRCA-
mutated ovarian cancer and revealed that PARP inhibition 
is closely related to platinum sensitivity. The clinical benefit 
from olaparib was highest in the platinum sensitive group 
(69%), followed by the platinum resistant group (46%) 
and lowest in the patients with platinum refractory disease 
(23%). This study also found an association between overall 
platinum-free interval and response to PARP inhibition. 
These findings are not surprising given that a dysfunctional 
HR system confers sensitivity to both platinum drugs and 
PARP inhibitors (44).

In 2010, Audeh et al. (36) published an international, 
multicenter phase II trial of olaparib in two sequential 
cohorts of patients with BRCA1/2 mutations and recurrent 
ovarian cancer. Fifty seven patients were enrolled: 33 in 
the first cohort receiving olaparib at 400 mg BID and 24 in 
the second cohort receiving olaparib at 100 mg BID. The 
primary endpoint was objective response rate (ORR). The 
ORR in the first cohort was 33% and in the second cohort 
13%. The drug was well tolerated and the results confirmed 
phase I findings, providing positive proof of concept of the 
efficacy and tolerability of targeted treatment with olaparib 
in BRCA-mutated advanced ovarian cancer, with superior 
efficacy in the 400 mg BID group. 

Following the initial olaparib studies, Kaye et al. (37) 
published a multicenter, randomized phase II trial designed 
to assess the safety and efficacy of olaparib at two doses 
(200 mg BID and 400 mg BID) vs. pegylated liposomal 
doxorubicin (PLD). The study enrolled 97 patients with 
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platinum resistant ovarian cancer and a confirmed BRCA1/2 
mutation. The study found comparable responses between 
olaparib (at both doses) and PLD. Interestingly the efficacy 
of PLD was greater than expected which may be explained 
by greater sensitivity among BRCA1/2 mutated patients to 
both PARP inhibitors and PLD. This study shows that the 
activity of an oral PARP inhibitor is essentially equivalent to 
an intravenous chemotherapeutic drug. 

Olaparib has also been investigated in non-BRCA 
mutation ovarian cancers. Gelmon et al. (35) published a 
phase II study examining olaparib at 400 mg BID in HGSC 
or poorly differentiated ovarian carcinoma and triple-
negative breast cancer. This study enrolled 91 patients and 
included a mix of BRCA1/2 positive, negative and unknown 
genotypes. A response rate of 24% was found in HGSC 
and 41% in patients with BRCA1/2 mutations. Importantly, 
this study demonstrated that PARP inhibition had utility in 
both BRCA1/2 mutated and non-mutated ovarian cancer, 
thus expanding the population of patients who could receive 
clinical benefit from PARP inhibitors. 

Ledermann et al. (38) performed a randomized, double-
blind, placebo-controlled phase II study of olaparib in 
platinum-sensitive relapsed ovarian cancer. In contrast 
to prior studies, this study investigated olaparib in the 
maintenance setting. Two hundred and sixty five patients 
were enrolled, including patients with and without known 
BRCA1/2 mutations, and randomized to olaparib 400 mg 
BID vs. placebo. This study found a statistically significant 
improvement in the primary endpoint progression 
free survival (PFS) in the olaparib maintenance group; 
however there was no difference in overall survival (OS). 
A preplanned retrospective subgroup analysis found that 
regardless of BRCA mutation status, the olaparib cohort 
had a decreased risk for progression. This study reaffirmed 
the role of PARP inhibitors in patients with ovarian cancer, 
regardless of BRCA mutational status (45). 

In December 2014 the U.S. Food and Drug Administration 
(FDA) granted olaparib accelerated approval  for 
monotherapy in patients with germline BRCA1/2 mutations 
and recurrent ovarian cancer, making olaparib the first of 
the PARP inhibitors to receive FDA approval. The approval 
was based on the results of the recently published phase II 
study by Kaufman et al. (41) of olaparib 400 mg BID for 
patients with a germline BRCA1/2 mutation and recurrent 
cancer. This study included patients who had received prior 
platinum and were considered to be platinum resistant or 
not suitable for further platinum therapy. The final results 
of this trial included 193 ovarian cancer patients and found 

an overall response rate of 31% and a median duration of 
response of 225 days. The safety data for this approval was 
a compilation of data from the Kaufman et al. (41) phase II 
study and the randomized, double-blind, placebo-controlled 
phase II study by Ledermann et al. (38). Conversion of the 
accelerated approval into full approval is contingent on 
a full review of data from two ongoing phase III olaparib 
trials for BRCA mutated patients in the maintenance setting, 
one following frontline chemotherapy (NCT01844986) 
and the other following treatment of a platinum sensitive 
recurrence (NCT01874353).

In addition to monotherapy, olaparib has been studied 
in combination with other anti-cancer drugs. There are 
multiple phase I and phase II trials of PARP inhibitors 
combined with conventional cytotoxic chemotherapies based 
on preclinical evidence that PARP inhibitors potentiate the 
antineoplastic effects of chemotherapy (26). The damage 
induced by chemotherapy is often repaired by BER, which 
is disrupted by PARP inhibition (46). Preliminary published 
results from a phase II trial comparing carboplatin 
and paclitaxel plus olaparib for six cycles followed by 
olaparib maintenance vs. carboplatin and paclitaxel alone 
demonstrate an improved PFS for the olaparib arm (12.2 vs. 
9.6 months) (39). Olaparib has been studied in combination 
with other chemotherapies including cisplatin, cisplatin 
and gemcitabine, carboplatin, and PLD (47-50). Overall, 
the combination studies support an improved PFS but 
also reveal that due to overlapping hematologic toxicities, 
PARP inhibitors make it difficult for patients to achieve the 
full dose of the standard chemotherapy (46). Perhaps this 
information, along with the improvement in PFS in the 
maintenance studies supports the notion that the ideal use 
of PARP inhibitors may be in the maintenance setting or as 
monotherapy in the recurrent setting. Olaparib is currently 
being studied in combination with carboplatin in a phase I 
trial for patients with refractory or recurrent gynecologic 
cancer (NCT01237067).

Finally, olaparib is being investigated in combination 
with other targeted biologic agents. Angiogenesis inhibitors 
have proven activity in ovarian cancer with an underlying 
mechanism involving inhibition of vascular endothelial 
growth factor receptor (VEGFR). VEGFR inhibition can 
propagate DNA damage through down regulation of DNA 
repair proteins. Preclinical data support a relationship 
between PARP inhibition and the VEGF pathway and 
suggest a synergistic relationship when drugs from 
each class are combined (51-53). Liu et al. (54) recently 
published the results of a phase I trial combining olaparib 
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and cediranib, an anti-angiogenic agent with activity 
against multiple VEGFRs, and found that the combination 
improves PFS in women with recurrent platinum sensitive 
HGSC. Given the promising activity, NRG is planning 
a phase II study to further investigate the efficacy of this 
combination. Dean et al. (55) examined the use of olaparib 
with bevacizumab, a recombinant antibody that prevents 
VEGF receptor binding, in 12 patients with advanced solid 
tumors and found the combination to be generally well 
tolerated. Of note, the majority of included patients had 
colorectal and breast cancer and there were no patients 
with ovarian cancer. Olaparib has also been combined with 
phosphoinositide-3-kinase (PI3K) inhibitors based on the 
finding that the PI3K pathway is associated with genomic 
instability and is activated in up to 70% of ovarian cancers. 
Animal experiments provide rationale for the combination 
of PI3K inhibition and olaparib and there is currently an 
ongoing phase I study of olaparib and the PI3K inhibitor 
BKM120 (NCT01623349) (56,57). As the use of targeted 
biologic agents in ovarian cancer continues to rise, future 
studies will likely look more closely at the combination 
of these drugs with PARP inhibitors. Preliminary data 
combining anti-angiogenenic agents and PI3K inhibitors 
with PARP inhibitors appears promising, and we eagerly 
await further confirmatory data. 

Veliparib (ABT888)

Veliparib is another oral PARP-1 and PARP-2 inhibitor. 
Veliparib has been studied in combination with multiple 
standard chemotherapeutic agents including topotecan, 
irinotecan, doxorubicin and cyclophosphamide (58-61). A 
phase I trial by Kummar et al. (60) demonstrated that the 
combination of veliparib with metronomic cyclophosphamide 
was well tolerated with promising activity in a subset of 
patients with BRCA mutations. However, Kummar et al. (42) 
published the results of a randomized phase II trial of oral 
cyclophosphamide with and without veliparib 60 mg daily 
in patients with pretreated BRCA-mutant ovarian cancer or 
high-grade serous ovarian, primary peritoneal and fallopian 
tube cancers. They found that the addition of veliparib did 
not improve the response rate or the median PFS.

Reiss et al. (62) recently reported the results of a phase 
I study of veliparib in combination with low-dose whole 
abdominal radiation therapy in patients with advanced solid 
malignancies and peritoneal carcinomatosis. Eight of the 
22 patients included in the study had ovarian and fallopian 
tube cancer and this subset of patients had better PFS and 

OS than other cancer types and better quality life. The 
authors concluded that the combination of veliparib and 
radiation therapy is well tolerated and results in prolonged 
disease stability in the ovarian and fallopian tube cancer 
subpopulation. 

Preliminary results from a trial of veliparib monotherapy 
provide the first phase II evidence that single-agent veliparib 
has activity in treating platinum resistant, BRCA-mutated 
ovarian cancers (NCT01540565/GOG-0280). This study 
included 52 patients (50 of them evaluable for efficacy and 
toxicity), 78% harboring a BRCA1 mutation and 22% a 
BRCA2 mutation. Veliparib administered at 400 mg BID 
resulted in an overall response rate of 26%, with two 
complete responses and 11 PRs. The response rate was 20% 
in platinum resistant patients and 35% in platinum sensitive 
patients. Veliparib had a reported PFS of 8.11 months and 
OS of 19.7 months (40).

Ongoing studies include a phase I trial combining 
veliparib with bevacizumab, paclitaxel and carboplatin 
in frontline ovarian cancer (NCT00989651) and a study 
combining veliparib and PLD (NCT01145430). Ongoing 
phase II trials include single agent veliparib administered at 
300 mg BID in relapsed BRCA-associated ovarian cancer 
(NCT01472783) and a study of veliparib in combination 
with temozolomide vs. PLD (NCT01113957).

Niraparib (MK4827)

Niraparib is an oral PARP-1 and PARP-2 inhibitor, found 
to inhibit tumor growth in models with loss of BRCA 
and PTEN function. In a phase I study, Sandhu et al. (63) 
administered niraparib to a small cohort of patients enriched 
for BRCA-deficient and sporadic cancers associated with 
defects in HR repair. Thirty-nine patients were treated, 11 
of which had germline BRCA1/2 mutations. Eight of the 
BRCA1/2 mutation carriers with ovarian cancer had a PR 
and antitumor activity was also found in sporadic HGSC. 
There is currently a phase III study of niraparib vs. placebo 
maintenance therapy for patients with platinum sensitive 
recurrent HGSC (NCT01847274). 

Rucaparib (CO338, formerly known as AGO14699 and 
PFO1367338)

Rucaparib, also an oral inhibitor of PARP-1 and PARP-2, 
has shown antiproliferative activity in ovarian cancer cell 
lines (64). The phase I study of rucaparib demonstrated 
anti-cancer responses in the platinum resistant and platinum 
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sensitive ovarian and primary peritoneal subgroups. Phase 
I studies have explored rucaparib in combination with 
temozolomide, carboplatin, carboplatin and paclitaxel and 
cisplatin and pemetrexed (65-67). The preliminary results 
of a phase II study of rucaparib monotherapy in 41 patients 
with either breast or ovarian cancer and known BRCA1/2 
mutations found a clinical benefit rate of 32% but an ORR 
of only 5%. Twenty-six percent of patients achieved SD for 
at least 4 months (68). Rucaparib currently is being studied 
as part of three ongoing clinical trials. A phase I/II study of 
rucaparib will evaluate drug toxicity and pharmacokinetics 
in patients with germline BRCA1/2 mutations and ovarian 
cancer or other solid tumors (NCT01482715). ARIEL2 
(NCT01891344) is an accruing phase II trial of rucaparib 
in platinum sensitive, relapsed, high-grade epithelial 
ovarian cancer. Finally ARIEL3 (NCT01968213) is 
exploring rucaparib maintenance therapy following a 
platinum treatment in relapsed HGSC and endometrioid 
ovarian cancer. These two studies hope to define a 
molecular signature of HR dysfunction in ovarian cancer 
that correlates with response to rucaparib and enables 
selection of appropriate ovarian cancer patients for 
treatment with rucaparib.

Other PARP inhibitors

There are multiple other PARP inhibitors that have not yet 
been included in late phase ovarian cancer trials. BMN 673 
is an oral PARP-1 and PARP-2 inhibitor that has received 
attention because in addition to inhibiting PARP activity, it 
has demonstrated 100-fold more potent trapping of PARP-
DNA complexes than other PARP inhibitors. While PARP 
inhibitors were initially developed as catalytic inhibitors 
to block PARP-associated repair of DNA single-stranded 
breaks, recently an additional mechanism of action, the 
trapping of PARP-DNA complexes, has emerged as a 
second important instrument of anti-cancer activity. BMN 
673 has undergone phase I testing in patients with ovarian 
cancer and is currently being evaluated in a phase I/II pilot 
study in patients with advanced solid tumors and BRCA1/2 
mutations (NCT01989546) (69). E7449, another PARP 
inhibitor, is being evaluated in a phase I/II trial in patients 
with advanced solid tumors or B-cell malignancies alone 
and in combination with temozolomide or carboplatin and 
paclitaxel (NCT01618136). Other PARP inhibitors that 
have been clinically tested but not yet in ovarian cancer 
include AZD2461, CEP9722, E7016, and INO-1001 (46).

Iniparib is a compound that was initially developed as 

a PARP inhibitor and received attention when phase II 
data demonstrated that in patients with triple-negative 
breast cancer, the addition of iniparib to gemcitabine 
and carboplatin extended PFS and OS with minimal side 
effects (70). However the follow-up phase III trial did not 
show a significant improvement in either outcome (71). 
Many proposed poor trial design as an explanation for the 
discordance in results between the phase II and phase III 
trials. However, recent studies have raised the concern that 
iniparib is not a true PARP inhibitor due to in vitro data 
to suggest that iniparib is structurally distinct from other 
PARP inhibitors and poorly inhibits PARP activity (72-74).

Challenges in ovarian cancer

Despite promising results from the initial olaparib trials, 
PARP inhibitors have not shown an improvement in 
OS. The recent FDA approval of olaparib represents an 
important step forward for this class of drugs, however, 
there remain several challenges for the clinical development 
of PARP inhibitors. To begin, PARP inhibitors have 
demonstrated maximal effect in germline BRCA-associated 
tumors and sporadic cases with deficient HR. While testing 
for germline BRCA mutations is available, there currently is 
not a validated biomarker for HR-deficient ovarian cancer 
that can predict response to PARP inhibition. This limits 
the use of PARP inhibitors in patients who lack a known 
BRCA mutation and this population compromises the 
majority of ovarian cancer cases. However, with the growing 
availability and scope of multiplex-gene testing and massive 
parallel sequencing, patients with mutations in other HR 
related genes are being identified and may prove to be good 
PARP inhibitor candidates. Furthermore, the role of tumor 
BRCA mutations and response to PARP inhibitors  needs to 
be further elucidated.

In addition to difficulties identifying appropriate patient 
candidates, there also are patients with HR deficient 
tumors who do not respond or develop resistance to PARP 
inhibition. This suggests that tumors can have both de 
novo and acquired resistance to PARP inhibition. Multiple 
mechanisms of acquired PARP inhibitor resistance have 
been proposed. There is data to suggest that exposure to 
DNA damaging agents can lead to re-expression of BRCA1 
by genetic reversion. This causes a partial restoration of 
HR-mediated DNA repair and renders cells less sensitive 
to PARP inhibition. Another mechanism of resistance 
involves increased expression of the Mdr1a/b genes. These 
genes encode the drug efflux transporter P-glycoprotein. 
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Elevated expression of this target results in the need for 
increasing drug concentrations required for effective 
inhibition. Finally, loss of 53BP1 has been shown to cause 
suppression of NHEJ which also leads to PARP inhibitor 
resistance (46,75,76). 

Another barrier to clarifying the role for PARP inhibitors 
in ovarian cancer is that trials for these drugs have largely 
been in combination with other chemotherapeutic agents 
at multiple chronological points in the disease course. As 
a result, the ideal method and timing of PARP inhibitor 
delivery remains unclear. Finally, the differences between 
different PARP inhibitors have yet to be fully defined. 
Preclinical data suggest that the potency in trapping PARP 
differs markedly among niraparib, olaparib and veliparib, 
and the patterns of trapping were not correlated with the 
catalytic inhibitory properties for each drug (77). Further 
studies will be needed to clarify the differences in toxicity, 
pharmacokinetics and efficacy between these related but 
unique drugs.

Future directions

PARP inhibitors are undoubtedly a promising new class of 
anti-cancer agents with proven activity in ovarian cancer. 
However, the full potential of these drugs has yet to be 
realized. Questions remain regarding the ideal use of 
PARP inhibitors. Does administration of PARP inhibitors 
at a specific time, recurrent vs. adjuvant vs. maintenance, 
procure a greater benefit? Do side effect profiles make 
monotherapy more favorable than combination with 
standard chemotherapeutic agents? Is there a role of PARP 
inhibitors as chemoprevention? Perhaps women who are at 
high risk for developing ovarian cancer but are not ready 
to accept risk-reducing bilateral salpingo-oophorectomy 
and surgical menopause could benefit from prophylaxis 
with these drugs. Furthermore, even after risk-reducing 
salpingo-oophoretomy women remain at risk for primary 
peritoneal cancer and perhaps there is a role for PARP 
inhibitor chemoprevention in this setting. Hopefully many 
of these questions will be answered by ongoing clinical 
trials.

The combination of PARP inhibitors with non-cytotoxic 
agents is another exciting area under investigation. 
As described previously, olaparib is being studied in 
combination with inhibitors of the VEGFR pathway and 
PI3K inhibitors. The combination of PARP inhibitors with 
ionizing radiation is another logical combination based 
on the role of PARP in DNA repair. Preclinical studies 

confirm that PARP inhibitors can sensitize malignant cells 
to radiation and experiments with PARP-1 knockout mice 
demonstrate increased sensitivity to gamma-radiation 
(20,78-80). Although veliparib was previously studied in 
combination with low-dose whole abdominal radiation 
therapy in patients with ovarian and fallopian tube cancer, 
there currently are no active trials investigating PARP 
inhibitors with radiation in gynecologic malignancies. 
Inclusion of patients with gynecologic cancer in trials that 
combine PARP inhibitors with radiation and other non-
cytotoxic anti-cancer agents is imperative to fully grasp the 
potential of PARP inhibition in this patient population.

While the chronology and setting of PARP administration 
remains an important area of study, the more pressing 
issue is identifying the patients who will benefit from 
PARP inhibitor therapy. By understanding the pathways 
of PARP inhibition, synthetic lethality and NHEJ, we 
have begun to uncover the anti-cancer mechanism of 
this class of drugs. However, there is not yet a validated 
predictive biomarker to distinguish the ideal candidates 
and early pharmacokinetic and pharmacodynamics 
data were unable to correlate PAR levels with PARP 
activity. Several attempts have been made to discover a 
biomarker useful for PARP inhibition. Duan et al. (81) 
utilized immunofluorescence assays of tumors to evaluate 
the functional capacity of the FA pathway, which is 
important in BRCA mediated DNA repair. Fifteen different 
complementation groups for FA have been defined, 
including FANCD2. When FANCD2 is ubiqinated it 
can activate DNA repair proteins in the downstream FA/
BRCA pathway and repair DNA damage (82,83). There is 
a currently accruing phase I clinical trial that will measure 
FANCD2 foci formation in peripheral blood mononuclear 
cells in patients with metastatic, unresectable or recurrent 
solid tumors being treated with veliparib and mitomycin 
C (NCT01017640). Mukhopadhyay et al. (84) used 
immunofluorescence assays to quantify RAD51 foci, a 
marker for repair of DSB, from ascites and utilized this 
as a surrogate for HR function. This measurement was 
then found to correlate with the in vitro cytotoxicity of 
rucaparib (85). The RAD51 assay could allow clinicians to 
identify patients with dysfunctional HR who will respond to 
PARP inhibitors. 

Finally, the increasing use of multi-gene panels may 
also help define groups of patients for PARP inhibitor 
administration. Multi-gene panels rely on massive parallel 
sequencing analysis and can detect highly penetrant genes 
known to cause hereditary cancers but also the less common 
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deleterious mutations and variants of uncertain significance 
in known carcinogenic pathways like HR. The potential 
clinical implications of this technology coupled with falling 
prices of sequencing could make single gene testing an 
obsolete practice (86). However, the use of massive parallel 
sequencing to determine PARP inhibitor utility has yet 
to be studied in a prospective fashion. A trial addressing 
this question will be important to help clinicians better 
utilize genetic testing results and allow them to capture a 
larger percentage of patients likely to benefit from PARP 
inhibition (87). 

In conclusion, PARP inhibitors have demonstrated 
exciting potential in the treatment of ovarian cancer. 
Completed phase II trials reveal a role for PARP inhibitors 
as monotherapy for BRCA1/2 mutated and non-mutated 
platinum sensitive and platinum resistant ovarian cancer. 
PARP inhibitors have also been successfully combined with 
other cytotoxic chemotherapies and targeted biologics. 
Finally ongoing studies are evaluating the role of PARP 
inhibition as consolidation, following completion of either 
front line treatment or following treatment for recurrent 
disease. The recent FDA approval of olaparib in BRCA-
mutated recurrent ovarian cancer further highlights the 
promise of PARP inhibitors in the treatment of women with 
ovarian cancer. Hopefully ongoing and future clinical trials 
that better define strategies of use and the ideal patient 
populations will make these drugs even more successful in 
the treatment of gynecologic malignancies. 
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