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Background: Lower-grade gliomas (LGGs) are ubiquitous and fatal branches of brain neoplasm. Finding 
biomarkers related to diagnosis and treatment is essential for the treatment of LGG. It is possible to reveal 
the potential links between tumor microenvironment and overall survival (OS) in LGG by mining the 
mRNA expression profile from the TCGA database. Our primary purpose was to explore key genes that can 
be applied for diagnosis or treatment in LGG microenvironment.
Methods: Based on the ESTIMATE algorithm, the immune and stromal scores were calculated to measure 
the extent of infiltration of immune cells and stromal cells, respectively. The LGG samples from TCGA 
database were assigned into high- or low-score groups per the immune and stromal scores and differentially 
expressed genes (DEGs) were selected by comparing gene expression levels in the two groups. Functional 
enrichment analysis and protein-protein interaction (PPI) networks were performed to analyze DEGs. 
Finally, selected DEGs were validated using another independent LGG cohort from CGGA dataset. 
Results: The results indicated that immune/stromal scores correlated with LGG prognosis. Furtherly, 
survival analysis conducted for each subtype shown that immune/stromal scores were only significantly 
associated with the prognosis of astrocytoma, IDH-wildtype, and there was no significant statistical 
difference in the other subtypes. Functional enrichment analysis and protein-protein interaction (PPI) 
networks further showed that the upregulated DEGs were primarily involved in immune response, plasma 
membrane, and cytokine binding. Accordingly, a series of genes that have significant impacts on prognosis 
and are significantly associated with the tumor microenvironment were obtained.
Conclusions: Based on the ESTIMATE algorithm, we first explored the relationship between immune/
stromal scores and prognosis in different subtypes of LGG and the result shown that the scores were 
only strongly associated with the prognosis of astrocytoma, IDH-wildtype. Furtherly, a comprehensive 
bioinformatics analysis of the gene expression profiles of astrocytoma, IDH-wildtype patients was 
conducted, CASP8, TRIM6, TRIM38, PARP9, NMI, EPSTI1, DTX3L and AGBL2 were identified as tumor 
microenvironment-related genes, may be involved in the occurrence, development, and invasion of LGG.
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Introduction

Lower-grade gl iomas  (LGG) are  ubiquitous  and 
fatal branches of brain neoplasm. The World Health 
Organization has classified LGG as grade II or grade III 
tumors, including three subtypes: (I) astrocytoma, IDH 
wild-type (Astro-wIDH); (II) astrocytoma, IDH-mutant and 
1p/19q non-codeleted (Astro-mIDH-1p/19q non-codel); 
(III) oligodendroglioma, IDH-mutant and 1p/19q-codeleted 
(Oligo-mIDH-1p/19q codel) (1). The median survival 
time (MST) of LGG patients is 1.7–8.0 years (2). One way 
to meet the needs of better cancer diagnosis, treatment, 
and prevention was to establish TCGA dataset, which has 
provided a vast amount of available data for researchers 
around the world (3). In that regard, we downloaded clinical 
data and the mRNA expression profiling of LGG from 
TCGA for further analysis.

Tumor growth is closely linked to the surrounding 
environment, including epithelial and stromal cells, 
vascular and lymphatic vessels,  immune cells  and 
inflammatory cells (4). In tumor microenvironment, 
immune and stromal cells play a central role and make 
significant contributions to tumor progression and clinical 
outcomes (5-7). For improvement in detecting tumor 
purity in tumor tissues, an algorithm called ESTIMATE 
(Estimation of Stromal and Immune cells in MAlignant 
Tumor tissues using Expression data) was designed; it uses 
specific gene expression signatures to predict the extent of 
infiltrating stromal and immune cells (8). 

In the current study, we first explored the correlation 
between immune/stromal scores and prognosis in different 
subgroups of LGG. Our result revealed that only in 
Astro-wIDH subgroup the scores were notably related 
to prognosis. Furtherly, a comprehensive bioinformatics 
analysis was employed, accordingly, a series of genes that 
have significant impacts on prognosis and are significantly 
associated with the tumor microenvironment were 
discovered. Lastly, we used the data in the CGGA database 
to validate the selected genes.

Methods

Data obtaining from the TCGA dataset and CGGA 
dataset

The gene expression data (level 3 data) from LGG patient 
samples were downloaded from TCGA dataset (http://gdc-
portal.nci.nih.gov). The data obtained from TCGA also 
included phenotype, mutation, and prognosis scores for the 

downloaded data described above. Gene expression profiles 
and clinical information of LGG patients were collected 
from CGGA dataset (http://www.cgga.org.cn/) and used 
to verify the reliability of the TCGA data. Two batches 
were found (mRNAseq_693 and mRNAseq_325), and their 
platforms are all the Illumina HiSeq 4,000.

DEGs identification

Using the limma package, we selected DEGs between the 
high-score group and the low-score group. In the current 
study, we set the cut-off standard as Fold change >2 and 
P<0.05 to identify DEGs.

Clustering analysis

Heatmaps and clustering analysis were performed to show 
the hierarchical clustering of DEGs for samples with high 
scores and low scores by applying web-based tools of the 
Morpheus (https://software.broadinstitute.org/morpheus/).

Functional enrichment analysis

DAVID, a web-based tool for functional annotation, was 
used to explore the biological property of DEGs. GO 
analysis was conducted, including the biological process, 
molecular function, and cellular component. KEGG 
analysis was also performed using DAVID.

Survival analysis

The Kaplan-Meier method was used to identify genes 
significantly associated with OS, and the significance of the 
relationship between gene expression level and the OS of 
LGG patients was calculated using the log-rank test.

Protein-protein interaction network generation and 
module analysis

The PPI network was searched from the STRING database 
to establish potential relationships between DEGs. A 
confidence score ≥0.4 was set as the cut-off standard to 
reserve the credible PPIs. Subsequently, the PPIs from 
the STRING database were imported into Cytoscape to 
reconstruct the PPIs network of selected DEGs. MCODE, 
a useful app of the Cytoscape plug-in, was used to screen 
hub modules in the PPI network. Modules with nodes  ≥10 
and score ≥4 were reserved for further analysis. We also 

http://gdc-portal.nci.nih.gov
http://gdc-portal.nci.nih.gov
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calculated the degree of each node in the network. For 
screening based on detected modules and the degree, hub 
genes were selected.

Results

Immune/stromal scores are significantly associated with 
Astro-wIDH prognosis but not other subtypes

The clinical data of 530 LGG patient samples were 
acquired from the TCGA dataset. Among these samples, 
238 (44.9%) were female, 291 (54.9%) were male, and 1 
(0.19%) was unlabeled. The proportions of the various 
subtypes in these samples were 97 Astro-wIDH cases, 264 
Astro-mIDH-1p/19q non-codel cases, and 169 Oligo-
mIDH-1p/19q codel cases. Immune and stromal scores 
were calculated using the ESTIMATE algorithm; immune 
scores ranged from −2,012.46 to 2,236.6, and stromal 
scores from −1,832.4 to 1,759.22. Astro-wIDH cases had 
the highest average immune and stromal scores, followed 
by Astro-mIDH-1p/19q non-codel, and lastly by Oligo-
mIDH-1p/19q codel with the lowest scores (Figure 1A,B, 
P<0.0001). The MST of patients with each subtype was  
1.7 years for Astro-wIDH, 6.3 years for Astro-mIDH-
1p/19q non-codel, and 8.0 years for Oligo-mIDH-1p/19q 
codel (2). Interestingly, the rank order of MST is consistent 
with the order of immune and stromal scores. To figure out 
whether OS was related to immune scores and/or stromal 
scores, the Kaplan-Meier survival analysis was performed. 
First, we assigned the all samples into high-score and low-
score groups. The Kaplan-Meier survival analysis shown 
that immune/stromal scores correlated with OS, and the 
low-score group had higher median survival than that of the 
high-score group in both cases, that is, stromal scores (4,068 
vs. 2,052 d, P=0.0024 Figure 1C) and immune scores (2,907 
vs. 2,052 d, P=0.0146 Figure 1D). Similarly, we performed 
further survival analysis for each subtype based on immune 
scores and stromal scores. The result showed that the 
immune/stromal scores were only significantly associated 
with OS in Astro-wIDH subtype (Figure 1E,F,G,H,I,J). 
Overall, these analyses indicated that immune/stromal 
scores were significantly associated with LGG subtypes, and 
immune/stromal scores only correlated notably with Astro-
wIDH prognosis but not other subtypes.

Identification DEGs

Patients with Astro-wIDH subtype of LGG whose tumor 
mRNA had been sequenced were collected from TCGA 

dataset, and the effect of immune and stromal scores on 
mRNA expression in the LGG tumors was examined. The 
Bioconductor package, limma was applied in the selection 
of DEGs between the high-score and the low-score group, 
setting Fold change >2 and P<0.05 as the cut-off. Based 
on immune scores, a total of 1,432 DEGs were detected, 
containing 920 upregulated genes and 512 downregulated 
genes. Similarly, 858 genes were upregulated and 382 
were downregulated in high stromal score group contrast 
with low stromal score group. All the genes were plotted, 
such that red dots represented the DEGs, and black dots 
represented genes that were screened out, as shown in 
Figure 2A,B. 

Next, a cluster analysis using the Morpheus web-tool 
was performed by comparing gene expression profiles 
between the high-score group and the low-score group, and 
these genes were well clustered as shown in Figure 2C,D. A 
functional enrichment and pathway analysis were performed 
of 743 DEGs upregulated in both the high immune score 
group and the high stromal score group to determine 
the potential function of DEGs. For the GO analysis, 
DEGs were significantly enriched in the extracellular 
space, immune/inflammatory response and receptor  
activity (Figure 2 E,F,G,H).

Survival analysis

We used log-rank test and the Kaplan-Meier survival 
method to examine the relationship between the 743 
upregulated DEGs and the OS of LGG patients in a bit to 
explore DEGs’ ability to affect patient prognosis. According 
to this analysis, the presence of a total of 486 DEGs 
correlated significantly with OS (P<0.05, Figure 3).

PPI network construction and Mcode analysis

To better investigate the interaction among the selected 
DEGs, we submitted the DEGs screened out by the survival 
analysis to the STRING database. The network included 
573 nodes, and 6,469 edges were obtained using the cutoff 
standard of a median confidence ≥0.4. Based on the Mcode 
analysis, 7 modules were established in the network. The 
top three modules with the highest credibility scores were 
detected for further investigation and plotted in Figure 4. 
Among three modules, IL10, TLR2, ITGB2, and SPI1 
in module A, PTPRC, CD86, ITGAM, and TYROBP in 
module B, and LCP2, BTK, and SYK in module C, were 
the hub nodes with higher degrees.
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Functional analysis of selected modules

All the genes in the three modules obtained through the 
PPI network analysis were submitted to DAVID, as shown 
in Figure 5. For cell component, DEGs were significantly 
enriched in the plasma membrane, cell surface, and receptor 
of complex (Figure 5A). Biological process mainly displayed 
immune and inflammatory responses (Figure 5B). Molecular 
function included chemokine receptor activity and cytokine 
binding (Figure 5C). Additionally, the KEGG analysis 
showed that genes were mostly involved in cell adhesion 
molecules (Figure 5D).

Validation using CGGA database

We obtained two batches of gene expression profiles and 
corresponding clinical information of LGG patient samples 
from the CGGA database to examine whether the DEGs 
selected from TCGA database were also significantly 
associated with prognosis in other databases. A total of  

25 genes were verified to be notably associated with 
prognosis. Based on the result of the PPI network analysis, 
we selected 8 genes with higher degree values from the 
validation of DEGs for further analysis (P<0.05, Figure 6).

Discussion 

Currently, we have obtained DEGs related to tumor 
microenvironment by mining the TCGA database. Among 
them, 486 DEGs were significantly associated with 
prognosis, and 25 were validated by the CGGA database.

Firstly, we originally explored the association between 
immune/stromal scores and prognosis in different subtypes 
of LGG. The result shown that immune/stromal scores 
were strongly associated with Astro-wIDH prognosis, 
but not in other subtypes. Thus, further analyses were 
all performed in astrocytoma, IDH-wildtype cases. Our 
discussion of LGG subtypes also provides an idea for 
similar bioinformatics analysis. Secondly, we analyzed 
743 differentially expressed genes obtained by comparing 

Figure 1 Immune/stromal scores are significantly associated with Astro-wIDH prognosis but not other subtypes. (A) Comparison of stromal 
scores level among LGG subtypes. Box-plot show that the level of immune scores are significantly associated with LGG subtypes (n=530, 
P<0.0001). (B) Comparison of immune scores level among LGG subtypes. Box-plot show that the level of stromal scores are significantly 
associated with LGG subtypes (n=530, P<0.0001). (C) We excluded samples with a survival time of less than 30 days, retained LGG cases 
were divided into two groups based on there stromal scores: high score group has 248 samples and low score group has 247 samples. The 
Kaplan-Meier survival curve shown that the median survival time of low score group is longer than that of the high score group (4,068 vs. 2,052 
days, P=0.0024 in log-rank test). (D) Similarly, retained cases were divided into two groups based on there immune scores: high score group 
has 248 samples and low score group has 247 samples. The Kaplan-Meier survival curve shown that the median survival time of low score 
group is longer than that of the high score group (2,907 vs. 2,052 days, P=0.0146 in log-rank test). (E,F) Astrocytoma, IDH wild-type cases 
were divided into two groups based on their stromal scores and immune scores, respectively. Survival analyses were performed by comparing 
high score group and low score group, as indicated by the log-rank test, P=0.0336 for stromal scores and P<0.0001 for immune scores. 
(G,H) Astrocytoma, IDH-mutant and 1p/19q non-codeleted cases were divided into two groups based on their stromal scores and immune 
scores, respectively. Survival analyses were performed by comparing high score group and low score group, as indicated by the log-rank 
test, p=0.0805 for stromal scores and P=0.7469 for immune scores. (I,J) Oligodendroglioma, IDH-mutant and 1p/19q-codeleted cases, were 
divided into two groups based on their stromal scores and immune scores, respectively. Survival analyses were performed by comparing high 
score group and low score group, as indicated by the log-rank test, P=0.0949 for stromal scores and P=0.4040 for immune scores. LGG, 
lower-grade glioma.
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high and low scores. GO analysis showed that DEGs 
were primarily enriched by tumor microenvironments, 
including extracellular space, immune/inflammatory 
response, and Cytokine-cytokine receptor interaction. 
Our result was consistent with previous reports that tumor 
microenvironment was significantly associated with the 
progression of gliomas (9-11).

Next, we performed survival analysis on 743 DEGs, 
and a total of 486 DEGs were screened for significant 
prognosis. We also built 7 PPI modules using the STRING 
database and Cytoscape. Furthermore, GO analysis and 
KEGG pathway analysis were performed on the top three 
significant modules, and the result of enrichment analyses 
demonstrated that all modules were significantly associated 
with immune response. IL10, TLR2, and ITGB2, all 
remarkable nodes in the PPI modules, have been shown to 
be involved in the tumorigenesis of gliomas (12-17). 

Finally, we validated DEGs based on the CGGA 
database. A total of 25 genes, which strongly correlated 
with prognosis both in the TCGA and CGGA databases, 
were screened. Based on the result of the PPI network 
analysis, we selected 8 genes with higher degree values 
from validated DEGs (Figure 6). These selected genes 
included the caspase CASP8, Tripartite Motif Containing 
TRIM6 and TRIM38, poly(ADP-ribose) polymerase 

family PARP9, N-myc and STAT interactor NMI, 
Epithelial Stromal Interaction EPSTO1, Deltex E3 
Ubiquitin Ligase DTX3L and ATP/GTP Binding Protein 
AGBL2.

CASP8, a canonical cysteine protease, is known for 
its roles in death receptor-induced programmed cell 
death. However, CASP8 also plays a number of non-
apoptotic roles, such as correlated with the progress of 
cell adhesion and cell migration (18,19) and promoting 
NF-κB activity (20). Moreover, CASP8 was found to 
promote the expression and secretion of VEGF, IL6 and 
IL8 through activating NF-kB in human GBM cell lines, 
resulting in neovascularization and increased resistance to 
Temozolomide (21). Accumulating evidence indicates that 
CASP8 may have potential prognostic value for gliomas. 

N-myc and STAT interactor, NMI, was originally 
recognized as an interactor of N-myc and C-myc oncogenes (22).  
Zhu et al. furtherly demonstrated that NMI cooperate 
with several members of STAT and augmented the JAK/
STAT pathway (23), which has been found to be positively 
related to tumor growth, progression and metastasis (24).  
Moreover, it also shown that higher expression of 
NMI promotes tumor growth by regulating G1/S 
phase progression, leading to poor prognosis in human 
glioblastoma (25). 

Figure 2 DEGs identification. (A) Volcano plot of DEGs. DEGs were selected based on immune scores. Red plots represented the DEGs, 
black plots represented non-differentially expressed genes (fold change >2, P<0.05). (B) Volcano plot of DEGs of stromal scores. Red and 
black plots, respectively, represented DEGs and non-differentially expressed genes (fold change >2, P<0.05). Heatmap were drawn based 
on average linkage method and Euclidean distance metric. Red bars indicated genes with higher expression, green bars indicated genes with 
lower expression. (C) Differentially expressed gene expression heatmap of immune scores of the comparison between high score group and 
low score group. (D) Differentially expressed gene expression heatmap of stromal scores of the comparison between high score group and 
low score group. (E,F,G,H) False discovery rate (FDR) of enrichment analysis were obtained from DAVID as the basis for sorting, and the 
top 10 GO and KEGG pathway terms were plotted. DEGs, differentially expressed genes.
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Figure 3 Survival analysis. OS of selected DEGs of LGG patient samples from TCGA database. Kaplan-Meier plots show the OS of high 
or low expression of selected DEGs in LGG patient samples. OS, overall survival; DEGs, differentially expressed genes; LGG, lower-grade 
glioma.
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Figure 4 Top 3 significant modules in PPI network analysis. The color of a node represents the expression level of the gene in the PPI 
network. The size of the node indicates the number of genes connected to the node. PPI, protein-protein interaction.

Figure 5 Functional and pathway enrichment analysis. Top 10 GO and KEGG pathway terms are shown: (A) cellular component; (B) 
biological process; (C) molecular function; (D) KEGG pathway.
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Figure 6 Validation of DEGs selected from TCGA database with OS in the CGGA database. OS of selected DEGs of LGG patient samples 
from CGGA database. Kaplan-Meier plots show the OS of high or low expression of selected DEGs in LGG patient samples. OS, overall 
survival; DEGs, differentially expressed genes; LGG, lower-grade glioma.
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AS a ubiquitin l igase, DTX3L was found to be 
critically related to the tumorigenesis of various tumors 
(26,27). Furthermore, it was reported that DTX3L was 
overexpressed in glioma and correlated significantly with 
glioma progression (28). PARP9, also known as BAL1, 
was first identified as an upregulated gene in malignant B 
cell lymphoma (29), and further found to correlate with 
metastasis, progression and recurrence in a variety of 
tumors (30-32). Previous study has shown that DTX3L and 
PARP9 were jointly involved in the STAT1 signaling (33). 
Interestingly, an overexpression of STAT1 has been found 
in glioblastoma, which predicted poor prognosis (34). Up 
to now, the exact role of TRIM6, TRIM38, EPSTI1 and 
ATGB2 in gliomas have not been elucidated, which may 
serve as potential targets for the diagnosis and treatment of 
gliomas.

Conclusions

Based on the ESTIMATE algorithm, we first explored the 
relationship between immune/stromal scores and prognosis 
in different subtypes of LGG and the result shown that the 
scores were only strongly associated with the prognosis of 
astrocytoma, IDH-wildtype. Furtherly, a comprehensive 
bioinformatics analysis of the gene expression profiles 
of Astro-wIDH was conducted, and crucial genes were 
identified. These genes are validated in the CGGA database 
and were significantly associated with prognosis. All 
DEGs may be involved in the occurrence, development, 
and invasion of LGG, but some previously unreported 
genes identified here could serve as potential biomarkers 
for LGG. However, in addition to exploratory research in 
bioinformatics, definitive work is still needed to determine 
the function of these genes.
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