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Background: With the emergence of more and more cyclodextrin derivatives, cyclodextrin becomes an 
effective adjuvant for improving the prescription of drugs. Its application in pharmacy, especially in the 
sustained and controlled release, targeting, transdermal and mucosal drug delivery systems, is also being 
expanded and deepened. In this study, novel cyclodextrin derivatives were developed to investigate the 
impact of the charge on antitumor efficiency by introducing different groups (carboxymethyl or quaternary 
ammonium group) to poly-β-cyclodextrin (β-CD). 
Methods: These novel β-CD derivatives were prepared by the nucleophilic substitution reaction and 
characterized by IR and 1H NMR. Fluorouracil (5-FU) was adopted as a model drug to form inclusion 
compounds. The content of 5-FU in inclusion compounds was evaluated using fluorine element analysis. 
Also, the cytotoxicity of poly-β-CD derivatives was studied. Finally, the effect of negative and positive 
charges on the antitumor activity of poly-β-CD derivatives-5-FU inclusion compounds on HepG2 cancer 
cells was evaluated. Human liver cancer HepG2 cells (CYP3A4G/7R clone 87, RRID: CVCL_1×10) were 
purchased from Cell Bank, Shanghai Institutes for Biological Sciences (China). 
Results: The results of IR and 1H NMR indicated consistently that both carboxymethyl poly-β-CD 
(poly-CM-β-CD) and glycidyl trimethyl ammonium chloride (GTMAC) poly-β-CD (poly-GTAC-β-CD) 
were successfully prepared. Fluorouracil was successfully loaded into poly-β-CD derivatives. The results of 
fluorine analysis indicated that the content of 5-FU in 1 g poly-β-CD, poly-GTAC-β-CD and poly-CM-β-
CD was 1,214, 921 and 1,187 μg, respectively. No cytotoxicity of poly-β-CD derivatives on HepG2 cells was 
observed. The killing effect of poly-β-CD-5-FU on HepG2 cells was similar to that of poly-GTAC-β-CD-5-
FU. Poly-CM-β-CD-5-FU had the worst killing effect on HepG2 cells. 
Conclusions: Charge had impact on antitumor efficiency. These novel poly-β-CD derivatives have 
potential applications in tumor sustained-release targeted therapy.
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Introduction

Cancer is regarded as one of the main problems threatening 
the health of humanity. The percentage of the reported 
patient numbers was expected to be increased by 75% by 
the next two decades (1). Liver cancer is the most obstinate 
malignant tumors. This enlightened researchers on 
developing low cost, efficient, and safe therapies for cancer or 
taking advantage of new technologies to improve the potential 
of the currently used drugs (2). 5-fluorouracil (5-FU),  
commonly used anticancer drug, has an efficient effect on 
active cancers (3). However, 5-FU drugs can not only kill 
the cancer cells but also affect the normal cells, causing 
several negative impacts in the course of treatment (4).  
Furthermore, an overdose of 5-FU can result in impair the 
hematological, neural, cardiac, gastrointestinal tract as well 
as the dermatological reactions (1). Thus, it was a requisite 
for developing a novel carrier to control the drug release 
in the specific lesion, and minimize its side effect as far as 
possible (5). To achieve this goal, numerous materials, such 
as bentonite, biodegradable polymers, chitosan, alginate, 
and cellulose, etc., were inspected and evaluated (6).  
Polymeric nano-carriers which were biocompatible, 
nontoxic, and stable in the biological systems were 
promising drug carriers with high encapsulation and 
controlled release properties (7). 

β-cyclodextrin (β-CD), a known natural polymer with 
size in nanoscale, is composed of seven α-D units of glucose 
which linked to echo with α-1,4-glucose bonds (8). The 
central cavities of β-CD are lipophilic and its outer surface 
is hydrophilic. These properties make β-CD interact with 
lipophilic guest molecules, forming a host-guest inclusion 
compound by self-assembly (9). It was reported that β-CD 
can be used as excipient materials, improving the stability 
and oral bioavailability of the drug (10). The notable feature 
of cyclodextrins is their ability to form solid inclusion host-
guest complexes with a wide range of solid, liquid, and 
gaseous compounds by a molecular complexation (11). The 
driving force for the formation of an inclusion compound 
was mainly from the release of water molecules in the cavity 
of cyclodextrin. It was difficult to fully form a hydrogen 
bond between water molecules in the hydrophobic cavity 
of cyclodextrin. Nevertheless, the potential of water 
molecules to form hydrogen bonds was not fully released. 
Therefore, water molecules in the hydrophobic cavity of 
cyclodextrin had considerable enthalpy. When these high-
energy water molecules were replaced by suitable guest 
molecules with smaller polarity and released from the 

hydrophobic cavity of cyclodextrin, the energy of these 
systems would be reduced, facilitating the formation of 
inclusion compounds. During the formation of inclusion 
compounds, the removal of high energy water molecules 
from the hydrophobic cavity of cyclodextrins was the main 
driving force. Additionally, the driving force also included 
van der Waals force (12), hydrogen bond interaction (13), 
hydrophobic interaction (14), non-classical hydrophobic 
interaction, the reduction of ring tension in the formation 
of inclusion compounds and the decrease of surface tension 
of solvent (15). It was also documented that integrating or 
grafting the hydrophilic monomer with β-CD can increase 
its complexation efficiency with the drugs and decrease the 
cost of β-CD polymer (16). Additionally, it was reported 
that polymerizing β-CD with other polymers can increase 
its solubility and bioavailability (17). This advantage can 
result in the pro-apoptosis of melanoma cells by using the 
complexation of harman, a natural β-carboline alkaloid, 
with β-CD (18). On the other hand, the curcumin, a natural 
polyphenol, with β-CD and γ-CD showed superior in 
antioxidant, antibacterial, and anticancer activities (19). 
However, the biggest problem of cyclodextrin drug carrier 
is its low drug loading efficiency (20). 

It was demonstrated that the gap of tumor vascular 
endothelial cells is 380–780 nm (21). This abnormal 
permeability of tumor vessels makes the permeability of 
macromolecular and nanoparticles increase and lymphatic 
clearance reduce. However, there is no difference in the 
distribution of small molecule drugs between tumor tissues 
and normal tissues. The difference of permeability between 
tumor tissues and normal tissues makes macromolecule 
and nanoparticles aggregate in tumor tissue, which is called 
enhanced permeability and retention (EPR). EPR is the 
basis of tumor-targeting for nanoparticles (22). The cell 
membrane is composed of the phospholipid bilayer and 
the surfaces of the cell are negatively charged. Therefore, 
it was expected that the introduction of carboxymethyl or 
quaternary ammonium group to β-CD resulted in a novel 
β-CD derivatives, which can increase the solubility of 5-FU 
by facilitating its loading and enhance the potential of 5-FU 
for inhibiting the tumor cells by boosting the combination 
of β-CD inclusion compounds to tumor cell.

In this study, the novel β-CD derivatives by grafting 
different groups (carboxymethyl or quaternary ammonium 
group) to poly-β-CD were developed as delivery systems 
for the 5-FU drug and could be applied in the liver cancer 
therapy. The novel poly-β-CD was characterized by IR and 
1H NMR. 5-FU was adopted as a model drug to form an 
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inclusion compound. The content of 5-FU in poly-β-CD 
derivatives was evaluated using fluorine element analysis. 
The self-assembly and its mechanism were explored in detail. 
Also, the cytotoxicity of poly-β-CD derivatives was analyzed. 
Finally, the potential of poly-β-CD derivatives-5-FU 
inclusion compounds for HepG2 cancer cells was evaluated.

Methods

Materials

Poly-β-cyclodextrin (poly-β-CD) (Mw, 5,000–10,000 Da) 
was provided by Shandong Binzhou Zhiyuan Biotechnology 
Co., Ltd. (Shandong, China). 5-FU, glycidol trimethyl 
ammonium chloride, dimethyl sulfoxide (DMSO), 
bromoacetic acid, cell culture media and supplements, 
fetal bovine serum (FBS), and alamar blues were purchased 
from Sigma-Aldrich (Shanghai, China). Dialysis tubing 
with an Mw cut-off of 1,500–2,000 Da was purchased from 
Spectrum Laboratories (Miami, FL, USA). Unless stated 
otherwise, all reagents and solvents were commercially 
available analytic grade reagents and were used without 
further purification.

Preparation of glycidyl trimethyl ammonium chloride 
(GTMAC) poly-β-CD (poly-GTAC-β-CD) and 
carboxymethyl poly-β-CD (poly-CM-CD)

To prepare poly-GTAC-β-CD, 0.01 mole GTMAC and 
0.01 mole poly-β-CD were mixed in a 50 mL round-
bottom flask. On the hand, 0.01 mole bromoacetic acid 
and 0.01 mole poly-β-CD were mixed for poly-CM-β-
CD. Ten milliliters DMSO was added into the mixture and 
stirred. To remove the DMS and residual small molecular 
compound, the dialysis membrane of Spectra/Por 1,500–
2,000 Da was utilized. The resultant product was collected 
by lyophilization. 

Fourier transform IR spectra

Fourier transform IR spectra of poly-GTAC-β-CD and 
poly-CM-β-CD were measured over 4,000–400 cm−1 on a 
Perkin-Elmer Spectrum 2000 instrument (Perkin Elmer, 
Boston, MA, USA) with KBr sample pellets. 

1H NMR spectra

Both poly-GTAC-β-CD and poly-CM-β-CD structures 

were further confirmed by 1H NMR. The 1H NMR 
spectra were recorded in D2O on a Bruker AC 200P, 200 
MHz spectrometer (Bruker Corporation, Rheinstetten, 
Germany), using tetramethylsilane as the internal standard.

The preparation of inclusion complexes

Four-gram poly-GTAC-β-CD and poly-CM-β-CD were 
respectively added into 10 mL DMSO and 1 g 5-FU in  
50 mL round-bottom flask. The mixture was stirred with 
reflux at 80 ℃ for 72 h. The DMSO and residual small 
molecular compound were removed by dialysis for 72 hours 
using the dialysis membrane of Spectra/Por 1,500–2,000 Da.  
The resultant product was collected by lyophilization.

Determination of the 5-FU loading content in poly-CM-β-
CD and poly-GTAC-β-CD 

The content of 5-FU in poly-GTAC-β-CD or poly-CM-β-
CD was evaluated using fluorine element analysis. Briefly, 
a 100 mg sample was wrapped in ashless paper and placed 
in a 500 mL oxygen flask containing 5 mL absorbing 
liquid for combustion. Fluoride in the resultant absorbing 
liquid was separated using IonPac AS14-AG14 (Dionex, 
Sunnyvale, CA, USA) as a separating column and rinsing 
with a solution containing 0.001 M NaHCO3 and 0.0035 M 
Na2CO3. The electric conductivity was detected.

Cell culture

Human liver cancer HepG2 cells (CYP3A4G/7R clone 
87, RRID: CVCL_1×10) were purchased from Cell Bank, 
Shanghai Institutes for Biological Sciences (China). HepG2 
was cultured in DMEM medium supplemented with 10% 
heat-inactivated FBS, 1.0 mM sodium pyruvate, 0.1 mM 
unessential amino acid and 1.5 g/L NaHCO3. All cells were 
cultured in a fully humidified atmosphere containing 5% 
CO2 at 37 ℃.

In vitro cytotoxicity assay of poly-CM-β-CD and poly-
GTAC-β-CD

HepG2 cell lines were seeded in a 24-well plate at a density 
of 5.0×104 cell/mL and incubated overnight at 37 ℃ and 5% 
CO2 to attain subconfluence before treating with poly-CM-
β-CD/poly-GTAC-β-CD at various concentrations. After 
two days post-incubation, cells in each well were exposed 
to 0.4 mL 2% crystal violet in 20% methanol for 30 min 
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at room temperature and rinsed with distilled water in 
preparation for image analysis.

Evaluation of the potential of poly-CM-β-CD-5-FU/
poly-GTAC-β-CD-5-FU inclusion compounds for HepG2 
cancer cells

The potential of poly-CM-β-CD-5-FU/poly-GTAC-
β-CD-5-FU inclusion compounds was evaluated using 
HepG2 cells and the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. HepG2 cells 
were seeded in 96-well plates at a density of 1×104 cells/
well in 100 μL cell culture medium and incubated overnight 
to obtain 75–80% confluency. The culture medium was 
then replaced with fresh, serum free medium, and a serial 
sample of poly-CM-β-CD-5-FU/poly-GTAC-β-CD-5-
FU inclusion compound was added to the cells. Cells were 
incubated with poly-CM-β-CD-5-FU/poly-GTAC-β-
CD-5-FU inclusion compound at a 5-FU concentration of  
5 μg/mL for the originally seeded cells at 37 ℃. Then, cells 
were incubated for 24 h. A total of 10 μL MTT solution 
(25 μg/mL) was added to the 100 μL of culture medium in 
each well before incubation at 37 ℃ for 4 h. The MTT-
containing medium was replaced with 100 μL solubilization 
solution DMSO. Finally, the absorbance was measured 
at 595 nm using an ELISA plate reader (Thermo Fisher, 
Waltham, MA, USA) with a reference filter of 650 nm. 
The viability of non-treated control cells was arbitrarily 
defined as 100%. The experiment was repeated four times 
for each sample treatment. Cell viability (%) was calculated 
according to the following Eq. [1]: 

( ) ( )
( ) ( )

595 650

595 650

100
OD sample OD sample
OD control OD control

−
×

−
	  [1] 

where OD595(sample) and OD650(sample) represent 
measurements from the wells treated with poly-CM-β-CD-
5-FU/poly-GTAC-β-CD-5-FU inclusion compounds and 
OD595(control) and OD650(control) represent measurements 
from the wells treated with only DMEM containing 10% 
fetal calf serum.

Statistical analysis

All experiments were repeated four times and measurements 
were collected in quadruplicate. Data are expressed as the 
mean ± standard deviation based on four measurements. 
Statistical analysis was performed using Student’s t-test. 
P<0.005 was considered to indicate a statistically significant 

difference.

Results

1H spectrum of poly-GTAC-β-CD and poly-CM-β-CD

The successful synthesis of poly-GTAC-β-CD and poly-
CM-β-CD was confirmed by 1H NMR spectra. Typical 1H 
spectra of poly-GTAC-β-CD and poly-CM-β-CD were 
showed in Figures 1 and 2, respectively. Chemical shifts and 
corresponding protons were analyzed in Table 1.

IR spectroscopy of poly-GTAC-β-CD and poly-CM-β-CD

To further confirm the formation of poly-GTAC-β-CD and 
poly-CM-β-CD, IR spectroscopy of poly-GTAC-β-CD and 
poly-CM-β-CD was performed. The FT-IR spectrum of 
poly-β-CD, poly-GTAC-β-CD, and poly-CM-β-CD, with 
or without reaction, was illustrated in Figure 3. According 
to the Table 2, it was indicated that the FT-IR spectrum of 
poly-GTAC-β-CD and poly-CM-β-CD can reappear the 
characteristic absorption peaks of 2,3-epoxypropyltrimeth
ylammonium chloride and Br-CH2COOH. These results 
were consistent with the expected chemical structures poly-
GTAC-β-CD and poly-CM-β-CD.

Determination of 5-FU content in poly-GTAC-β-CD/poly-
CM-β-CD

To determine the percentage of 5-FU loaded in poly-
GTAC-β-CD/poy-CM-β-CD, the fluorine element analysis 
was conducted following freeze-drying of the conjugate. 
The result indicated that the content of 5-FU in 1 g poly-
β-CD, poly-GTAC-β-CD, and poly-CM-β-CD was 1,214, 
921 and 1,187 μg, respectively.

In vitro cytotoxicity of poly-CM-β-CD and poly-GTAC-β-
CD

For the concerns of efficient drug delivery, biocompatibility 
and cytotoxicity of poly-GTAC-β-CD and poly-CM-β-CD, 
HepG2 cell lines were selected for the in vitro cytotoxicity 
analysis and incubated with poly-GTAC-β-CD or poly-
CM-β-CD for 72 h. Crystal violet stain was used to assay 
cell viabilities in the presence of poly-GTAC-β-CD or 
poly-CM-β-CD, and phosphate buffered saline was utilized 
as the control. As illustrated in Figure 4, Figure 4A1,A2,B1 
and B2, for poly-CM-β-CD and poly-GTAC-β-CD, 
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Figure 1 The 1H-NMR spectra of poly-GTAC-β-CD.

Figure 2 The 1H-NMR spectra of poly-CM-β-CD.
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Table 1 The chemical shifts of poly-GTAC-β-CD as well as  
poly-CM-β-CD and its corresponding protons

Chemical shift δH/ppm Annotation

5.76–5.60 OH-2, OH-3 of poly-β-CD

4.87–4.76 OH-1 of poly-β-CD

4.52–4.36 OH-6 of poly-β-CD

4.139–4.1408 -O-CH2-COOH

9.0–12.0 -COOH

3.3001–3.3008 -N+ (CH3)

Figure 3 The IR spectra of (A) poly-β-cyclodextrin, (B) poly-
GTAC-β-CD and (C) poly-CM-β-CD.
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HepG2 cell viabilities were ~100% which indicated that no 
cytotoxicity of poly-GTAC-β-CD and poly-CM-β-CD at 
the concentration of 100–500 μg/mL was found. The results 
were consistent with the previous report, demonstrating 
that cyclodextrin exhibited no toxicity in vitro (23) and in 
vivo (24). However, poly-CM-β-CD and poly-GTAC-β-CD 
exhibited a slightly inhibitive effect on HepG2 cell lines at a 
concentration of 1,000 μg/mL.

Evaluation the potential of poly-GTAC-β-CD-5-FU/poly-
5-FU inclusion compound for HepG2 cancer cells

To determine the impact of negative and positive charges of 
inclusion compound on its antitumor efficient, the potential 
of poly-β-CD-5-FU, poly-GTAC-β-CD-5-FU, and poly-
5-FU inclusion compound for HepG2 cancer cells were 
investigated by MTT assay. The phosphate-buffered saline 

Table 2 The wave number of poly-GTAC-β-CD as well as poly-CM-β-CD and its corresponding IR vibration

Wave number/cm−1 Annotation

1,770–1,750 the C=O stretching vibration of -COOH

1,190–1,001 C-O-C stretching vibration of ether in β-CD, demonstrating that FA binds chemically to poly-β-CD

3,500–3,250 O-H stretch

1282.6 O-H deflection

2,960–2,850 the stretching vibration of C-H 

1,380 the δC-H of CH3

1,200–1,050 the stretching vibration of C-O

Figure 4 The cytopathic effect of poly-β-cyclodextrin, poly-CM-β-cyclodextrin and poly-GTAC-β-cyclodextrin on tumor cell HepG2. 
(A1, A2, A3 and A4) Represented the cytopathic effect of poly-CM-β-cyclodextrin. (B1, B2, B3 and B4) Represented the cytopathic effect 
of poly-GTAC-β-cyclodextrin. (C) was a blank control experiment. Tumor cell lines were seeded in 24-well plates at a density of 5×104 cells 
for each well and incubated with poly-β-cyclodextrin, poly-CM-β-cyclodextrin or poly-GTAC-β-cyclodextrin at the indicated concentration  
(mg/mL). After 72 h incubation, cells in each well were exposed to 0.4 mL 2% crystal violet in 20% methanol for 30 min at room 
temperature and rinsed with distilled water in preparation for image analysis. magnification 100×. 

0.1                                                        0.5                                                        1                                                        5
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was utilized as control. Figure 4 indicated that inclusion of 
model drug 5-FU into poly-GTAC-β-CD or poly-CM-β-
CD had no impact on the potential of model drug 5-FU 
for HepG2 cells and there was a significant difference in 
cytotoxicity among poly-β-CD-5-FU, poly-GTAC-β-CD-
5-FU and poly-CM-β-CD inclusion compound.

Discussion

Preparation Principle of poly-GTAM-β-CD

The preparation route for poly-GTAC-β-CD is shown in 
the schematic diagram of Figure 5. 

There was an ethylene oxide structural unit in GTMAC. 
Because of the large tension of the ternary ring, GTMAC 
was in high chemical activity, which can react with hydroxyl 
groups on poly-β-CD. There were primary hydroxyl 
and secondary hydroxyl groups in poly-β-CD but the 
chemical activity of primary hydroxyl was larger than that 
of secondary hydroxyl. Therefore, the groups of poly-β-
CD which reacted with GTMAC were mainly primary 
hydroxyl. The ring-opening reaction between hydroxyl and 
ethylene oxide can be regarded as a special nucleophilic 
substitution reaction. GTMAC was soluble in H2O and 
DMSO. However, poly-β-CD was poorly soluble in water 
and well soluble in DMSO. Both GTMAC and poly-β-
CD were polar compounds and the polar aprotic solvent is 
favorable for nucleophilic substitution reaction. Therefore, 
DMSO was used as a solvent in this reaction.

Preparation Principle of poly-CM-β-CD

The preparation route for poly-CM-β-CD is shown in the 
schematic diagram of Figure 6. The reaction of hydroxyl 
with dibromoacetic acid was belonging to the nucleophilic 

substitution reaction. Bromoacetic acid was well soluble 
in H2O or DMSO. But poly-β-CD was insoluble in H2O 
instead. Furthermore, due to hydrogen bonding, water 
molecules can form a hydration shell around the hydroxyl 
group on poly-β-CD, blocking the substitution reaction 
of hydroxyl with bromoacetic acid. Because the polar 
characteristic of GTMAC and poly-β-CD was observed, 
DMSO was utilized as a solvent in this reaction.

The analysis by 1H NMR and IR spectroscopy of poly-CM-
β-CD and poly-GTAC-β-CD

For the introduction of the quaternary ammonium group 
into β-CD, 2,3-epoxypropyl trimethylammonium chloride 
(Mw 152 Da) was selected as a reactant which reacted with 
methylol groups in β-CD, providing a physiologically 
stable ether bond. There were hydroxyl groups and 
methylol groups in β-CDs. The nucleophilic ability of 
methylol was stronger than that of hydroxyl. Therefore, 
3-epoxypropyltrimethylammonium chloride was selected to 
favor the linkage of the methylol, resulting in poly-GTAC-
β-CD. To introduce carboxymethyl into β-CD, bromoacetic 
acid (Mw 139 Da) was used as a reactant which reacted with 
methylol groups of β-CD, providing a physiologically stable 
ether bond. There were hydroxyl groups and methylol 
groups in β-CDs. The nucleophilic ability of methylol was 
stronger than that of hydroxyl. Therefore, bromoacetic 
acid was selected to favor the linkage of the methylol, 
resulting in poly-CM-β-CD. All the unwanted residual and 
free reactants were removed by dialysis in later step. The 
1H NMR spectrum of poly-GTAC-β-CD showed all the 
characterization peaks of 2,3-epoxypropyltrimethylammo
nium chloride, and poly-β-CD, demonstrating that 2,3-ep
oxypropyltrimethylammonium chloride bound chemically 

Figure 5 The preparation route and schematic diagram of poly-GTAC-β-CD.

poly-β-CD-CH2OH + Cl−(CH3)3N
+-CH2-CH-CH2 Cl−(CH3)3N

+-CH2-CH-CH2-OCH2-CD-β-poly

OHO
poly-GTAC-β-CD

OMSO

80°C, 2d

Figure 6 The preparation route and schematic diagram of poly-CM-β-CD.

poly-β-CD-CH2OH + Br-CH2-COOH HOOC-CH2-O-CH2-CD-β-poly

poly-CM-β-CD

OMSO

80°C, 2d
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to poly-β-CD through an ether linkage. By the same token, 
the 1H NMR spectrum of poly-CM-β-CD showed all the 
characterization peaks of Br-CH2COOH and poly-β-CD, 
suggesting that Br-CH2COOH bound chemically to poly-
β-CD through an ether linkage. The relevant signals of 
2,3-epoxypropyltrimethylammonium chloride, and Br-
CH2COOH were too weak to be observed in 1H NMR 
because there were overwhelming majority protons of poly-
β-CD than those of 2,3-epoxypropyltrimethylammonium 
chloride and Br-CH2COOH. 

Preparation principle of inclusion compound

Figure 7 is a schematic diagram for the principle of 
inclusion compound. The lipophilic cavity of cyclodextrin 
molecules provided a microenvironment into which 
appropriately sized non-polar 5-FU can enter and form 
β-CD-5-FU inclusion complexes (25). The hydrophobic 
drug 5-FU could induce the β-CD conjugates to self-
assemble and form nanoparticles (26). The main driving 
force for the formation of β-CD-5-FU inclusion complex 
was the release of enthalpy-rich water molecules from 
the hydrophobic cavity. Water molecules were displaced 
by the highly hydrophobic 5-FU molecules presenting 
in the solution to attain an apolar-apolar association 
and decrease of cyclodextrin ring strain, resulting in 
a stable lower energy state (27). Water was the most 
commonly used solvent in which complexation reactions 
were performed. The more soluble β-CD existed in 
the solvent, the more molecules became available for 
complexation. poly-CM-β-CD and poly-GTAC-β-CD 
are well soluble in water but 5-FU is poorly soluble. 
However, poly-CM-β-CD, poly-GTAC-β-CD and 
5-FU are all well soluble in DMSO. Therefore, DMSO 
was used as a solvent in this reaction to improve the 
formation of inclusion host-guest complexes. 

Cytotoxicity and uptake by tumor cells

In vitro cytotoxicity of poly-CM-β-CD and  
poly-GTAC-β-CD
With the increase of the concentration, the osmotic 
pressure of the solution would increase accordingly, which 
had a certain impact on cell growth. With the increase of 
the concentration of poly-CM-β-CD or poly-GTAC-β-CD, 
HepG2 cell viabilities were seriously affected. In conclusion, 
the low concentration of poly-GTAC-β-CD and poly-CM-
β-CD did not affect HepG2 cell growth, while the high 
concentration of poly-GTAC-β-CD or poly-CM-β-CD 
had an obvious effect on HepG2 cell growth. These results 
demonstrated that poly-GTAC-β-CD and poly-CM-β-CD 
can be used as drug carriers. 

Evaluation the potential of poly-GTAC-β-CD-5-FU/
poly-CM-β-CD-5-FU inclusion compound for HepG2 
cancer cells 
Significant difference in cytotoxicity among poly-β-CD-
5-FU, poly-GTAC-β-CD-5-FU and poly-CM-β-CD 
inclusion compound was observed in Figure 8. These results 
may be attributed to the involvement of charge in HepG2 
cellular association and endocytosis of inclusion compounds. 
Zelepukin et al. reported that the effect of charge was a crucial 
factor when testing over eight NP formulations with different 
surface characteristics (28). The cell membrane is composed 
of the phospholipid bilayer with the negative charge on its 
surface. Thus, poly-β-CD-5-FU can be swallowed by HepG2 
cells through the weak electrostatic attraction hydrogen 
bond between hydroxyl and the negative charge on the cell 
membrane surface. The quaternary ammonium groups on 
poly-GTAC-β-CD-5-FU were positively charged (Zeta 
potential +40.3 mV), which can form a strong electrostatic 
attraction with the negative charged on the HepG2 membrane. 
Consequently, poly-GTAC-β-CD-5-FU was more easily 
swallowed by HepG2 cells. However, the large steric hindrance 

Figure 7 The schematic diagram for the formation of cyclodextrin-5-FU inclusion compound.

Cyclodextrin Guest molecule Inclusion compound



4604 Li et al. Antitumor activity of novel poly-β-CD derivatives-5-FU

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(8):4596-4606 | http://dx.doi.org/10.21037/tcr-20-1118

of the quaternary ammonium group blocked the endocytosis of 
poly-GTAC-β-CD-5-FU. Therefore, the killing effect of poly-
β-CD-5-FU on HePG2 was similar to that of poly-GTAC-
β-CD-5-FU. For poly-CM-β-CD-5-FU, the dissociated 
carboxyl was negatively charged (Zeta potential −56.3 mV), 
which can form electrostatic repulsion force with the negative 
charge on the HepG2 membrane surface. This made poly-
CM-β-CD-5-FU difficult to approach cells and block the 
endocytosis of poly-CM-β-CD. Hence, poly-CM-β-CD-5-
FU had the worst killing effect on HePG2 cells. These results 
were consistent with the result reported by Frohlich (29).  
Charge is a key determinant of cellular localization, where 
highly positively charged NPs tend to show higher cellular 
uptake compared to negatively charged particles. It is worth 
pointing out that this high rate of accumulation also leads 
to increased non-specific binding to normal cells, and to 
cytotoxicity combined with a short half-life. In contrast, 
negatively charged NPs have very limited uptake in cells (29). 

Conclusions

The current study demonstrated that the killing effect of 
poly-β-CD-5-FU and poly-GTAC-β-CD-5-FU on HePG2 
cells was similar. By contrast, poly-β-CD-5-FU revealed 

the worst killing effect on HePG2 cells. The feasibility of 
using poly-β-CD derivatives t deliver 5-FU was confirmed. 
β-CD derivatives poly-GTAC-β-CD and poly-CM-β-CD 
had no cytotoxicity. The formation of inclusion complex 
between 5-FU and poly-GTAC-β-CD or poly-CM-β-
CD did not affect the antitumor activity of 5-FU. Charge 
of nanoparticles played an important role in their cellular 
uptake. Poly-β-CD derivatives have potential applications 
in sustained release and targeted drugs for tumor. Further 
studies in progress will study this novel poly-β-CD 
derivatives drug delivery system in vivo.
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