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Introduction 

Gastric cancer is among the world’s highest rates of 
incidence and mortality. In developing countries, 70% of 
new and fatal cases of gastric cancer occur. Deaths of 
gastric cancer in China account for 40% of global deaths 
from gastric cancer (1,2). Although the improvement of 
surgical technology has greatly promoted the surgical 
treatment of gastric cancer, and the means of radiotherapy 
and chemotherapy have also been greatly improved (3,4). 

Meanwhile, the research of molecular biology has been 
deepening, providing a broad prospect for gene therapy, 
immunotherapy, and other new biotherapy of gastric cancer. 
So far, there has been no breakthrough in the treatment 
of gastric cancer (5,6). The refractory nature of gastric 
cancer depends on its aggressive biological characteristics. 
From the current research, tumor invasiveness mainly 
involves the following three aspects, tumor cell adhesion 
and migration, extracellular matrix (ECM) degradation, and 
tumor neovascularization (7-10). Therefore, how to further 
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clarify the pathogenesis of gastric cancer, develop targeted 
drugs for its simple invasion, effectively control the progress 
of gastric cancer, improve the therapeutic effect of gastric 
cancer, prolong the survival time of patients, and improve 
the quality of life of, patients have become an urgent 
problem in the medical field. 

The development and occurrence of tumors are the 
products of polygenic variability, including oncogene 
activation and tumor suppressor gene inactivation (11-13). 
At present, most studies presume that the inactivation of the 
tumor suppressor gene plays a vital role in the development 
of tumors (14,15). Many factors affect the inactivation of 
tumor suppressor genes, including chromatin remodeling, 
DNA methylation, and microRNA regulation. Glutaminase 
2 (GLS2), a type of amidase, has been described as a tumor 
suppressor factor. GLS2 has significant activity in higher 
animals (16). It has been found that abnormal expression 
of GLS2 plays a critical regulatory role in many diseases 
(17-19). In recent years, abnormal expression of GLS2 has 
been detected in various tumor tissues. GLS2 expression 
in gliomas is low, which may possibly be caused by 
hypermethylation of the GLS2 promoter.

The methylation of the GLS2 promoter region in 
adjacent non-cancer tissue is low. The expression of GLS2 
can be restored by the demethylase treatment of glioma 
cells (20). GLS2 expression in hepatocellular carcinoma 
(HCC) is significantly inhibited. Overexpression of GLS2 
can inhibit the growth of HCC cells and transplanted 
tumors, which is through the negative regulation of the 
PI3K/AKT pathway. The low expression of GLS2 in 
HCC is also related to the hypermethylation of the GLS2 
promoter. Inhibition of hypermethylation can restore GLS2 
expression (21). GLS2 binds to small GTPase Rac1, which 
inhibits the interaction between Rac1 and its activator, the 
guanine nucleotide exchange factor, and further inhibits 
the cancer metastasis by suppressing Rac1. Therefore, 
the low expression of GLS2 is closely related to tumor 
metastasis (22). To sum up, GLS2 plays a vital role in tumor 
development, invasion, and metastasis. However, there 
appear to be few reports about GLS2 expression and its 
biological role in gastric cancer. 

The objective of this study was to determine the 
expression of GLS2 by qRT-PCR in gastric cancer tissue 
and adjacent non-cancer tissue, and to investigate the 
effect of GLS2 on the proliferation and migration of 
gastric cancer cells. Finally, this study will provide scientific 
information on the estimation of prognosis and the targeted 
treatment for gastric cancer.

Methods

Specimens

Fresh gastric cancer tissue samples were collected from 36 
patients with gastric cancer in our hospital from August 
2014 to August 2019. All procedures performed in this 
study involving human participants were in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study was approved by the ethics committee of Changshu 
Hospital of Traditional Chinese Medicine (No. 20200102) 
and informed consent was taken from all the patients. 
All these patients underwent gastrectomy, which was 
pathologically diagnosed as gastric cancer. These patients 
included 25 males and 11 females. 

Cell culture and transfection

The human gastric cancer cell line MGC-803 (Shanghai 
Chinese Academy of Sciences cell bank, China) was 
cultured in RPMI-1640 containing penicillin (100 U/mL), 
streptomycin (100 μg/mL), and 10% FBS at 37 ℃ with 5% 
CO2. Cells used in experiments were passaged at least three 
times. 

Determining the expression of GLS2 mRNA

 The total RNA was extracted with Trizol reagents from 
the gastric cancer tissue or adjacent non-cancer tissue, as 
directed by the manufacturer. A reverse transcription kit 
was synthesized to the cDNA. The primers of GLS2 and 
β-actin were synthesized by Invitrogen (Shanghai, China). 
The following primers are used: GLS2 (GI:313755752) 
forward primer: 5'-ttccgaaagtgtgtgagcag-3', reverse primer: 
5'-ccacaggtctgggtttgact-3'; beta-actin (GI:1519311456) 
forward primer: 5'-ggacttcgagcaagagatgg-3', reverse 
primer: 5'-agcactgtgttggcgtacag-3'. The PCR reaction was 
performed using the ABI PRISM 7700 System (Applied 
Biosystems). The expression of GLS2 was defined from 
the threshold cycle (Ct), and relative expression levels were 
calculated using the 2−ΔΔCt method (23).

Western blot

Western blot was used to detect protein expression according 
to the West blot method stated (24). Briefly, total proteins 
were extracted from cells with Radio-Immunoprecipitation 
Assay (RIPA) lysate buffer (Beyotime, Haimen, China), 
and then the protein concentration was detected using 
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the bicinchoninic acid (BCA) (Beyotime, Haimen, China) 
method. Twelve percent separated total protein sodium 
dodecylsulphate polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to a Polyvinylidene Fluoride (PVDF) 
membrane. The PVDF membrane was blocked with a TBS 
solution holding 5% non-fat milk at room temperature for 
1 hour and then incubated with the primary antibody at 
4 ℃ overnight. Subsequently, the PVDF membrane was 
incubated with the HRP-conjugated secondary antibody at 
37 ℃ for one hour. Finally, enhanced chemiluminescence 
visualized the band (ECL) and analyzed with the 
QuantityOne software (Bio-Rad, USA). The relative 
expression value of the target protein is the gray level of the 
target protein corrected by the internal reference protein 
compared with that in the non-transfected control group.

Proliferation assay

The effect of GLS2 on MGC-803 cell proliferation was 
detected with Cell Counting Kit-8 assay (Beyotime, 
Haimen, China). Briefly, MGC-803 cells were seeded in 
96-well plates at a density of 2×103/well and cultured at 
37 ℃ with 5% CO2 for 24 hours. Then, MGC-803 cells 
were incubated with 10 μL Cell Counting Kit-8 at room 
temperature for four hours. Subsequently, the absorbance 
was read on a Microplate Reader at 450 nm (Bio Tek, 
Thenceforth, USA). 

Cell apoptosis assay

Annexin V-fluorescein isothiocyanate (FITC) Apoptosis 
Detection Kit (Beyotime, Haimen, China) was used to 
detect the effect of GLS2 on cell apoptosis in MGC-
803. Briefly, the cells were harvested, and the lentivirus 
expression vector was transfected with GLS2 overexpression. 
At room temperature in the dark, the cells were then washed 
with phosphate buffered solution (PBS) and incubated with 
Annexin V-FITC for 10 min. The cells were subsequently 
resuspended from binding buffer Annexin V-FITC before 
incubating in the dark with propidium iodide (PI) staining 
solution. The stained cells are immediately studied using 
flow cytometry (BD Biosciences, Franklin Lakes, NJ, USA).

Migration capability analysis 

Transwell chamber assay (Beyotime, Haimen, China) 
was used to determine GLS2’s effect on MGC-803 cell 
migration capability. In short, 1×105 cells were seeded in the 

upper chamber of the Transwell invasion system (200 μL  
RPMI-1640 medium for 10 % FBS) and 600 μL MEM 
medium with 10% FBS was added to the lower chamber. 
For Cell Counting Kit-8, the cells that migrated through 
the chamber’s polycarbonate membrane into the lower 
chamber were detected after 24 hours. The number of 
living cells in the lower chamber may be indicative of tumor 
cell migration potential.

Statistical analysis

The SPSS19.0 software was used for data analysis. Data are 
expressed as mean ± SD of three independent experiments. 
One-way ANOVA and t-test were used in this study. The 
results were considered statistically significant if P<0.05.

Results

GLS2 mRNA expression in gastric cancer tissues

The qRT-PCR method was used to determine GLS2 
mRNA expression in gastric cancer tissues. Thirty-six gastric 
cancer samples were collected, and the qRT-PCR result 
showed that the expression of GLS2 mRNA in the gastric 
cancer tissues was significantly lower than that in adjacent 
non-cancer tissue (P<0.01), as evidenced by Figure 1.  
These data implied that the downregulation of GLS2 
might possibly be associated with the development and 
progression of gastric cancer.

GLS2 protein expression in gastric cancer cell lines

To explore the role of GLS2 in the development and 
progression of gastric cancer, a vector of GLS2 overexpression 
has been developed and transfected to cells of human gastric 
cancer MGC-803. Cells were divided into three groups, 
namely the untransfected control group, the transfected 
empty vector control group, and the vector-transfected 
overexpression group GLS2. To assess GLS2’s transfection 
effect, western blot analysis was used to evaluate GLS2’s 
protein expression in the untransfected control group, the 
transfected empty vector control group, and the vector-
transfected group GLS2 overexpression. The findings 
showed that the protein expression of GLS2 in the GLS2 
overexpression vector-transfected group was significantly 
increased compared to that in the untransfected control 
group and the empty vector control group (P<0.01) 
transfected, as shown in Figure 2. Such results showed that 
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the protein GLS2 in human gastric cancer cells MGC-803 
was successfully overexpressed.

Effects of GLS2 on gastric cancer cell proliferation 

In order to explore the effect of GLS2 on gastric cancer cell 
proliferation, the MTT assay was chosen further to analyze 
the proliferation ability of gastric cancer MGC-803 cells. 
Our data showed that the ability of gastric cancer MGC-
803 cells to proliferate within the GLS2 overexpression 

group was significantly suppressed. These results were 
especially true at 48 and 72 hours, compared to that in the 
non-transfected control group and the transfected empty 
vector control group (P<0.01), but not significantly different 
from the non-transfected control group with the transfected 
empty vector control group, as evidenced by Figure 3. 
These data indicated that GLS2 overexpression suppressed 
the proliferation ability of gastric cancer MGC-803 cells. 

Effects of GLS2 on gastric cancer cell apoptosis

In order to explore the effect of GLS2 on gastric cancer 
cell apoptosis, Annexin V and PI staining assays were 
chosen to analyze further the cell apoptosis ability of gastric 
cancer MGC-803 cells. The results showed that there were 
more apoptotic cells in the GLS2 overexpression group 
compared to that in the non-transfected control group and 
the transfected empty vector control group (P<0.01). There 
is no significant difference in the number of apoptotic 
cells between the non-transfected control group and the 
transfected empty vector control group, as evidenced by 
Figure 4A. Also, caspase 3 displayed significant upregulation 
in the GLS2 overexpression group (Figure 4B,C), which 
suggested that GLS2 might play a role in promoting gastric 
cancer MGC-803 cell apoptosis by upregulating caspase 3. 

Effects of GLS2 on gastric cancer cell migration 

The Transwell invasion chamber system was used to analyze 
Figure 1 GLS2 mRNA expression in gastric cancer tissues.  
**, P<0.01. GLS2, glutaminase 2.
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the cell migration ability further to explore the effect of 
GLS2 on gastric cancer cell migration. In this study, the 
MGC-803 cells that migrated through the polycarbonate 
membrane chamber into the lower chamber were detected 
with MTT staining. The number of living cells in the 
lower chamber that reflect the ability of MGC-803 cells 
to migrate to gastric cancer. Our data showed that the 
migration ability of human gastric cancer MGC-803 cells 
was significantly suppressed in the GLS2 overexpression 
group compared to the non-transfected control group and 
the transfected empty vector control group (P<0.01), but 
not significantly different from the non-transfected control 
group with the transfected empty vector control group, as 
evidenced by Figure 5. These data demonstrated that GLS2 
overexpression might inhibit the migration ability of gastric 
cancer MGC-803 cells. 

Discussion 

GLS2 is a type of glutaminase isoenzyme, which is 
responsible for the conversion of glutamine to glutamate (25).  
There seem to be two types of glutaminase isoenzymes, 
including GLS1 and GLS2, which have contrasting 
functions in tumorigenesis (26). One of the two GLS 
isoenzymes, GLS1, is highly expressed in cancer and has 
oncogenic properties, which fuels the rapid proliferation of 

cancer cells through hydrolyzing glutamine into glutamate 
(16,27). Masamha et al. found that GLS1 displayed a 
significant upregulation in ovarian cancer, especially in 
metastatic cancer cells (28). Xiang et al. demonstrated 
that GLS1 was overexpressed in colorectal cancer and 
significantly associated with lymph node metastasis and 
advanced clinical stage (27). While, GLS2, a direct p53 
target gene, has been described as a tumor suppressor. 
Ramirez-Peña et al. demonstrated that GLS2 displayed a 
significant downregulation in breast cancer and was inversely 
associated with epithelial to mesenchymal transition 
(EMT), while high expression of GLS2 was associated 
with increased survival of breast cancer patients (29).  
However, there appear to be few reports about GLS2 
expression and its biological role in gastric cancer. 

 In the current study, we found that the expression 
of GLS2 mRNA in the tissues of gastric cancer was 
significantly lower than in adjacent non-cancer tissue, 
suggesting that GLS2 downregulation might be associated 
with the development and progression of gastric cancer. 
Our data were consistent with the previous reports that 
GLS2 was repressed in many tumor cells, such as HCCs and 
glioblastomas (16,30). Szeliga et al. demonstrated that GLS2 
displayed a significant downregulation in glioblastoma due 
to DNA demethylation, while CpG methylation was absent 
in GLS2-expressing adjacent non-cancer brain tissues (20). 
Kuo and his colleagues found that the expression of GLS2 
was repressed in human HCC tissues, and was inversely 
associated with poor prognosis (31). These data suggested 
that the downregulation of GLS2 could possibly be a 
specific tumor biomarker for gastric cancer, which may 
contribute to gastric tumorigenesis.

The GLS2 overexpression vector was constructed 
and transfected successfully into human gastric cancer 
MGC-803 cells to explore the effect of GLS2 on gastric 
cancer cell proliferation. Our data suggested that GLS2 
overexpression significantly suppressed the proliferation 
and migration of MGC-803 cells of gastric cancer, and 
enhanced the apoptosis of MGC-803 cells of gastric 
cancer. Our data also found that GLS2 overexpression 
increased the expression of caspase 3, which suggested that 
GLS2 promoted gastric cancer MGC-803 cell apoptosis 
by upregulating caspase 3. Overexpressing GLS2 could 
induce less c-Myc and Bcl-2 expression, as well as higher 
bid expression, leading to decreased proliferation and 
increased apoptosis in glioma, and GLS2 overexpression 
also could cut down aggressive features of glioma cells (32).  
GLS2 overexpression could significantly inhibit the growth 

Figure 3 Effects of GLS2 on proliferation the ability of gastric 
cancer cells from the non-transfected control group, the transfected 
empty vector control group, and the GLS2 overexpression vector-
transfected group. **, P<0.01 compared to the non-transfected 
control group or the transfected empty vector control group. 
GLS2, glutaminase 2.
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and colony formation of human HCC cells and the growth 
of human HCC xenograft tumors (22). GLS2 could bind 
to small GTPase Rac1, and inhibit Rac1 to suppress cancer 
metastasis, and downregulation of GLS2 is associated 
with increased metastasis in human cancer (22). Kuo et al.  
proved that GLS2 could stabilize Dicer protein by 
interacting with Dicer to facilitate miR-34a maturation, 
later inhibiting the expression of Snail. Finally, GLS2 
suppressed migration and invasion of human HCC cells by 
inhibiting the EMT via the Dicer-miR-34a-Snail axis in 
human HCC (31). Liu et al. found that GLS2 functions as 
a tumor suppressor through negatively regulating PI3K/

AKT signaling in human HCC (21). These data suggested 
overexpression of GLS2 was associated with decreased 
proliferation and migration, and enhanced apoptosis in 
gastric cancer.

In summary, we found that the expression of GLS2 was 
significantly suppressed in human gastric cancer tissues, and 
the downregulation of GLS2 was correlated to its increased 
proliferation and migration and decreased apoptosis. 
Moreover, GLS2 overexpression could inhibit gastric cancer 
cell proliferation and migration and improve gastric cancer 
cell apoptosis. Therefore, GLS2 functions as a crucial 
tumor suppressor involved in gastric tumorigenesis.

Figure 4 Effects of GLS2 on apoptosis of gastric cancer cells from the non-transfected control group, the transfected empty vector control 
group and the GLS2 overexpression vector-transfected group. (A) Effects of GLS2 on gastric cancer cell apoptosis, (B) effects of GLS2 on 
caspase 3 in gastric cancer cells, (C) the relative expression of caspase three protein in gastric cancer cells. **, P<0.01 compared to the non-
transfected control group or the transfected empty vector control group. GLS2, glutaminase 2.
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